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Abstract

Extending a recent breakthrough of Shitov, we prove that the chromatic number of
the tensor product of two graphs can be a constant factor smaller than the minimum
chromatic number of the two graphs. More precisely, we prove that there exists an
absolute constant δ > 0 such that for all c sufficiently large, there exist graphs G and
H with chromatic number at least (1 + δ)c for which χ(G×H) ≤ c.

1 Introduction

If G and H are finite graphs, their tensor product G × H is the graph on V (G) × V (H)
where vertices (g1, h1) and (g2, h2) are adjacent if and only if g1 ∼ g2 and h1 ∼ h2; here and
throughout, we use the notation ∼ to denote adjacency. By composing with the projection
maps to each coordinate, it is easy to check that the chromatic number satisfies

χ(G×H) ≤ min{χ(G), χ(H)}, (1)

for all finite graphs G and H. In 1966, Hedetniemi [9] conjectured that equality always holds
in (1). This conjecture has received a considerable amount of attention; for instance, it was
proved if G and H are 4-colorable [3], if every vertex in G is contained in a large clique [1],
or if G and H are Kneser graphs or hypergraphs [7]. Additionally, many natural variants
of this conjecture have been studied. For instance, Hajnal [8] proved that the analogous
conjecture is false for infinite graphs, while Zhu [16] proved that the analogous conjecture
for fractional colorings is true. We refer the reader to the excellent surveys [11, 13, 15] for
more information on work surrounding Hedetniemi’s conjecture.

In a recent breakthrough, Shitov [12] disproved Hedetniemi’s conjecture by demonstrating
that for sufficiently large c, there exist graphs G and H with χ(G) > c, χ(H) > c, but
χ(G × H) ≤ c. Even more recently, Tardif and Zhu [14] proved that the gap between
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χ(G × H) and min{χ(G), χ(H)} can be arbitrarily large, i.e. that for every integer d and
for all c sufficiently large, there exist graphs G and H with χ(G) > c+ d, χ(H) > c+ d, but
χ(G×H) ≤ c. They also raised the question of whether the gap d can be made to be linear
in c, and proved that this is possible under the additional assumption that Stahl’s conjecture
on multichromatic numbers is true.

In this paper, we modify Shitov’s construction to answer Tardif and Zhu’s question in
the affirmative, showing that the ratio of χ(G×H) and min{χ(G), χ(H)} is asymptotically
bounded away from 1.

Theorem 1. There is an absolute constant δ ≥ 10−9 such that for all sufficiently large c,
there exist simple graphs G,H with χ(G) ≥ (1 + δ)c, χ(H) ≥ (1 + δ)c, and χ(G×H) ≤ c.

Equivalently, we may express Theorem 1 in terms of the Poljak–Rödl function [10], which
is defined by

f(k) = min
χ(G),χ(H)≥k

χ(G×H).

Then Hedetniemi’s conjecture is equivalent to the statement that f(k) = k for all k. The
so-called weak version of Hedetniemi’s conjecture simply asks whether limk→∞ f(k) = ∞,
and is still open; however, Poljak and Rödl [10] proved that either f(k) → ∞ or f(k) is
bounded by 9. With this notation, Theorem 1 is equivalent to the statement that

f(k) ≤ (1− δ)k

for all sufficiently large k. For comparison, Shitov [12] proved that f(k) ≤ k−1 for sufficiently
large k, and Tardif and Zhu [14] proved that f(k) ≤ k−(log k)1/4−o(1). Moreover, they proved
that the stronger bound f(k) ≤ (1/2 + o(1))k would follow from Stahl’s conjecture.

The proof of Theorem 1 closely mirrors Shitov’s proof of the main result in [12]. Roughly
speaking, the main innovation in our argument is that whereas Shitov constructs one uncol-
orable vertex ν ∈ V (H) to prove χ(H) ≥ c+1, we construct a large cliqueN of δc uncolorable
vertices of H (see Lemma 6) to obtain the stronger lower bound χ(H) ≥ (1 + δ)c.

For the sake of clarity of presentation, we systematically omit floor and ceiling signs
whenever they are not crucial.

2 Definitions and Basic Results

All graphs are assumed to not have multiple edges, but graphs not specified to be simple
may contain loops. We will never refer to the chromatic number of a non-simple graph, as
this is not a well-defined integer.

If H is a finite graph, two maps φ1, φ2 : V (H)→ [c] are called co-proper if φ1(u) 6= φ2(v)
whenever u ∼ v in H. The exponential graph Ec(H) is the graph on vertex set [c]V (H) where
two vertices φ1, φ2 are adjacent if and only if they are co-proper. Observe that a map φ
is co-proper with itself if and only if φ is a proper coloring of H. Therefore, at most one
of H and Ec(H) has loops. Moreover, both will be simple exactly when H is simple and
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χ(H) > c. To avoid confusion, we will follow the convention of calling vertices of Ec(H)
maps and proper colorings of Ec(H) colorings.

A pair of the form (H, Ec(H)) is a natural candidate for counterexamples to Hedetniemi’s
conjecture. Indeed, El-Zahar and Sauer [3] observed that if χ(H ×H ′) < min{χ(H), χ(H ′)}
for some H ′, then this also holds for H ′ = Ec(H) where c = χ(H) − 1. In particular, they
established a simple upper bound on χ(H × Ec(H)).

Lemma 2 (El-Zahar and Sauer, [3]). For any graph H and any integer c ≥ 1,

χ(H × Ec(H)) ≤ c.

If Ψ is a proper (c + t)-coloring of an exponential graph Ec(H), where t ≥ 0, we call
{1, . . . , c} the primary colors and {c + 1, . . . , c + t} the secondary colors. We say that a
proper (c+ t)-coloring Ψ of Ec(H) is suited if for every φ ∈ V (Ec(H)),

Ψ(φ) ∈ im(φ) ∪ {c+ 1, . . . , c+ t}.

In other words, a proper (c+ t)-coloring is suited if it only assigns a primary color b only to
maps φ which have b in their image.

Lemma 3. If χ(Ec(H)) ≤ c+ t, then Ec(H) has a suited (c+ t)-coloring.

Proof. Let Ψ be a proper (c + t)-coloring, and let φi be the constant map v 7→ i in Ec(H).
Since the maps φi are pairwise co-proper, they form a clique of size c inside Ec(H) and Ψ
assigns them different colors.

We may permute the colors of Ψ so that Ψ(φi) = i. We claim that such a Ψ is suited.
Indeed, if φ ∈ V (Ec(H)), φ is co-proper to all constant maps φi where i is a primary color
not in im(φ). Since this map gets color i, we see that φ is not colored i. It follows that
Ψ(φ) ∈ im(φ) ∪ {c+ 1, . . . , c+ t} as desired.

If G is a finite simple graph, write G◦ for the graph obtained by adding loops to every
vertex of G. We also write G ⊆ H if G is a subgraph of H. Recall that the Erdős–Ko–Rado
theorem [5] states that if n ≥ 2k and every pair of a family of k-subsets of an n-set intersects,
then there are at most

(
n−1
k−1

)
such subsets.

Lemma 4. Suppose H is a graph on n vertices. Then for any integer c ≥ 2n, the indepen-
dence number of the exponential graph satisfies

α(Ec(H)) ≤ ncn−1.

Proof. First, observe that if H and H ′ have the same vertex set, and if H ⊆ H ′, then
Ec(H ′) ⊆ Ec(H). This is because every pair of co-proper maps on H ′ are also co-proper on
H, as the edge set of H is a subset of that of H ′. Thus, if we let K◦n denote the complete
graph on n vertices where every vertex has a loop, then we see that Ec(K◦n) ⊆ Ec(H), so it
suffices to upper-bound α(Ec(K◦n)).
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By definition, the vertex set of Ec(K◦n) is the set of maps [c]n, and two vertices are adjacent
in Ec(K◦n) if and only if their images are disjoint. Let I be an independent set of Ec(K◦n) and
let F = {im(φ) | φ ∈ I}. We can partition F into layers F` according to the size of im(φ),
where F` = F ∩

(
[c]
`

)
. By virtue of the fact that I is an independent set, every pair of images

of elements in I must intersect, so F` is an intersecting family in
(
[c]
`

)
. As ` ≤ n ≤ c/2, the

Erdős–Ko–Rado theorem [5] applies to give

|F`| ≤
(
c− 1

`− 1

)
.

It follows that if a` is the number of surjective maps [n] � [`], then

|I| ≤
n∑
`=1

|F`| · a` ≤
n∑
`=1

(
c− 1

`− 1

)
a`.

The right hand side is exactly the number of maps in [c]n which contain 1 in their image.
The number of such maps is at most n · cn−1, since there are n ways to pick a vertex to send
to 1 and at most cn−1 ways to color the rest. Thus, |I| ≤ ncn−1 for all independent sets I,
as desired.

We remark that for fixed n, Lemma 4 is tight for H = K◦n up to an additive error of
O(cn−2).

3 Robust Colors

The main technical lemma of Shitov’s argument shows that for every suited c-coloring Ψ of
Ec(H) there is a “central” vertex v ∈ V (H) for which the color of a map φ ∈ Ec(H) must
appear in a ball around v. We extend his lemma so that it applies to suited (c+ t)-colorings
of Ec(H) as well. Write N(v) = v ∪N(v) for the closed neighborhood of a vertex v.

Definition. Given a suited (c+ t)-coloring Ψ of Ec(H) and a vertex v ∈ V (H), we say that
a primary color b ∈ [c] is v-robust if for every φ ∈ Ψ−1(b) there exists a vertex w ∈ N(v)
with φ(w) = b.

Lemma 5 below can be thought of as an analogue of a stablility result for the Erdős–
Ko–Rado theorem. Stability results (see e.g. [2, 6]) say that for an intersecting family of
k-subsets of an n-set with size close to the maximum

(
n−1
k−1

)
, there exists a particular element

in all of the sets.
An independent set in Ec(H) is a family of pairwise non-co-proper maps, and we think of

“co-proper maps” as an analogue of “disjoint sets,” and being non-co-proper as “intersecting”
on a particular edge. We will show that for every large independent set I in Ec(H), there is
a particular vertex v for which most of the elements of I intersect on an edge close to v.
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Lemma 5. If H is a triangle-free graph (possibly with loops) on n ≥ 4 vertices, c ≥ 16(nt+
n3), Ψ is a suited (c+ t)-coloring of Ec(H), and

x = 4
√

(nt+ n3)c3,

then there exists a vertex v ∈ V (H) such that at least c− x primary colors are v-robust.

Proof. For each v ∈ V (H) and each primary color b ∈ [c], let I(v, b) be the set of maps
φ ∈ Ψ−1(b) for which φ(v) = b. Since b is a primary color and Ψ is a suited coloring, every
φ ∈ Ψ−1(b) is in some I(v, b).

We say that I(v, b) is large if it contains more than n2cn−2 elements. We first show that
if b is a primary color and I(v, b) is large, then b is v-robust. If not, there is some φ ∈ Ψ−1(b)
which does not take value b on any neighbor of v. Since Ψ−1(b) is an independent set of
Ec(H), φ is not co-proper with any element of I(v, b). On the other hand, we can upper bound
the number of ψ ∈ I(v, b) which are not co-proper to φ. Such a map must have ψ(v) = b
(because it is in I(v, b)) and ψ(w) ∈ im(φ) for some w 6= v. This w can be picked in at most
n ways, and ψ(w) itself in at most n ways since |im(φ)| ≤ n. The total number of ways to
pick such a ψ from I(v, b) is at most n2cn−2. This is a contradiction if |I(v, b)| > n2cn−2, so
if I(v, b) is large, then b is v-robust.

Given a primary color b, define Vb to be the set of vertices v ∈ V (H) for which I(v, b) is
large. We claim that Vb is always a clique of H. To see this, let v, w be two distinct vertices
of Vb. Since I(v, b) is large and there are at most ncn−2 maps in I(v, b) which send two or
more vertices to b, there exists some map φ ∈ I(v, b) for which φ−1(b) = {v} exactly. Also,
since I(w, b) is large, b is w-robust, and so φ must take the value b on some element of N(w).
It follows immediately that v ∈ N(w). Since this needs to hold for every pair v, w ∈ Vb, the
set Vb forms a clique in H, as desired.

Since we assumed H is triangle-free, it follows that |Vb| ≤ 2 for each b. It remains to
show that there is a vertex v such that v ∈ Vb for at least c − x primary colors b. Suppose
otherwise.

Let S be the set of maps φ ∈ [c]n which have the property that φ(v) 6= b whenever v ∈ Vb.
Let s(v) denote the number of primary colors b for which v 6∈ Vb, so |S| =

∏
v s(v). By the

assumption that fewer than c− x primary colors are v-robust, we see that x < s(v) ≤ c for
all v. Also, ∑

v∈V (H)

s(v) = nc−
∑
b∈[c]

|Vb| ≥ (n− 2)c.

By a standard convexity argument, the product of s(v) is minimized when their values are
as far apart as possible under the above assumptions. Thus,

|S| =
∏

v∈V (H)

s(v) > xAcn−A,

where A satisfies
Ax+ (n− A)c = (n− 2)c,
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implying that A = 2c/(c− x) ≤ 4, since our assumption on c implies x ≤ c
2
. Therefore,

|S| ≥ xAcn−A > x4cn−4 ≥ (nt+ n3)cn−1.

On the other hand, we know that no φ ∈ S is in any large I(v, b) for any primary color b,
since such a φ does not take value b on Vb. Thus, S lies in the union of the secondary color
classes and the small sets I(v, b) for primary colors b. The sizes of the latter we bound by
n2cn−2, and the former by ncn−1 by Lemma 4, whereby

|S| ≤ nc · (n2cn−2) + t · (ncn−1) = (nt+ n3)cn−1.

We have arrived at a contradiction, so there exists a vertex v which lies in at least c− x of
the sets Vb. Each of these primary colors b is v-robust, as desired.

4 The Construction

If G and H are finite simple graphs, their strong product G�H is a simple graph on vertex
set V (G) × V (H), where vertices (g1, h1) and (g2, h2) are adjacent if one of the following
three conditions hold.

g1 ∼ g2, h1 ∼ h2 or g1 ∼ g2, h1 = h2 or g1 = g2, h1 ∼ h2.

Let G be a finite simple graph. We will be studying the exponential graphs of the
two graphs G◦ and G � Kq, for some q ≥ 2. Note that there is a natural embedding
ι : Ec(G◦) ↪→ Ec(G � Kq) where an element φ of V (Ec(G◦)) = [c]V (G) is sent to the map
φ∗ : (g, i) 7→ φ(g) which ignores the Kq coordinate.

Lemma 6. Fix a simple graph G with n ≥ 4 vertices and girth at least 6, and let δ = 1
81n

.
If q is sufficiently large in terms of n and if c = (3 + 10δ)q, then χ(Ec(G�Kq)) > (1 + δ)c.

Proof. Let t = δc. Suppose for the sake of contradiction that χ(Ec(G�Kq)) ≤ (1+δ)c = c+t,
so that by Lemma 3 there is a suited (c + t)-coloring Ψ of Ec(G �Kq). Since Ec(G◦) is an
induced subgraph of Ec(G�Kq), Ψ induces a suited (c+ t)-coloring Ψ◦ on Ec(G◦).

With our choices of t and c, the condition c ≥ 16(nt+ n3) holds if q is sufficiently large.
Also, G has girth at least 6 and in particular is triangle-free, so Lemma 5 applies to the
graph G◦. Thus, there is a vertex v ∈ V (G◦) such that at least c − x primary colors of Ψ◦

are v-robust, where
x = 4

√
(nt+ n3)c3 = ((δn)1/4 + o(1))c

as q →∞. By our choice of δ, this means that x = (1
3

+ o(1))c. We find that

c− x = (2
3

+ o(1))c = (2 + 20
3
δ + o(1))q,

2q + t+ 1 = (2 + 3δ + 10δ2 + o(1))q.

Observe that 10δ < 11
3

, so c − x ≥ 2q + t + 1 for q large enough. Thus, there exist t + 1
primary colors σ1, . . . , σt+1 6∈ {1, . . . , 2q} which are v-robust in the coloring Ψ◦.
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We next pick a set M = {µq+1, . . . , µc} of vertices in Ec(G�Kq). They are defined by

µr(g, i) =


i if dist(v, g) ∈ {0, 2},
q + i if dist(v, g) = 1,

r otherwise.

We claim that if r 6= r′, then µr and µr′ are co-proper. To see this, suppose that µr(g, i) =
µr′(h, j) for adjacent (g, i), (h, j). Notice that this is impossible if i 6= j, so i = j, implying
that g ∼ h. Since the girth of G is at least 6, there are no edges (g, h) ∈ E(G) for which
dist(v, g) and dist(v, h) are both at most 2 and have the same parity. Thus, without loss
of generality, g has distance at least 3 from v. This implies µr(g, i) = r. The only way
µr′(h, j) = r is if dist(v, h) = 1 and q + j = r, but then dist(g, h) ≥ 2 by the triangle
inequality, a contradiction. Therefore, we conclude that µr and µr′ are co-proper whenever
r 6= r′, so M forms a clique of size c− q in Ec(G�Kq).

Since we chose t = (3δ + 10δ2)q, if q is sufficiently large, we have

c− 3q = 10δq ≥ (9δ + 30δ2)q + 2 = 3t+ 2

and therefore c− 3q− 2t− 1 ≥ t+ 1. In particular, at least t+ 1 of the colors {Ψ(µr)}cr=q+1

do not lie in the union {1, . . . , 2q} ∪ {σ1, . . . , σt+1} ∪ {c+ 1, . . . , c+ t}.
Let M′ = {µr1 , . . . , µrt+1} be a set of t + 1 vertices of M with colors not among

{1, . . . , 2q} ∪ {σ1, . . . , σt+1} ∪ {c + 1, . . . , c + t}. Since Ψ is a suited coloring and im(µrs) =
{1, . . . , 2q} ∪ {rs}, it follows that Ψ(µrs) = rs for each 1 ≤ s ≤ t+ 1.

We define a set N of t+ 1 other vertices ν1, . . . , νt+1 ∈ Ec(G�Kq), by

νs(g, i) =

{
rs if dist(v, g) ≤ 1,

σs otherwise.

Recall that we chose {r1, . . . , rt+1} to be t+ 1 distinct colors disjoint from {σ1, . . . , σt+1}.
Therefore, νs and νs′ have disjoint images when s 6= s′, so N forms a clique of size t + 1 in
Ec(G�Kq). Also, the maps νs are constant on the Kq coordinate, so they lie in the image of
the embedding ι : Ec(G◦) ↪→ Ec(G�Kq) and correspond to vertices of Ec(G◦). We chose σs
to be v-robust in Ψ◦, so if Ψ◦(ι−1(νs)) = σs, then ι−1(νs)(g) = σs for some g ∈ V (G◦) with
dist(v, g) ≤ 1. This contradicts the definition of νs, so Ψ(νs) = Ψ◦(ι−1(νs)) 6= σs.

Therefore, by the suitedness of Ψ, Ψ(νs) ∈ {rs}∪{c+ 1, . . . , c+ t} for each 1 ≤ s ≤ t+ 1.
There are only t secondary colors to use for the t+1 vertices of this clique, which implies that
for some s, Ψ(νs) = rs. But Ψ(µrs) = rs as well, and µrs and νs are co-proper in Ec(G�Kq).
This is the desired contradiction, completing the proof that χ(Ec(G�Kq)) > (1 + δ)c.

All that remains is to find a G with large fractional chromatic number which satisfies the
conditions of Lemma 6. A famous probabilistic argument of Erdős [4] shows that there exist
graphs of arbitrarily large girth and fractional chromatic number; in order to obtain as large
a value of δ as possible, we choose the parameters as follows.
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Lemma 7. There exists a simple graph G on at most 2×106 vertices with girth(G) ≥ 6 and
χf (G) ≥ 3.1.

Proof. Let n = 2× 106 and p = 8× 10−6, and let G0 ∼ G(n, p) be an Erdős–Rényi random
graph with these parameters. Let X denote the number of cycles of length at most 5 in G0;
then we can compute

E[X] ≤ n3p3

6
+
n4p4

8
+
n5p5

10
≤ 115000 =: t.

Therefore, by Markov’s inequality, with probability at least 1/2, G0 will contain at most 2t
cycles of length at most 5. Next, let k = 570000, and observe that(

n

k

)
(1− p)(

k
2) <

1

4
.

Therefore, with probability at least 3/4, G0 will contain no independent set of size k. Thus,
there exists a specific graph G1 on n vertices with at most 2t cycles of length at most 5 and
α(G1) ≤ k. We delete one vertex from each cycle of length at most 5 in G1 to obtain a new
graph G on at least n− 2t vertices with girth(G) ≥ 6 and α(G) ≤ α(G1) ≤ k. Moreover,

χf (G) ≥ |V (G)|
α(G)

≥ n− 2t

k
≥ 3.1,

as desired.

Proof of Theorem 1. Let G be the graph from Lemma 7 on n ≤ 2 × 106 vertices. Let
δ = 1/(81n) ≥ 10−9, let q be sufficiently large so that Lemma 6 applies, and let c = (3+10δ)q.
We will only prove Theorem 1 for c of this form; it can be proved for all c large enough by
rounding off to the nearest such value.

It is easy to see that

χ(G�Kq) ≥ χf (G)χf (Kq) ≥ 3.1q > (1 + δ)c.

By Lemma 6, we also know that χ(Ec(G�Kq)) > (1 + δ)c. Since G�Kq is not c-colorable,
we see that Ec(G�Kq) is simple, as is G�Kq.

On the other hand, Lemma 2 shows that χ((G �Kq) × Ec(G �Kq)) ≤ c, which proves
the theorem for some δ ≥ 10−9.

Acknowledgments. We would like to thank Nitya Mani for interesting discussions on
Shitov’s proof, and Lisa Sauermann for many helpful comments on the early drafts of this
paper.
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