
High-Girth Matrices and Polarization

Emmanuel Abbe
Prog. in Applied and Computational Math. and EE Dept.

Princeton University
Email: eabbe@princeton.edu

Yuval Wigderson
Department of Mathematics

Princeton University
Email: yuvalw@princeton.edu

Abstract—The girth of a matrix is the least number of linearly
dependent columns, in contrast to the rank which is the largest
number of linearly independent columns. This paper considers
the construction of high-girth matrices, whose probabilistic girth
is close to their rank. Random matrices can be used to show
the existence of high-girth matrices. This paper uses a recursive
construction based on conditional ranks (inspired by polar codes)
to obtain a deterministic and efficient construction of high-
girth matrices for arbitrary relative ranks. Interestingly, the
construction is agnostic to the underlying field and applies to
both finite and continuous fields with the same binary matrix. The
construction gives in particular the following: (i) over the binary
field, high-girth matrices are equivalent to capacity-achieving
codes, and our construction turns out to match exactly the BEC
polar codes (even at finite block length). It hence gives a different
interpretation of BEC polar codes, using the parity-check matrix
instead of the generator matrix, and basic linear algebra instead
of the mutual information, and generalizes to larger fields; (ii) for
the BSC, our construction gives an operational meaning to the
Bhattacharyya upper-bound process used in polar codes; (iii) for
the reals, it gives an explicit candidate matrix for sparse recovery.

I. INTRODUCTION
Let A be a matrix over a field F. Assume that A is flat,

i.e., it has more columns than rows. The rank of A, denoted
by rank(A), is the maximal number of linearly independent
columns. The girth of A, denoted by girth(A), is the least
number of linearly dependent columns. What are the possible
tradeoffs between rank(A) and girth(A)? This depends on the
cardinality of the field. It is clear that

girth(A) ≤ rank(A) + 1. (1)

Is it possible to have a perfect-girth matrix that achieves this
upper-bound? If F = R, drawing the matrix with i.i.d. standard
Gaussian entries gives such an example with probability 1.
However, if F = Fq , where q is finite, the problem is different.
For F = Fq , note that

girth(A) = dist(CA), (2)

where dist(CA) is the distance of the q-ary linear code CA

whose parity check matrix is A. In fact, the least number of
columns that are linearly dependent in A is equal to the least
number of columns whose linear combination can be made 0,
which is equal to the least weight of a vector that is mapped
to 0 by A, which is the least weight of a codeword, i.e., the
code distance since the code is linear.

Hence, over finite fields, the girth is a key parameter for
error-correcting codes, and studying the girth/rank tradeoffs for
matrices is equivalent to studying the distance/dimension trade-
offs for linear codes. Clearly it is not possible to obtain perfect-
girth matrices over F = F2, even if we relax the perfect-girth

requirement to be asymptotic, requiring rank(A) ∼ girth(A)
when the number of columns in A tends to infinity.1 If F = F2,
the Gilbert-Varshamov bound provides a lower-bound on the
maximal girth (conjectured to be tight by some). Namely,
for a uniformly drawn matrix A with n columns, with high
probability,

rank(A) = nH(girth(A)/n) + o(n), (3)

where H is the binary entropy function.
For F = Fq, the bound in (1) is a restatement of the

Singleton bound for linear codes and expressed in terms of the
co-dimension of the code. Asking for a perfect-girth matrix
is hence equivalent to asking for an MDS linear code. Such
constructions are known when q = n with Reed-Solomon codes.
Note that the interest on MDS codes has recently resurged with
the applications in distributed data storage, see [5] for a survey.

One may consider instead the case of non-finite fields,
typically not covered in coding theory. As shown in Section
IV-B, this is relevant for the recovery of sparse signals [6] via
compressed measurements. The girth is then sometimes given
different names, such as the Kruskal-rank or spark [6]. As
stated above, for F = R, a random Gaussian matrix is perfect-
girth with probability one. However, computing the girth of an
arbitrary matrix is NP-hard [11] (like computing the distance
of a code [12]), making the latter construction non-explicit.

In this paper, we are mainly interested in the following notion
of probabilistic girth, defined to be the least number of columns
that are linearly dependent with high probability, when drawing
the columns uniformly at random. Formal definitions are given
in the next section. Going from a worst-case to a probabilistic
model naturally allows for much better bounds. In particular,
defining high-girth matrices as matrices whose probabilistic
girth and rank are of the same order (up to o(n)), a random
uniform matrix proves the existence of high-girth matrices
even for F = F2. However, obtaining an explicit construction
is again non-trivial.

In this paper, we obtain explicit and fully deterministic
constructions of high-girth matrices over all fields and for
any relative ranks. We rely on a polar-code-like construction.
Starting with the same squared matrix as for polar or Reed-
Muller codes, i.e., the tensor-product/Sierpinski matrix, we
then select rows with a different measure based on ranks. For
finite fields, we show that high-girth matrices are equivalent
to capacity-achieving linear codes for erasure channels, while
for errors the speed of convergence of the probabilistic girth
requirement matters. In particular, we achieve the Bhattacharyya
bound with our explicit construction. For the real field, this

1We use the notation an ∼ bn for limn→∞ an/bn = 1.
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allows to construct explicit binary measurement matrices with
optimal probabilistic girth.

These results have various other implications. First, our
construction gives an operational interpretation to the upper-
bound of the Bhattacharyya-process in polar codes. When the
channel is not the BEC, the upper-bound of this process used in
the polar code literature is in fact the conditional rank process
studied in this paper. Note that the fact that this correspondence
takes place at any finite block length is not obvious, even with
the fact that high-girth matrices are equivalent to capacity-
achieving parity-check matrices over the BEC, since the latter
only needs to hold asymptotically. Second, this paper gives
a high-school level proof (not necessarily trivial but relying
only basic linear algebra concepts) of a fully deterministic,
efficient, and capacity-achieving code for erasure channels.
While capacity-achieving codes for the BEC are well-known by
now, most constructions rely still on rather sophisticated tools (
e.g. expander codes, polar codes, LDPC codes, spatially-coupled
codes), and we felt that an explicit construction relying only on
the notions of rank and girth is rather interesting. On the other
hand, for F = F2, our construction turns out to be equivalent
to the polar code for the BEC, so that the difference is mainly
about the approach. Nonetheless, it allows to simplify the
concepts, not requiring even the notion of mutual information.
Finally, the result generalizes to non-binary alphabets, given
that our construction does depend on the underlying field.

II. HIGH-GIRTH MATRICES
A. Notation

Let A be a m× n matrix over a field F. For any set S ⊆
[n], let A[S] be the submatrix of A obtained by selecting the
columns of A indexed by S. For s ∈ [0, 1], let A[s] be a
random submatrix of A obtained by sampling each column
independently with probability s. Thus, A[s] = A[S̃], where S̃
is an i.i.d. Ber(s) random subset of [n]. In expectation, A[s]
has sn columns. Throughout the paper, an event En takes place
with high probability if P{En} → 1 when n→∞, where n
should be clear from the context.

B. Probabilistic Girth
Definition 1. Let {An} be a sequence of matrices over a field
F, where An has n columns. The probabilistic girth of An

is the supremum of all s ∈ [0, 1] such that An[s] has linearly
independent columns with high probability, i.e.,

girth∗({An}) := (4)
sup{s ∈ [0, 1] : P{An[s] has lin. indep. cols.} = 1− o(1)}

Note that a better name might have been the probabilistic
relative girth, since it is a counterpart of the usual notion of
girth in the probabilistic setting with an additional normalization
factor of n. We often write girth∗(An) instead of girth∗({An}).
We will sometimes care about how fast the above probability
tends to 1; we then say that An has a probabilistic girth with
rate τ(n) if the above definition holds when

P{An[s] has lin. indep. columns} = 1− τ(n). (5)

Definition 2. We say that An is high-girth if

girth∗(An) = lim sup
n→∞

rank(An)/n. (6)

For µ ∈ [0, 1], we say that An is µ-high-girth if it is high-girth
and girth∗(An) = µ.

Example 1. Consider the following construction, corresponding
to Reed-Solomon codes. Let x1, . . . , xn be distinct elements
of a field F, and consider the m× n matrix

V =


1 1 1 · · · 1
x1 x2 x3 · · · xn
...

...
...

. . .
...

xm−11 xm−12 xm−13 · · · xm−1n

 (7)

Then V will satisfy a stronger property than being high-girth,
as its actual girth is m + 1: every m ×m submatrix will be
invertible, since every m × m submatrix is a Vandermonde
matrix whose determinant must be nonzero. However, this
example cannot be used to construct high-girth families over a
fixed finite field F. For as soon as n exceeds the size of F, it
will be impossible to pick distinct xi’s, and we will no longer
have high girth.

Example 2. A µn× n uniform random matrix with entries in
F2 is µ-high-girth with high probability. For in this case, any
µn× µn submatrix will be a uniform random square matrix,
which has full rank with high probability.

III. EXPLICIT CONSTRUCTION OF HIGH-GIRTH MATRICES
A. Sierpinski matrices

Let F be any field, let n be a power of 2, and let Gn be the
matrix over F defined by

Gn =

(
1 1
0 1

)⊗ logn

(8)

Note that the entries of this matrix are only 0’s and 1’s, hence
this can be viewed as a matrix over any field.

Many important codes can be derived from Gn, and they are
all based on a simple idea. Namely, we first pick some measure
of “goodness” on the rows of Gn. Then, we take the submatrix
of Gn obtained by keeping only those rows which are the “best”
under this metric, and we finally define a code whose PCM is
this matrix. The first important examples are Reed-Muller (RM)
codes [8], [9], where goodness is measured by the weight of the
rows, and more recently polar codes [2], [3], where goodness
is measured by the entropy (or mutual information). In the next
section, we define a measure of goodness based on ranks and
use it to construct high-girth matrices. A similar construction
was proposed in [7] for Hadamard matrices to polarize the
Rényi information dimension. We discuss applications to coding
and sparse recovery in the next sections.

B. Conditional-rank matrices
With s ∈ [0, 1] fixed, let G(i)

n denote the submatrix of Gn

obtained by taking the first i rows, and let G(i)
n [s] be the random

submatrix obtained by sampling each column independently
with probability s, as above.

Definition 3. The conditional rank (COR) of row i in Gn is
defined by

ρ(n, i, s) = E(rankF G
(i)
n [s])− E(rankF G

(i−1)
n [s]) (9)

where rankF denotes the rank computed over the field F. When
i = 1, define ρ(n, i, s) = E(rankF G

(1)
n [s]).

Now, by adding the ith row, we will either keep the rank
constant or increase it by 1, and the latter will happen if and



only if the ith row is independent of the previous rows. So we
get that

ρ(n, i, s) = P(the ith row of Gn[s] is
independent of the previous i− 1 rows), (10)

where linear independence is also considered over F. The key
property of the conditional ranks is expressed in the following
lemma.

Lemma 1. Define the functions

`(x) = 2x− x2 r(x) = x2 (11)

and define a branching process of depth log n and offspring
2 (i.e., each node has exactly two descendants) as follows:
the base node has value s, and for a node with value x, its
left-hand child has value `(x) and its right-hand child has
value r(x). Then the n leaf-nodes of this branching process
are, in order, the values ρ(n, i, s) for 1 ≤ i ≤ n.

An important point about this lemma is that the functions
` and r do not depend on F, while the ρ(n, i, s) values do,
a priori. Thus, one way to interpret this lemma is that the
expected conditional ranks of Gn do not depend on the field
F, even though their definition does. The proof of Lemma 1 is
given in Section V.

A key property of the branching process in Lemma 1 is that
it is a balanced process, meaning that the average value of the
two children of a node with value x is x again:

`(x) + r(x)

2
=

(2x− x2) + x2

2
= x (12)

This means that this branching process defines a martingale,
by letting a random walk go left or right with probability half.
Moreover, since ρ(n, i, s) is a probability, we have that this
martingale stays in [0, 1]. So by Doob’s martingale convergence
theorem, we must have that this martingale converges almost
surely to its fixed points. In fact, Doob’s theorem is not
needed here, as one may conclude using only the fact that
the increments are orthogonal.2 Its fixed points are those x’s
for which `(x) = r(x) = x. The only points satisfying this
are 0 and 1, so this martingale polarizes. In fact, much can be
said about the speed of polarization of this process, as it is
equivalent to the polarization process for BEC channels studied
in [4].

Theorem 1 (Application of [4]). For any n,

|{i ∈ [n] : ρ(n, i, s) > 1− 2−n
0.49}|

n
= s+ o(1) (13)

|{i ∈ [n] : ρ(n, i, s) < 2−n
0.49}|

n
= (1− s) + o(1) (14)

Hence the theorem tells us is that the above martingale
polarizes very quickly: apart from a vanishing fraction, all
ρ(n, i, s)’s are exponentially close to 0 or 1 as n→∞. With
this in mind, we define the following.

Definition 4. Let n be a fixed power of 2, and let s ∈ [0, 1] be
fixed. Let H ⊂ [n] be the set of indices i for which ρ(n, i, s) >
1 − 2−n

0.49

, and let m = |H|. By Theorem 1, we know that
m = sn + o(n). Let Rn denote the m × n submatrix of Gn

gotten by selecting all the columns of Gn, but only taking

2Private discussion with E. Telatar. See also [1]

those rows indexed by H . We call Rn the COR matrix of size
n with parameter s.

Note that the construction of COR matrices is trivial, like
the BEC polar codes, whereas the construction of BSC polar
codes requires an efficient approximation algorithm [10].

We will index the rows of Rn by i ∈ H , rather than j ∈ [m].
We sometimes denote Rn by R. The most important property
of Rn is expressed in the following theorem.

Theorem 2. For any s ∈ [0, 1], Rn[s] has full rank (i.e. rank
m) with high probability, as n → ∞. In fact, Rn[s] has full
rank with probability 1− o(2−n0.49

).

The proof is a simple consequence of Lemma 1 and Theorem
1, and can be found in the Appendix.

Theorem 2 implies the following.

Theorem 3. For any s ∈ [0, 1], Rn is s-high-girth.

Since the proof of Theorem 2 works independently of the
base field F, the same is true of Theorem 3. Thus, the COR
construction is a fully deterministic and works over any field.
In fact, it requires only two values (0 and 1) for the matrix,
even when F = R.

IV. APPLICATIONS OF HIGH-GIRTH MATRICES
A. Coding for erasures

Let F a field and p ∈ [0, 1]. The memoryless erasure channel
on F with erasure probability p, denoted by MEC(p), erases
each component of a codeword on F independently with
probability p. Denoting by ε the erasure symbol, the output
alphabet is hence F∗ = F ∪ {ε} and the transition probability
of receiving y ∈ F∗ when x ∈ F is transmitted is

W (y|x) =
{
p if y = ε,

1− p if y = x.
(15)

The memoryless extension is defined by Wn(yn|xn) =∏n
i=1W (yi|xi) for xn ∈ Fn, yn ∈ Fn

∗ .
Recall that a code of block length n and dimension k over

the alphabet F is a subset of Fn of cardinality |F|k. The code is
linear if the subset is a subspace of dimension k. In particular,
a linear code can be expressed as the image of a generator
matrix G ∈ Fn×k or as the null space of a parity-check matrix
H ∈ F(n−k)×n. The rate of a code is defined by k/n. A rate
R is achievable over the MEC(p) if the code can correct
the erasures with high probability. More specifically, R is
achievable if there exists a sequence of codes Cn of blocklength
n and dimension kn having rate R, and decoders Dn : Fn

∗ →
Fn, such that Pe(Cn)→ 0, where for xn drawn uniformly at
random in Cn and yn the output of xn over the MEC(p), and

Pe(Cn) := P{D(yn) 6= xn}. (16)

The dependency in Dn is not explicitly stated in Pe as there
is no degree of freedom to decode over the MEC (besides
guessing the erasure symbol), as shown in the proof of next
lemma.

The supremum of the achievable rates is the capacity, given
by 1− p. We now relate capacity-achieving codes on the MEC
and high-girth matrices.

Lemma 2. A linear code Cn achieves a rate R on the MEC(p)
if and only if its parity check matrix has probabilistic girth at
least 1−R. In particular, a code achieves capacity on on the
MEC(p) if and only if its parity check matrix is p-high-girth.



In particular, the linear code whose parity-check matrix is a
COR matrix of parameter p achieves capacity on the MEC(p).

Remark 1. In the binary case, COR codes give a new
interpretation to BEC polar codes: instead of computing the
mutual information of the polarized channels via the generator
matrix, we can interpret BEC polar codes from the girth of the
parity-check matrix. Note that this simplifies the proof that BEC
polar codes achieve capacity to a high-school linear algebra
— mutual information need not be even introduced. The only
part which may not be of a high-school level is the martingale
argument, which is in fact not necessary, as already known in
the polar code literature (see for example [1, Homework 4],
which basic algebra).

Remark 2. As shown in [2], the action of the matrix Gn =
( 1 1
0 1 )

⊗ logn on a vector can be computed in O(n log n) time
as well, which means that the encoding of the COR code can
be done in O(n log n) time, and the same is true for the code
construction (which is not the case for general polar codes).
Decoding the COR code can be done by inverting the submatrix
of Rn corresponding to the indices that do not have erasure
symbols, which can be done by Gaussian elimination in O(n3)
time. Alternatively, COR codes can be decoded as polar codes,
i.e., successively, in O(n log(n)) time. Hence, like polar codes
for the BEC, COR codes are deterministic, capacity-achieving,
and efficiently encodable and decodable for the MEC.

B. Sparse recovery
In the setting of sparse recovery, one wishes to recover a real-
valued sparse signal from a lower-dimensional projection [6].
In the worst-case model, a k-sparse signal is a vector with at
most k non-zero components, and to recover x that is k-sparse
from Ax, it must be that Ax 6= Ax′ from all x, x′ that are
k-sparse (and different). Hence A needs3 to have girth 2k + 1.

One may instead consider a probabilistic model where a k-
sparse signal has a random support, drawn uniformly at random
or from an i.i.d. model where each component in [n] belongs
to the support with probability p = k/n. The goal is then to
construct a flat matrix A which allows to recover k-sparse
signals with high probability on the drawing of the support.
Note that a bad support S is one which is k-sparse and that
can be paired with another k-sparse support S′ such that that
there exists real-valued vectors x, x′ supported respectively on
S, S′ which have the same image through A, i.e.,

Ax = Ax′ ⇐⇒ A(x− x′) = 0. (17)

Note now that this is equivalent to saying that the columns of
A indexed by S ∪ S′ are linearly dependent, since x − x′ is
supported on S ∪ S′ which is 2k-sparse.

Hence, the probability of error for sparse recovery is given
by

PS{∃S′ : A[S ∪ S′] has lin. dep. columns}. (18)

This error probability can be upper-bounded as for errors (see
the next section), by estimating the probability that A has a
subset of up to 2k linearly dependent columns, which relies
on the high-girth property of A.

3Note that for noise stability or to obtain a convex relaxation of the decoder,
one needs the columns to have in addition singular values close to 1, i.e., the
restricted isometry property (RIP).

C. Coding for errors
In this section, we work over the binary field F2. The

binary symmetric channel with error probability p, denoted by
BSC(p), flips each bit independently with probability p. More
formally, the transition probability of receiving y ∈ F2 when
x ∈ F2 is transmitted is given by

W (y|x) =
{
p if y 6= x

1− p if y = x
(19)

The memoryless extension is then defined by Wn(yn|xn) =∏n
i=1W (yi|xi), for xn, yn ∈ Fn

2 .

Theorem 4. Let p ∈ [0, 1/2] and s = s(p) = 2
√
p(1− p)

be the Bhattacharyya parameter of the BSC(p). Let {Cn} be
the COR code with parameter s (the code whose PCM is Rn).
Then Cn can reliably communicate over the BSC(p) with high
probability, as n→∞.

Note that unlike in the erasure scenario, Theorem 4 does
not allow us to achieve capacity over the BSC(p). For the
capacity of the BSC(p) is 1−H(p), and

1−H(p) ≥ 1− 2
√
p(1− p) (20)

with equality holding only for p ∈ {0, 12 , 1}.
This statement, unlike the ones for erasure correction and

sparse recovery, was stated only for the COR code, and not for
general high-girth codes. Our proof of this statement, which
can be found in the Appendix, relies on the actual construction
of COR codes and on the upper-bound on the successive
probability of error in terms of the COR known from polar
codes. One may also attempt to obtain this result solely from the
high-girth property, but this requires further dependencies on
the high-girth rate of convergence. It is an interesting problem
to obtain achievable rates that solely depend on the probabilistic
girth for the BSC.

V. SOME PROOFS
Proof of Lemma 1: We induct on log n. The base case is

log n = 1, where the calculation is straightforward. The rank
of G(1)

2 [s] will be 0 if no columns are chosen, and will be 1 if
at least 1 column is chosen. Therefore,

ρ(2, 1, s) = E(rankF(G
(1)
2 [s])) (21)

= 0 · (1− s)2 + 1 · 2s(1− s) + 1 · s2 (22)
= 2s− s2 = `(s) (23)

Similarly, E(rankF(G
(2)
2 [s])) = 2s, and thus

ρ(2, 2, s) = (2s)− (2s− s2) = s2 = r(x) (24)

Note that all these calculations do not actually depend on F.
For the inductive step, assume that ρ(n/2, i, s) is the leaf

value of the branching process for all 1 ≤ i ≤ n/2. To prove
the same for ρ(n, i, s), write Gn = Gn/2⊗G2. In other words,
we think of Gn as being an (n/2)×(n/2) matrix whose entries
are 2× 2 matrices.

We begin with the case when i is odd. By the inductive
hypothesis, we wish to prove that

ρ(n, i, s) = `

(
ρ

(
n

2
,
i+ 1

2
, s

))
(25)

We partition the columns of G(i)
n [s] into two sets: O, which

consists of those columns which have an odd index in Gn, and



E, which consists of those with an even index in Gn. Since
Gn = Gn/2 ⊗ G2, we see that for i odd, the ith row of Gn

is the ((i + 1)/2)th row of Gn/2, except that each entry is
repeated twice. From this, and from inclusion-exclusion, we
see that

ρ(n, i, s) = P(row i of Gn is independent
of the previous rows) (26)

= P(row i of Gn[O] is independent
of the previous rows of Gn[O])

+ P(row i of Gn[E] is independent
of the previous rows of Gn[E])

− P(both of the above) (27)

= 2ρ

(
n

2
,
i+ 1

2
, s

)
− ρ

(
n

2
,
i+ 1

2
, s

)2

(28)

= `

(
ρ

(
n

2
,
i+ 1

2
, s

))
(29)

Next, we consider the case when i is even. In this case, we
wish to prove that

ρ(n, i, s) = r

(
ρ

(
n

2
,
i

2
, s

))
(30)

We proceed analogously. From the equation Gn = Gn/2 ⊗G2,
we see that the ith row of Gn is the (i/2)th row of Gn/2,
except with a 0 intersprersed between every two entries. Thus,
the ith row will be dependent if either it restriced to O or
it restricted to E will be dependent; in other words, it’ll be
independent if and only if both the restriction to O and the
restriction to E are independent. Therefore,

ρ(n, i, s) = P(the restriction to O and
the restriction to E are independent) (31)

= P(the restriction to O is independent)·
P(the restriction to E is independent) (32)

=

(
ρ

(
n

2
,
i

2
, s

))2

= r

(
ρ

(
n

2
,
i

2
, s

))
(33)

Note that in all our calculations, we used probability arguments
that are valid over any field. Broadly speaking, this works
because the above arguments show that the only sorts of linear
dependence that can be found in G(i)

n [s] involves coefficients
in {−1, 0, 1}. Since these elements are found in any field, we
have that this theorem is true for all fields F.

Proof of Lemma 2: Note that a decoder over the MEC
needs to correct the erasures, but there is no bias towards which
symbol can have been erased. Hence, a decoder on the MEC
is wrong with probability at least half if there are multiple
codewords that match the corrupted word. In other words, the
probability of error is given by4

Pe(Cn) = PE{∃x, y ∈ Cn, x 6= y, x[Ec] = y[Ec]} (34)
= PE{∃z ∈ Cn, z 6= 0, z[Ec] = 0} (35)

where E is the erasure pattern of the MEC(p), i.e., a random
subset of [n] obtained by picking each element with probability
p. Let Hn be the parity-check matrix of Cn, i.e., Cn = ker(Hn).

4If ties are broken at random, an additional factor of 1 − 1/|F| should
appear on the right hand side.

Note that E has the property that there exists a codeword
z ∈ Cn such that z[Ec] = 0 if and only if the columns indexed
by E in Hn are linearly dependent. Indeed, assume first that
there exists such a codeword z, where the support of z is
contained in E. Since z is in the kernel of Hn, the columns
of Hn indexed by the support of z must add up to 0, hence
any set of columns that contains the support of z must be
linearly dependent. Conversely, if the columns of Hn indexed
by E are linearly dependent, then there exists a subset of
these columns and a collection of coefficients in F such that
this linear combination is 0, which defines the support of a
codeword z. Hence,

Pe(Cn) = PE{Hn[E] has lin. dependent columns}. (36)

Recalling that the code rate is given by 1− r, where r is the
relative rank of the parity-check matrix, the conclusions follow.
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