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1 Motivation

1.1 Random Walks

Let’s say you’re checked out to Walmart and have no idea how to get back to camp. Because
of this, you pick the obvious strategy of walking back randomly: at each intersection, you roll
a die and decide which direction to go based on the outcome. Since you want to be sure to get
back by the end of sign-in, you want to know how long it’ll take, on average, for this random
walk to reach the dorms.

Example 1. Suppose Waterville looks like this:

DormsRest of Waterville

Walmart

We can try to directly compute how long it’ll take a random walk to get from Walmart to the
dorms, on average. Before you take any steps, you’re at Walmart with probability 1. After
taking a single step, you’re at the dorms with probability 1

2 and at the rest of Waterville with
probability 1

2 . After taking 2 steps, things are a bit more complicated, but we can figure it out: if
you originally got to the dorms after one step, you stopped. If not, then you must have gotten
to the rest of Waterville after 1 step, so after 2 steps you are at the dorms with probability
1
2 ·

1
2 =

1
4 and back at Walmart with probability 1

4 . Continuing this process, we can make the
following table (which will look familiar if you were in Zach’s colloquium in Week 1):
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Probability of being at the given vertex
Walmart Rest of Waterville Dorms

#
of

st
ep

s
0 1 0 0
1 0 1

2
1
2

2 1
4 0 1

4
3 0 1

8
1
8

...
...

...
...

n 0 or 2−n 0 or 2−n 2−n

Using this, we see that

(Expected time to get to dorms) =
∞
∑

n=0

n · Prob(you reach dorms at step n)

=
∞
∑

n=1

n
2n

= 2

So the answer is 2. However, this way of doing things was pretty terrible: it required us to
recognize a pattern and sum a somewhat complicated infinite series.

We can do better. Let the hitting time H(a, b) denote how long it takes, on average, for a
random walk to go from vertex a to vertex b; with this notation, we are trying to calculate
the hitting time H(W, D), where W is Walmart and D is the dorms. The first step will take us
to vertex D with probability 1

2 and to vertex R with probability 1
2 , where R denotes the rest of

Waterville. Therefore,

H(W, D) = 1+
1
2

H(D, D) +
1
2

H(R, D)

where the addition of 1 records the fact that we took a single step to get to the position we’re
in. Note that H(D, D) = 0, since a random walk starting at the dorms will get to the dorms in
zero steps. Similarly, we can see that

H(R, D) = 1+
1
2

H(W, D) +
1
2

H(D, D) = 1+
1
2

H(W, D)

Therefore, we can conclude that

H(W, D) = 1+
1
2

H(D, D) +
1
2

H(R, D)

= 1+
1
2
· 0+

1
2

�

1+
1
2

H(W, D)
�

=
3
2
+

1
4

H(W, D)

We can rewrite this as
3
4

H(W, D) =
3
2
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which we can solve to give us H(W, D) = 2. Note that we got the same answer as before, but
that this solution style was much simpler; in particular, we used no infinite series.

Great! We now know how to calculate the hitting time, right? Let’s apply our newfound
knowledge to a different model of Waterville.

Example 2. Suppose Waterville looks like this:

Walmart
Dorms

Um. . . I definitely don’t want to sum an infinite series associated to this graph, and I also don’t
want to go through our second, recursive method of calculating H(W, D). Is there a better
way?

In order to try to find a better way, let’s return to our second method once more. The basic
insight we used there was that for any pair of vertices a, b in any graph,

H(a, b) = 1+
1

deg(a)

∑

c∈N(a)

H(c, b) (1)

where N(a) denotes the neighborhood of a, i.e. all those vertices adjacent to a, and deg(a) =
|N(a)| is the degree of the vertex a. The reason that this equation holds is precisely the same
as the reasoning we used in Example 1. Namely, after taking a single step from a, there is a
1/deg(a) probability that we get to each of the neighbors of a, and from there the expected time
to get to b is, by definition, H(c, b). We’ll refer to Equation 1 as the neighbor-averaging property
for random walks: the hitting time from a can be determined from the average of hitting times
over all the neighbors of a. This property will turn out to be the key to understanding random
walks; are there other natural questions that exhibit a similar neighbor-averaging property?

1.2 Water flow

Suppose we have a network of water pipes modelled by a graph. It is a basic fact1 from physics
that the flow rate of water in a pipe is proportional to the pressure difference between the two

1This “fact” is not actually true, but it’s a good approximation to true in many simple situations.
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endpoints of the pipe. For any vertex v in the graph, let P(v) denote the pressure at that vertex.
Then what we have just said is that for any edge e = uv,

(flow rate along e)∝ P(v)− P(u)

In addition, note that the total flow into any vertex must equal the total flow out of that vertex,
since it’s impossible for water to build up at any point in the network. What that means is that
if we add up the flow rates over all edges that touch a given vertex, we should get 0. Using
our above equation, that tells us that for any vertex v,

∑

u∈N(v)

(P(v)− P(u)) = 0

We can equivalently write this as

0=
∑

u∈N(v)

(P(v)− P(u))

=
∑

u∈N(v)

P(v)−
∑

u∈N(v)

P(u)

= |N(v)|P(v)−
∑

u∈N(v)

P(u)

= deg(v)P(v)−
∑

u∈N(v)

P(u)

or equivalently

P(v) =
1

deg(v)

∑

u∈N(v)

P(u)

Thus, pressure in a water pipe network also exhibits a neighbor-averaging property. Note that
this neighbor-averaging property is slightly different from the one we saw for random walks,
because of the (1+) term we saw in equation 1.

1.3 Tiling Rectangles with Squares

A famous question that occupied mathematicians for some time is the question of when we can
tile a rectangle by squares, and what sort of restrictions there are on the squares. One such
tiling is:
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36 33

28

5

9 7

25

16

2

We can associate a graph to this tiling by giving a vertex to each maximal horizontal segment
and connecting two such edges if and only if there is a square connecting them:

36 33

28

5

9 7

25

16

2

16
25 28

9

7

2 5

36 33
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We define a function h on the vertices of this graph by setting h(v) to be the height of vertex
v. Then h also has a neighbor-averaging property. The reason is straightforward:
∑

u∈N(v)

h(u) =
∑

u∈N(v)
u above v

h(u) +
∑

u∈N(v)
u below v

h(u)

=
∑

u∈N(v)
u above v

(h(v) + side length of square between u and v)

+
∑

u∈N(v)
u below v

(h(v)− side length of square between u and v)

= deg(v)h(v) + (length of segment defining v)− (length of segment defining v)
= deg(v)h(v)

and dividing by deg(v) gives us the same neighbor-averaging property as we had for water
pipes. Note that we have used the fact that squares are square: specifically, the sum of the side
lengths of all the squares touching a horizontal segment from above is precisely the length of
that horizontal segment, and similarly for those below.

1.4 Rubber bands

Our final example, and one of the most important ones we will consider, is that of rubber
bands. You may have heard (in your physics class, for instance), of Hooke’s law, which states
that the pulling force an ideal rubber band exerts is proportional to the amount it is stretched.
So suppose we replace all of the edges in our graph with ideal rubber bands, nail some of our
vertices to the real line, and let the system find its equilibrium position. In equilibrium, the
sum of all forces on a point must be zero (for otherwise, it would move); this means that if we
let f (v) denote the horizontal position of vertex v, then

∑

u∈N(v)

( f (u)− f (v)) = 0

since the force that the rubber band uv applies on v is proportional to its length, namely
f (u)− f (v). We saw this equation before; it is equivalent to

f (v) =
1

deg(v)

∑

u∈N(v)

f (u)

And thus, in the equilibrium position, the location of vertices on a rubber band graph also
demonstrates a neighbor-averaging property.

2 Harmonic Functions

2.1 Definitions and Disappointments

Let’s formalize all of the motivation we did in the previous section.
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Definition 1. Let G = (V, E) be a graph. A function f : V → R is said to be harmonic at v ∈ V
if it has a neighbor-averaging property at v, namely

f (v) =
1

deg(v)

∑

u∈N(v)

f (u)

or equivalently
∑

u∈N(v)

( f (u)− f (v)) = 0

If f is harmonic at every v ∈ V , then we say that f is a harmonic function on G.

As we saw above, the following functions are harmonic: the pressure function on a network
of water pipes, the height function on a square tiling of a rectangle, and the equilibrium position
function of a rubber band graph. The hitting time isn’t quite a harmonic function, thanks to
that pesky (1+) term in Equation 1, but we will soon fix that.

Given all of these examples, the following theorem might be a bit surprising:

Theorem 2. There are no (non-constant) harmonic functions on a (finite connected) graph G.

Proof. Let f : V → R be any non-constant function; we claim that it is not harmonic on all of
V . The problem is that the function can’t be harmonic at its maximum, since the average of its
neighbors is at most the maximum value. However, this is not yet a proof, since it’s possible
that a maximal vertex has all its neighbors also be maximal. So to make this proof work, we
argue as following. Let M be the set of all maximal vertices, i.e.

M = {v ∈ V : f (v) =max
w∈V

f (w)}

Since f is non-constant, M 6= V . In addition, since G is a connected graph, there is at least one
v ∈ M that is adjacent to some v′ /∈ M . Then

∑

u∈N(v)

f (u) = f (v′) +
∑

u∈N(v)\{v′}

f (u)

≤ f (v′) + (|N(v)| − 1)max
w∈V

f (w)

< |N(v)|max
w∈V

f (w)

= deg(v) f (v)

where the third line uses the fact that v′ /∈ M , so f (v′) < maxw∈V f (w), and the last line uses
the fact that v ∈ M , so f (v) =maxw∈V f (w). Dividing by deg(v) tells us that

f (v)>
1

deg(v)

∑

u∈N(v)

f (u)

and thus f is not harmonic at v.
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Note. Observe that the restrictions in the statement of Theorem 2 are crucial. First, any con-
stant function is, in fact, harmonic on all of V . Second, if G is disconnected, then we can make
a non-constant harmonic function: make it constant on one connected component and make
it some other constant on the other connected component. On the homework, you’ll see that
the condition on G being finite is also necessary.

Since Theorem 2 guarantees that there are no interesting harmonic functions, it makes
sense to give a name to those points on which a function is not harmonic:

Definition 3. For any function f : V → R, we say that v ∈ V is a pole of f if f is not harmonic
at v.

Corollary 4. Every non-constant function f on a finite connected graph has at least two poles.

Proof. In the proof of Theorem 2, we saw that at least one vertex maximizing f must be a pole
of f . Repeating the exact same argument (but reversing all of our inequalities) shows that at
least one vertex minimizing f must also be a pole of f . Since f is non-constant, its maximum
and minimum must be different. Therefore, these two vertices are distinct, so f has at least
two poles.

Note. Note that I totally lied to you earlier, when I claimed that our motivating examples were
harmonic functions. Specifically,

• For the height function of a square tiling, I swept the two poles under the rug: the top
and bottom horizontal segments are poles of the function, and the argument I gave for
harmonicity totally fails on them.

• In rubber band graphs, remember that we decided to nail some of the vertices to the real
line; if we don’t do this, all of the rubber bands will shrink to zero length and our entire
graph will collapse to a point. However, those vertices nailed to the wall might be poles
of the function, since the force-balancing argument does not apply to them.

• In the water pipe model, one of two things could go wrong. If the system is closed, then
it will reach equilibrium and there will be no flow, implying that all pressures will be
equal and thus our harmonic function will just be constant. If the system is not closed,
then there must be water entering and exiting the system at some vertices, and therefore
those vertices will be poles of the pressure function.

2.2 Rescuing Harmonic Functions

For a class called “Harmonic Functions on Graphs,” Theorem 2 and Corollary 4 are a bit disap-
pointing: if our function is even the tiniest bit interesting (i.e. not constant), then it cannot be
harmonic. In other words, there are no interesting harmonic functions. What can we do?

It turns out that we can rescue this, and turn our no-longer-harmonic functions into ex-
tremely powerful mathematical tools. The key fact that enables this is the following theorem.
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Theorem 5. Let G = (V, E) be a finite connected graph, and let B ⊆ V be any set of vertices with
|B| ≥ 1. Let f0 : B→ R be any function on B. Then there exists a unique function f : V → R such
that f is harmonic on every v ∈ V \ B and f (b) = f0(b) for every b ∈ B.

What this theorem says is that we can pick any set of vertices to be our poles and any
assignment of values to those poles, and we get a unique function that extends that assignment
and has its poles in our specified set. Such a function f is called the harmonic extension of f0.

Proof of Uniqueness. Unlike many theorems, in this case, proving uniqueness is much easier
than proving existence. For suppose we had two functions f1, f2 : V → R such that f1, f2 are
both harmonic on V \ B and such that f1(b) = f2(b) = f0(b) for all b ∈ B. Then consider the
function g : V → R defined by g(v) = f1(v)− f2(v). Then observe that for any v ∈ V \ B,

g(v) = f1(v)− f2(v)

=
1

deg(v)

∑

u∈N(v)

f1(u)−
1

deg(v)

∑

u∈N(v)

f2(u)

=
1

deg(v)

∑

u∈N(v)

( f1(u)− f2(u))

=
1

deg(v)

∑

u∈N(v)

g(u)

Thus, g is also harmonic on V \B. By the proof of Corollary 4, we know that the maximum and
the minimum of g cannot be achieved on the vertices where it is harmonic, so the maximum
and minimum of g must both be achieved somewhere in B. However, we also know that for
any b ∈ B,

g(b) = f1(b)− f2(b) = f0(b)− f0(b) = 0

Therefore, the maximum and minimum of g must both be 0, so g must be the constant zero
function. That means that for any v ∈ V ,

0= g(v) = f1(v)− f2(v)

which implies that f1 = f2. So we do indeed have a unique harmonic extension.

Proof of existence. First of all, note that the case |B| = 1 is already done; namely, a function
f0 : B→ R is simply a single real number r ∈ R, and we can extend f0 to the constant function
f whose value is r everywhere. So from now on, we will assume that |B| ≥ 2.

It turns out that all of those motivating examples we did are really useful for proving exis-
tence of harmonic extensions. Because of that, and because this theorem is so important, here
are four distinct proofs of existence.

Rubber bands: As before, turn every edge of G into a rubber band. Nail every vertex in B to
the wall, with the horizontal position of b ∈ B given by f0(b). Then, let the system find
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its equilibrium position.2 For v ∈ V , define

f (v) = x-position of v at equilibrium

Then f certainly extends f0, since the position of b ∈ B is precisely where we nailed it
down, namely f0(b). In addition, f is harmonic on V \ B, by the argument we made
previously: for every unnailed vertex, the forces acting on it are balanced, which implies
that

∑

u∈N(v)

( f (u)− f (v)) = 0

for any unnailed vertex v. This, as we saw, is equivalent to f being harmonic at v.

Pipes: This one is very similar to the rubber bands one. Make a network of pipes out of your
graph, and insist that the pressure at every b ∈ B be fixed at f0(b). We can make sure
that this pressure stays constant by dynamically inserting or removing water from that
node to keep the pressure fixed. Then, again by the same argument as before, we see
that the pressure at equilibrium flow will be a harmonic function for all v ∈ V \ B.

Random walks: This proof is a bit more intricate than the two above, but it’s also significantly
less sketchy; in particular, it doesn’t rely on any physical intuition or “facts” from physics.
Define a function f : V → R as follows: for v ∈ V ,

f (v) =
∑

b∈B

f0(b)Prob(b is the first vertex in B that a random walk from v reaches)

Then note that f does indeed extend f0, since b is the first vertex in B that a random
walk from b will reach. To prove that f is harmonic, let’s first simplify notation: let

P(b, v) = Prob(b is the first vertex in B that a random walk from v reaches)

so that
f (v) =

∑

b∈B

f0(b)P(b, v)

2You can use your physical intuition to convince yourself that this equilibrium exists. For a formal proof, you
can consider the energy function and use a multivariable calculus argument to see that it has a unique minimum
value. Finally, you can show that at the minimum energy position, all forces are balanced.
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Then for v ∈ V \ S

f (v) =
∑

b∈B

f0(b)P(b, v)

=
∑

b∈B

f0(b)
∑

u∈N(v)

Prob(u is the first step of the walk) · P(b, u)

=
∑

b∈B

∑

u∈N(v)

1
deg(v)

f0(b)P(b, u)

=
1

deg(v)

∑

u∈N(v)

∑

b∈B

f0(b)P(b, u)

=
1

deg(v)

∑

u∈N(v)

f (u)

which is precisely the harmonicity property. Thus, f is indeed a harmonic extension of
f0.

Linear Algebra: This paragraph is not actually a proof, just a statement that such a proof
does exist. One can prove the existence of harmonic extensions using some general
techniques from linear algebra and spectral graph theory, but the proof is complicated
and unenlightening. In my opinion, the above proofs are the “right” way to think about
harmonic extensions: they tell you where the harmonic extension is actually coming
from, rather than a general abstract proof that it should exist.

3 Using Harmonic Functions

It turns out that the uniqueness of harmonic extensions will be very helpful for us soon. In
particular, recall that all of our motivating examples give us harmonic functions, so if harmonic
extensions are unique, we must get the same harmonic function in all cases. Using this, we can
get the following result, which is just one of many like it.

Theorem 6. Suppose we have a square tiling of a rectangle R, and let G = (V, E) be the associated
horizontal-segment graph. Let s denote the bottom edge of the rectangle and t the top edge. Then
the ratio between the width and the height of R equals the force required to hold s and t one unit
distance apart when all the edges of G are rubber bands.

Proof. Let f0(s) = 0, f0(t) = 1, and f the unique harmonic extension of f0 to V . Then consider
∑

u∈N(s)

f (u)

On the one hand, since the height of square tilings is harmonic, this is the sum over all bottom
squares of their heights, which is the same as the sum of their widths, which is just the width
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of R, given that the height of R is 1. On the other hand, suppose we hold s at position 0 and t
at position 1. Then since rubber band placement is harmonic, the force applied on s is also

∑

u∈N(s)

f (u)

So these two are equal.

This is actually a special case of a much more general theorem, which we won’t prove:

Theorem 7. Let G = (V, E) be a graph, and let s, t ∈ V . Define the following quantities:

• Fst is the force required to hold s and t distance 1 apart when all edges are rubber bands.

• Wst is the width of a rectangle when square-tiled according to G with s as the bottom edge
and t as the top edge, and height 1.

• Cst is the commute time between s and t, which is the expected amount of time it’d take a
random walk to start at s, reach t, and then return to s.

• Rst is the effective resistance between s and t when all edges are 1 Ohm resistors (ignore this
if you haven’t seen resistor diagrams previously).

• G′ is the graph gotten by identifying vertex s with vertex t, and T (G) denotes the number
of spanning trees in G.

Then

Fst =Wst =
1

Rst
=

2|E|
Cst
=

T (G)
T (G′)

Idea of Proof. For every one of these quantities, it is possible to associate a function to G that
is 0 at s, 1 at t, and harmonic everywhere else. Since harmonic extensions are unique, all of
these functions must be equal. From that, we can deduce all of these equalities.

In a very similar vein, we can relate hitting times—our original motivating question—to
rubber bands, albeit not exactly through harmonic functions.

Theorem 8. Pick a vertex b of a graph G = (V, E) and nail it to the wall. To every other vertex
x, attach a weight equal to deg(x). Finally, replace all edges with rubber bands. Let the system
find its equilibrium position. Then

H(a, b) = height different between a and b

Proof. As we saw at the beginning, we have the following recurrence for H(a, b):

H(a, b) = 1+
1

deg(a)

∑

v∈N(a)

H(v, b)

=
1

deg(a)

 

deg(a) +
∑

v∈N(a)

H(v, b)

!
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We can rewrite this as
−deg(a) +

∑

v∈N(a)

(H(a, b)−H(v, b)) = 0

Now, suppose we we define a function h on the vertices by h(b) = 0, and h(x) is the
equilibrium height of x when all edges are rubber bands and each vertex x has a weight of
deg(x) attached to it. At equilibrium, the sum of the forces on each vertex (apart from b) will
be 0. The forces on a given vertex a are a force of deg(a) pointing down (from the weight
attached to a), and a force of h(a)−h(v) for each neighbor v of a (from the rubber band). The
fact that these forces are balanced means that

−deg(a) +
∑

v∈N(a)

(h(v)− h(a)) = 0

Since this is (up to a sign) the same equation as we got above for H(a, b), we see that h(a) =
−H(a, b). Since b was nailed at 0, this means that the distance between a and b in this
equilibrium position is exactly H(a, b), as desired.

Note. Strictly speaking, this theorem does not use the uniqueness of harmonic extensions,
since the hitting time is not actually harmonic. However, in its use of a neighbor-averaging
property and in its close connection to rubber bands (which, we will see, are in some sense
the prototypical example of a harmonic function), it is certainly very similar to other harmonic
function arguments.

Observe the following fact about Theorem 5: we can write down the following sets of
equations

f (v) = f0(v) ∀v ∈ B

f (v) =
1

deg(v)

∑

u∈N(v)

f (u) ∀v ∈ V \ B

If we treat this as a set of linear equations with variables f (v) for all v ∈ V (and treat everything
else, including the values of f0, as constants), then we get |V | linear equations and |V | variables.
As we know from basic (linear) algebra, if this system of equations has a solution, then we
can find it very efficiently using row-reduction.3 What this means is that in addition to being
powerful theoretical tools, harmonic extensions are actually useful in practice: we can find
their values very quickly. Note that this argument only works because we already know that
this system has a solution.

Another important observation from this system of equations is that all of the coefficients
of the equations are rational numbers, assuming that f0 takes rational values. This implies that

Theorem 9. If f0 : B→ Q is a rational-valued function, then its unique harmonic extension f is
also rational-valued.

3In algorithmic language, we can find a solution in time O(|V |3).
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Proof. Row-reducing a system of equations is done only by adding, subtracting, multiplying,
and dividing by coefficients, so if all the coefficients start out rational, they will never become
irrational.

This simple observation turns out to be enormously powerful. For instance, it implies that
the hitting time between two vertices on any graph will always be rational, by Theorem 8. This
is pretty surprising when you think back to our original method for calculating hitting time,
which involved summing some complicated infinite series. It’s totally not obvious that all of
these series will always have a rational number as their sum, but Theorem 9 guarantees it.
Another important consequence of Theorem 9 is the following famous theorem:

Theorem 10 (Dehn). A rectangle R can be tiled by squares if and only if the ratio of the side
lengths of R is rational.

Proof. By rescaling, we may assume that R is a 1× x rectangle. For one direction, suppose that
x = a/b ∈ Q. Then we may divide the rectangle into a grid of squares whose side lengths are
all 1/b, and we are done.

For the converse, suppose we have some tiling of R by squares. Let G be the associated
horizontal-segment graph, and let h be the height function on G, which we know is harmonic
everywhere but the top and bottom of the rectangle. Moreover, at the two poles, the values of h
are 0 and 1, which are rational. So by Theorem 9, we know that h takes on only rational values.
Applying this to the bottom-most squares immediately tells us that they all have rational side
length. However, this implies that the total length of the bottom segment, which is the sum
of all the bottom-most side lengths, must be rational as well. But that length is precisely x , so
x ∈Q, as desired.

4 Straight-Line Embeddings

Using harmonic functions, we can prove the following famous theorem:

Theorem 11. Let G be a planar graph. Then G can be drawn in the plane such that all the edges
are straight lines and no pair of edges intersect.

We will prove this in several steps.

Definition 12. A graph G is called 3-connected if, for any pair of vertices, deleting them does
not disconnect the graph. Equivalently, for any subset S ⊆ V , there are at least three edges out
of S.

Proposition 13. Let G be a planar graph. We can add edges to G to get a new graph H such that
H is still planar, and is also 3-connected.

Proof. We add edges by triangulating each face of the graph until we can’t anymore. On your
homework, you’ll show that this is indeed forms a 3-connected graph.
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Because of this fact, it suffices to prove that any 3-connected planar graph can be embedded
in the plane with straight-line edges. For if we add edges to G, then straight-line embed it, then
delete all the edges we added, we will clearly end up with a straight-line embedding. We will
explicitly construct such an embedding:

Definition 14. The Tutte embedding of a 3-connected planar graph G is defined as follows.
Pick some face F of G, and nail it to the plane as some convex polygon. Replace all edges with
rubber bands and let the system find its equilibrium position. Then the location of each vertex
in this equilibrium state is its Tutte embedding position. For a vertex v, we denote this position
by Tv ∈ R2. Then, we embed an edge uv as the straight line segment between Tu and Tv.

Our goal is now to prove that this Tutte embedding has no pair of edges intersect.

Lemma 15. In the Tutte embedding, both the x-coordinate and the y-coordinate of Tv form har-
monic functions on V \ F. In other words, for any non-nailed vertex, its x-position and y-position
are the average of those of its neighbors.

Proof. This works by the same force-balancing argument as we originally used on rubber bands.
Separate the force on any vertex into its x-component and its y-component. Both of these are
proportional to the x-separation and the y-separation, respectively, of v from its neighbors, so
we get harmonicity.

All the difficulty in proving that the Tutte embedding has no intersecting edges lies in the
following lemma:

Lemma 16. Let ` be any line intersecting the Tutte embedding. Let U denote the set of vertices
that end up on one given side of `. Then the vertices in U induce a connected subgraph of G. In
other words, ` cuts G into two connected subgraphs.

Proof. Begin with the nodes of F , i.e. those vertices that we nailed down. Since they were
nailed as the vertices of a convex polygon, all the ones in U form a path, and thus are connected.
Call this path P. We will show that every vertex in U can be connected to one of the vertices
in P, which means that U induces a connected subgraph.

By slightly perturbing the line ` (so that the set U is unchanged), we may assume that
` is not parallel to any edge. By rotating the entire picture, we may also assume that ` is a
horizontal line and U is the half above `. Fix some v ∈ U , and consider Tv. We know that the
y-position of Tv is the average of the y-positions of its neighbors. We split into two cases:

Case 1: Suppose there exists some neighbor u ∈ N(v) such that Tu 6= Tv; in other words, not
the entire neighborhood of v was mapped to the same point (this is what will happen
in general). Then, in particular, there is some neighbor v1 such that y(Tv1

) > y(Tv) (by
the averaging property and the fact that no edge is parallel to `). Iterate this argument
at v1 to get one of its neighbors v2 with y(Tv2

) > y(Tv1
). Repeat this to get a path of

vertices, each connected to the next via an edge, whose y-coordinates increase. Since G
is finite, eventually this process must stop, but that can only happen when we reach a
nailed vertex (where the averaging property is false). Then this nailed vertex must be in
P, so we have connected v to P, as desired.
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Case 2: In this case, every neighbor u of v has the property Tu = Tv. Then let H denote the
connected subgraph of G consisting of all vertices located at Tv. Then either H contains a
nailed vertex, in which case its connectivity implise that v is connected to P. If not, then
it is connected to some vertex not in H, and we can repeat the above argument again,
since one of these neighbors must be strictly higher than Tv.

We will be repeatedly using Lemma 16 to prove that the Tutte embedding has no intersecting
edges. Before doing so, we need to deal with a few possible degenerate cases.

Definition 17. Call a vertex v degenerate if there is some line ` such that Tv ∈ ` and Tu ∈ ` for
all u ∈ N(v).

Lemma 18. There are no degenerate vertices in the Tutte embedding.

Proof. Suppose for contradiction that there were, and fix some v ∈ V and some line ` so that v
and all its neighbors are placed on `. Let H denote the connected subgraph of G consisting of
all vertices on ` whose neighbors are also all on `; so H contains v, and it might contain some
of its neighbors, and might contain some of its neighbors’ neighbors, and so on.

By 3-connectivity, H has at least 3 edges connecting it to the rest of G. Let N denote the set
of neighbors of H outside H itself. Then the above just says that |N | > 3. Now, let U1 and U2

be the two sets of vertices lying on either side of `; by Lemma 16, we know that both U1 and
U2 induce connected subgraphs. We claim that for every a ∈ N , a is adjacent to a vertex in U1

and a vertex in U2.
By the definition of H and N , we know that each a ∈ N has Ta ∈ `. On the other hand, since

a /∈ H, a must have a neighbor not on `. Call this neighbor b, and without loss of generality,
b ∈ U1. If a is not a nailed-down vertex, then a’s position is the average of its neighbors, so it
must also have at least one neighbor in U2. If a is nailed down, then the two adjacent vertices
nailed down will be on opposite sides of `.

Now, recall that H is a connected subgraph by definition, and U1, U2 induce connected
subgraphs by Lemma 16. So we can contract all of the edges in these subgraphs to get three
super-vertices, each of which is connected to every vertex in N . This means that we have found
a K3,3 embedded in G. Since K3,3 is not planar, G cannot be planar either, a contradiction.

Lemma 19. Let ab be an edge of G that is not an edge of the face F. Let F1, F2 denote the two
faces of G that contain ab, and let ` denote the line defined by ab. Then all the vertices of F1 lie on
one side of `, and all the vertices of F2 lie on the other side of ` (apart from a and b themselves).

Proof. Again, by rotating, we may assume that ` is a horizontal line. For contradiction, suppose
that there was some vertex c ∈ F1 that lies on the same side of ` as some vertex d ∈ F2; without
loss of generality, assume these are both on the upper side of `, or else at least one is on ` itself.
In this latter case, Lemma 18 guarantees that the vertex on ` is not degenerate, so it has at
least one neighbor on the upper side of `. By Lemma 16, we know that the upper side induces
a connected subgraph, so we regardless get a path connecting c to d that lies entirely on the
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upper half (either directly or to the neighbor of the vertex that lies on `); call this path P. In
addition, since the lower half of ` also induces a connected subgraph, we know that there is a
path connecting a and b that uses only the lower half; call this path P ′. Since one lies entirely
on the top half and the other entirely on the bottom half, they must be disjoint.

Now go back to the original planar drawing of G, which we know exists. It must look
something like this:

a

bF1

c

F2

d P ′

The reason is that we know that F1, F2 are faces, so the path P ′ connecting a and b cannot go
through their interiors. But note that in this picture, c and d are separated by P ′∪{ab}, so the
supposedly disjoint path connecting them, P, cannot exist.

This is the contradiction we were looking for, so F1 and F2 must indeed be on opposite sides
of ` in the Tutte embedding.

Lemma 20. In the Tutte embedding, the interiors of the faces are disjoint.

Proof. Pick some point z ∈ R2; we want to prove that z is in the interior of at most one face.
Since we care about interiors of faces, we may assume that z is not a vertex or an edge in the
embedding. Draw a line ` going through z that does not go through any Tv for any vertex v.
For some faraway points on `, they are not in the interior of any face. As we move towards
the embedded points and enter the polygon F given by the nailed vertices, the number of faces
whose interior we’re in increases to 1. As long as we stay within a face, this number stays at
1, so the only thing that could go wrong is when ` crosses an edge. However, by Lemma 19,
every time we cross an edge, we exit one face and enter a new face. So along `, the number of
faces whose interior we’re in stays constant at 1. We eventually reach z, so z is in the interior
of exactly one face.

This is the final piece, and we can now prove Tutte’s Theorem.

Theorem 21 (Tutte). The Tutte embedding is a straight-line embedding with no edges intersecting.

Proof. Suppose we had two edges intersecting at some point z. Consider the four faces on
either sides of these two edges. Some point z′ very near z must lie in the interiors of two such
faces; by Lemma 20, this can only happen if those two faces are actually the same face. But in
that case, we see that our two edges were actually two adjacent edges on the same face, and
their intersection must be at a vertex.
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z

z′

Looking back at the proof, we did various complicated steps involving planarity and 3-
connectivity; however, the key result, that we used again and again, is Lemma 16: that a
line intersecting the Tutte embedding divides the graph into two connected components. This
result is the one that fundamentally depended on the averaging property of rubber bands, or
equivalently on the harmonicity of the Tutte embedding. That property is what makes the Tutte
embedding special, and what makes this proof work.

As a final note, observe that the Tutte embedding can be computed efficiently, since the
x and y coordinate of Tv are simply harmonic extensions of the coordinates of the nailed
vertices. As we saw, calculating harmonic extensions can be done very efficiently (since it
involves solving a system of linear equations), and this implies that Tutte’s theorem gives us an
efficient algorithm for finding a straight-line embedding, in addition to proving that one exists.

5 Where to go from here

If you want to learn more about any of the topics in this course, a good place to check is László
Lovász’s book Geometric Representations of Graphs, available for free on his website at http:
//www.cs.elte.hu/~lovasz/geomrep.pdf; the book also has an extensive bibliography,
if you want to delve even deeper. The paper where most of the square-tiling theorems and
examples came from is “The Dissection of Rectangles into Squares,” by Brooks, Smith, Stone,
and Tutte.
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