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The majority of this talk is drawn from Ryan O’Donnell’s book Analysis of Boolean
Functions, primarily chapters 9 and and 10. Some of the later topics, relating this material
to the theory of log-Sobolev inequalities, are- drawn from “Hypercontractivity, Logarithmic
Sobolev Inequalities, and Applications: A Survey of Surveys” by Leonard Gross, appearing
in the volume Diffusion, Quantum Theory, and Radically Elementary Mathematics.

1 Introduction

If you’re like me, you think a lot about the Chernoff bound.

Theorem 1 (Chernoff bound for ±1 random variables). Let X1, . . . , Xn be iid uniform ±1
random variables, and let a1, . . . , an ∈ R. Let S =

∑n
i=1 aiXi, and let σ2 =

∑n
i=1 a

2
i be the

variance of S. Then for any t ≥ 0,

Pr(|S| ≥ tσ) ≤ 2e−2t
2

.

Another way of viewing this theorem is as saying that every linear function on the
hypercube is tightly concentrated about its mean, with exponential tail bounds. In this
language, Theorem 1 can be restated as follows.

Theorem 2 (Chernoff bound restated). Let X = (X1, . . . , Xn) be a uniformly random point
in {−1, 1}n, and let f : {−1, 1}n → R be a linear function with E[f(X)] = 0. Then for any
t ≥ 0,

Pr(|f(X)| ≥ t‖f‖2) ≤ 2e−2t
2

. (1)

Here, we use the convention that the Lp norm is defined by ‖f‖p = E[|f(X)|p]1/p, i.e. we
take the Lp norm with respect to the uniform measure on {−1, 1}n. Also, from here on out,
we will always take X = (X1, . . . , Xn) to be a uniformly random point in {−1, 1}n.

The Chernoff bound is great. However, in many applications, one is interested in non-
linear functions f : {−1, 1}n → R. Commonly, we’re interested in low-degree polynomials.
For instance, if we want to count triangles in a random graph, then we are interested in a
degree-3 polynomial of the independent random bits that decide the edges. If we want to
count consecutive runs of 10 heads in a sequence of coin flips, then we are interested in a
degree-10 polynomial.

Note that for high-degree polynomials, we can’t expect strong concentration bounds. A
simple example is the function g given by g(x1, . . . , xn) = (x1 + 1) · · · (xn + 1). We have that

g(X) =

{
0 with probability 1− 2−n

2n with probability 2−n

from which we can see that ‖g‖2 = 2n/2. Therefore, for any t < 2n/2, we have that

Pr(|g(X)| ≥ t‖f‖2) = Pr(g(X) = 2n) = 2−n,
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whereas a bound as strong as (1) would allow us to upper-bound this by exp(−2t2) =
exp(−2n) if we take t = 2(n−1)/2.

Nonetheless, for low-degree polynomials, there is hope, and there are many techniques for
proving strong concentration bounds for low-degree polynomials. The most general result I
know is the following.

Theorem 3 (Tail bounds for low-degree polynomials). Let f : {−1, 1}n → R be a polynomial
of degree at most k. Then for any t ≥ (2e)k/2, we have that

Pr(|f(X)| ≥ t‖f‖2) ≤ exp

(
− k

2e
t2/k
)
.

In other words, we are able to get an exponential tail bound, where here “exponential”
means exponential in t2/k. If we think of the degree k as fixed, then this is quite good:
for many applications, it suffices to obtain a bound that is exponentially small in any fixed
power of the deviation t.

To prove Theorem 3, one needs the theory of hypercontractivity on the Boolean hyper-
cube, which is what most of this talk will be about. At its most basic level, hypercontractivity
allows one to prove bounds on norms of random variables.

Theorem 4. Let f : {−1, 1}n → R be a polynomial of degree at most k. Then for any q ≥ 2,

‖f‖q ≤
√
q − 1

k
‖f‖2.

Recall that on a probability space, the norms are monotonic, i.e. that ‖f‖p ≤ ‖f‖q for
any f : {−1, 1}n → R and any p ≤ q. The point of norm bounds like Theorem 4 is that
we can get some inequality in the other direction. This is incredibly powerful; for instance,
given Theorem 4, we can easily prove the tail bound in Theorem 3.

Proof of Theorem 3. Let q ≥ 2 be a parameter that we will choose later. By combining
Markov’s inequality with Theorem 4, we find that

Pr(|f(X)| ≥ t‖f‖2) = Pr(|f(X)|q ≥ tq‖f‖q2)

≤ E[|f(X)|q]
tq‖f‖q2

[Markov]

= t−q
(
‖f‖q
‖f‖2

)q
≤ t−q(q − 1)kq/2 [Theorem 4]

< (qk/2/t)q.

It now remains to pick a value of q that yields a good bound. By choosing q = t2/k/e, which
is at least 2 by assumption, we find that

Pr(|f(X)| ≥ t) ≤ exp

(
−kq

2

)
= exp

(
− k

2e
t2/k
)
.
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Theorem 4 allows us to upper-bound ‖f‖q in terms of ‖f‖2 for any q ≥ 2. In many
applications, it is also useful to obtain such a bound for q ≤ 2, and in particular for q = 1.
Directly applying hypercontractivity will not accomplish this; however, once we have a result
like Theorem 4, which gives bounds for all q ≥ 2, a simple interpolation trick using Hölder’s
inequality (or, if you prefer, the Riesz–Thorin theorem) allows one to obtain upper bounds
on ‖f‖1 as well.

Lemma 5. Let f : {−1, 1}n → R be a polynomial of degree at most k. Then for any
‖f‖2 ≤ ek‖f‖1.

Proof. The generalized Hölder inequality and Theorem 4 for p = 2 imply that for any ε > 0,

‖f‖2 ≤ ‖f‖1−θ2+ε‖f‖θ1 ≤
√

1 + ε
k(1−θ)‖f‖1−θ2 ‖f‖θ1

where θ is the solution to 1
2

= θ
1

+ 1−θ
2+ε

. We now divide by ‖f‖1−θ2 and let ε→ 0 to conclude
the desired result.

Using the same interpolation trick, one can similarly show that ‖f‖2 ≤ (e
2
p
−1)k‖f‖p for

any 1 ≤ p ≤ 2. Combining this result with Theorem 4, we find that for any p ∈ [1,∞),

cp,k‖f‖p ≤ ‖f‖2 ≤ Cp,k‖f‖p

where the constants cp,k, Cp,k depend only on p, and the degree k. In the case k = 1, this is
an important probabilistic result known as Khintchine’s inequality. Morally, what all of this
is saying is that low-degree polynomials are “well-behaved”: all their norms are equal up to
a constant factor, and therefore they inherit many properties of “nice” random variables.

One further consequence of this control on norms is anticoncentration; basically, one can
say that with some non-trivial probability, a low-degree polynomial will be far from its mean.
Here are two such results that follow easily from these norm bounds; unsurprisingly, one can
deduce many other such results using similar techniques.

Theorem 6. Let f : {−1, 1}n → R be a polynomial of degree at most k, and suppose f is
non-constant. Then

Pr

(
|f(X)− E[X]| ≥ 1

2
‖f‖2

)
≥ 1

16
91−k

and

Pr (f(X) > E[X]) ≥ 1

4
e−2k.

Proof. We may assume without loss of generality that E[f(X)] = 0. For the first result, we
can apply the Paley–Zygmund inequality to find that

Pr

(
|f(X)| ≥ 1

2
‖f‖2

)
= Pr

(
f(X)2 ≥ 1

4
‖f‖22

)
≥ 9

16

‖f‖42
‖f‖44

≥ 9

16
(3−k/2)4 =

1

16
91−k,

where we apply Theorem 4 with q = 4 for the last inequality.
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For the second result, we use the fact that E[f(X)] = 0 to find that E[f(X)1{f(X)>0}] =
1
2
‖f‖1. Applying Cauchy–Schwarz, we find that

1

4
‖f‖21 ≤ E[f(X)2]E[12

{f(X)>0}] = ‖f‖22 Pr(f(X) > 0) ≤ e2k‖f‖21 Pr(f(X) > 0),

using Lemma 5 for the final inequality. Rearranging gives the desired result.

2 Hypercontractivity

To state the hypercontractive inequality, we need to set up some terminology and notation.
Given x = (x1, . . . , xn) ∈ {−1, 1}n, and given ρ ∈ [0, 1], we define a probability distribution
Nρ(x) as follows. For each i ∈ [n], we let

Yi =

{
xi with probability ρ

±1 uniformly at random with probability 1− ρ

and then let Nρ(x) be the distribution of the random vector Y = (Y1, . . . , Yn), where the
coordinates are independent. This distribution is called the “ρ-noisy neighborhood” of x. An-
other way of viewing it is as follows. Consider a continuous-time Markov chain on {−1, 1}n,
where we have an exponential clock with rate 1 on each i ∈ [n], and every time the ith clock
rings we resample uniformly at random the coordinate i. If we start this Markov chain at x
and run it for time log 1

ρ
, then its output state will be distributed as Nρ(x). Note that N0(x)

is uniformly random on {−1, 1}n, and that N1(x) takes on value x with probability 1.
If X ∈ {−1, 1}n is uniformly random and Y ∼ Nρ(X), then we say that the pair (X, Y )

is ρ-correlated. Note that this is a symmetric condition, i.e. that we would get the same
distribution on the pair if we first sampled Y uniformly and then sampled X ∼ Nρ(Y ). They
are called ρ-correlated because Xi = Yi with probability ρ, and Xi and Yi are independent
with probability 1− ρ.

With these definitions, we can define our main object of study, the noise operator.

Definition 7. Given ρ ∈ [0, 1], we define the noise operator Tρ by

(Tρf)(x) = E
Y∼Nρ(x)

[f(Y )].

In other words, we compute (Tρf)(x) by averaging the values of f on the ρ-noisy neighbor-
hood of x.

Up to some simple transformations, Tρ is just the Laplacian associated to the continuous-
time Markov chain discussed above. By virtue of being an averaging operator (or by a simple
application of Jensen’s inequality), we can see that ‖Tρf‖p ≤ ‖f‖p for any ρ and p. In other
words, Tρ is a contraction in Lp for any p. The hypercontractive inequality says that in fact,
Tρ is hypercontractive, namely is a contraction Lp → Lq for some q > p.
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Theorem 8 (Bonami). Let 1 ≤ p ≤ q ≤ ∞, and let 0 ≤ ρ ≤
√

p−1
q−1 . Then Tρ is a contraction

when viewed as a map Lp → Lq, i.e.

‖Tρf‖q ≤ ‖f‖p
for any f : {−1, 1}n → R.

Although the hypercontractive inequality is rightly attributed to Bonami, it’s worth
noting that the history is complicated: Bonami proved Theorem 8 in her PhD thesis, which
was published in French and therefore generally unknown in the English-speaking world
for some time. Because of this, variants of Theorem 8, as well as Theorem 8 itself, were
discovered independently by Nelson, Gross, and Beckner.

Intuitively, the reason why Tρ should satisfy some sort of hypercontractivity is the fol-
lowing. The reason why ‖f‖q may be (much) larger than ‖f‖p for q > p is that f may
have some sharp peaks, which will receive a higher weight in the computation of the larger
moment ‖f‖q. However, Tρ is a “smoothing” operator: since Tρf is gotten by averaging f
over ρ-noisy neighborhoods, any sharp peak of f will be somewhat dampened by Tρ. The
smaller ρ is, the greater this effect will be (since the neighborhood Nρ(x) will be less local-
ized). Hence, we might expect to get some control on ‖Tρf‖q in terms of ‖f‖p, so long as ρ
is sufficiently small relative to p and q.

To understand the connections Theorem 8 has with the results discussed in the previous
section, we need to take a quick detour to understand Fourier analysis on the Boolean
hypercube.

3 Fourier analysis

For a set S ⊆ [n], we define the function χS : {−1, 1}n → R by

χS(x1, . . . , xn) =
∏
i∈S

xi,

with the convention that the empty product is taken to be 1. It is easy to check that the
functions χS are the characters of the abelian group {−1, 1}n, which implies that we can use
them to define the Fourier transform. Namely, for any f : {−1, 1}n → R, we define

f̂(S) = E[f(X)χS(X)]

and then the Fourier inversion formula says that

f(x) =
∑
S⊆[n]

f̂(S)χS(x) (2)

for all x ∈ {−1, 1}n. The numbers f̂(S) are called the Fourier coefficients of f . The only
other property of the Fourier transform we’ll need is Parseval’s identity, which says that

‖f‖22 =
∑
S⊆[n]

|f̂(S)|2.
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Note that χS is a multilinear polynomial of degree |S|. Therefore, one consequence
of (2) is that every function {−1, 1}n → R has a unique representation as a multilinear
polynomial of degree at most n. This also implies that if f is a polynomial of degree at most
k, then f̂(S) = 0 for all S with |S| > k. This is one of the many reasons why the Fourier
decomposition is a powerful tool for understanding functions on the hypercube.

To connect this to hypercontractivity, we will need a description of the operator Tρ in
the Fourier basis. That is given by the following lemma.

Lemma 9. For any S ⊆ [n], any ρ ∈ [0, 1], and any f : {−1, 1}n → R, we have that

(T̂ρf)(S) = ρ|S|f̂(S).

Therefore,

(Tρf)(x) =
∑
S⊆[n]

ρ|S|f̂(S)χS(x).

Proof. We begin by computing TρχS. Recalling the definition of Tρ, we find that

(TρχS)(x) = E
Y∼Nρ(x)

[χS(Y )] = E
Y∼Nρ(x)

[∏
i∈S

Yi

]
=
∏
i∈S

E
Yi∈Nρ(xi)

[Yi],

where the final equality uses the fact that if Y is drawn from Nρ(x), then all the coordinates
of Y are independent, with the ith one drawn from the distribution Nρ(xi), which equals xi
with probability ρ and is otherwise uniformly random on ±1. From this, we can compute
that

E
Yi∼Nρ(xi)

[Yi] = ρ · xi + (1− ρ) · 0 = ρxi.

Combining this with our earlier computation, we get that

(TρχS)(x) =
∏
i∈S

E
Yi∈Nρ(xi)

[Yi] =
∏
i∈S

(ρxi) = ρ|S|χS(x).

In other words, χS is an eigenfunction of Tρ with eigenvalue ρ|S|. This already implies the
desired result by some general theory (since we can conclude from this that Tρ is self-adjoint),
but for completeness, here’s the full computation.

We have that

(T̂ρf)(S) = E
X

[(Tρf)(X)χS(X)]

= E
X

[
E

Y∼Nρ(X)
[f(Y )]χS(X)

]
= E

(X,Y ) ρ-correlated
[f(Y )χS(X)]

= E
Y

[
E

X∼Nρ(Y )
[χS(X)]f(Y )

]
= E

Y
[ρ|S|χS(Y )f(Y )]

= ρ|S|f̂(S)
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where we use the property, mentioned above, that (X, Y ) being ρ-correlated is symmetric.

From the Fourier expansion of Tρ, we can conclude a number of important properties of
Tρ, many of which are non-obvious from the original definition (though some can be proved
directly from that definition).

1. Tρ is self-adjoint.

2. We may extend the definition of Tρ to ρ > 1 via the formula

(Tρf)(x) =
∑
S⊆[n]

ρ|S|f̂(S)χS(x).

3. With this definition, the operators {Tρ}ρ>0 form a group, with the group operation
given by Tρ ◦ Tσ = Tρσ.

4. Earlier, we gave some intuition for why Tρ should be a “smoothing operator” for small
ρ. In the Fourier basis, we see that Tρ is damping the higher Fourier coefficients
of f , at least for ρ < 1. Since the higher modes should contribute to more local
fluctuations, this is consistent with the earlier intuition. Note that for ρ > 1, Tρ is
actually accentuating the higher modes, which of course makes some sense: by the
group property, we have that T1/ρ = T−1ρ , so T1/ρ must “undo” whatever damping is
done by Tρ.

With what we know so far, it is easy to show how the hypercontractive inequality implies
the norm bounds Theorem 4, which were what we used to deduce all of our other applications
of hypercontractivity.

Proof of Theorem 4. Let ρ =
√

1
q−1 ∈ (0, 1], so that Tρ is a contraction from L2 to Lq by

Theorem 8. By the group property mentioned above, we may write

‖f‖q = ‖Tρ(T1/ρf)‖q ≤ ‖T1/ρf‖2.

Now, recall that since f has degree at most k, we have f̂(S) = 0 whenever |S| > k. Therefore,
by Parseval’s identity,

‖T1/ρf‖22 =
∑
S⊆[n]

|(1/ρ)|S|f̂(S)|2 =
∑
S⊆[n]
|S|≤k

ρ−2|S||f̂(S)|2 ≤ ρ−2k
∑
S⊆[n]

|f̂(S)|2 = ρ−2k‖f‖22.

Combining this with the earlier computation, we conclude that

‖f‖q ≤ ‖T1/ρf‖2 ≤ ρ−k‖f‖2 =
√
q − 1

k
‖f‖2.
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4 The proof of hypercontractivity

I won’t show the proof of Theorem 8. The basic idea is that one wants to induct on the
dimension n, which is a very appealing thing to do since the statement of the hypercontractive
inequality actually has no mention of n whatsoever. The inductive step of the proof is not so
bad: basically, one splits the vector (X1, . . . , Xn) as the concatenation of (X1, . . . , Xn−1) and
Xn, and breaks the expectations definining ‖Tρf‖q and ‖f‖p into two nested expectations,
one depending on (X1, . . . , Xn−1) and one depending on Xn. At this point, it basically
suffices to apply the inductive hypothesis and the base case of n = 1 to conclude the desired
result. However, it turns out that really the most convenient way of making this work is to
prove a stronger “two-function” version of hypercontractivity: by doing so, one ensures a
slightly stronger induction hypothesis that makes it somewhat easier to carry out the proof.

However, it turns out that the base case is really not so trivial to prove. The base case of
the hypercontractive inequality is called a “two-point inequality”, since it concerns functions
f : {−1, 1} → R, namely pairs of points in R. It might be surprising that dealing with
two real numbers can be so challenging, but it is! To get an idea of why it’s so challenging,
consider that the following is the general form of the two-point inequality.

Lemma 10 (Two-point inequality). For any a, b ∈ R, any 1 ≤ p ≤ q < ∞, and any

0 ≤ ρ ≤
√

p−1
q−1 , we have that ‖a+ ρbX‖q ≤ ‖a+ bX‖p, i.e.

(
1

2
(a+ ρb)q +

1

2
(a− ρb)q

)1/q

≤
(

1

2
(a+ b)p +

1

2
(a− b)p

)1/p

.

Just to get a picture of how one could prove such a thing, let’s do it in the case p =
2, q = 4. The left-hand side is(

1

2
(a+ ρb)4 +

1

2
(a− ρb)4

)1/4

= (a4 + 6ρ2a2b2 + ρ4b4)1/4,

since all the odd terms cancel out when we apply the binomial theorem to the inner terms.
Similarly, the right-hand side is(

1

2
(a+ b)2 +

1

2
(a− b)2

)1/2

= (a2 + b2)1/2.

Raising both sides to the fourth power, we wish to prove

a4 + 6ρ2a2b2 + ρ4b4
?

≤ (a2 + b2)2 = a4 + 2a2b2 + 4b4.

Comparing terms, we see that we’ll be all set if 6ρ2 ≤ 2 and ρ4 ≤ 4. The former condition is
equivalent to ρ ≤ 1/

√
3, while the latter is equivalent to ρ ≤ 1/

√
2, which is a less stringent

requirement. So we find that the two-point inequality holds for p = 2 and q = 4 if ρ ≤ 1/
√

3,
which is precisely the bound given in the statement of Theorem 8.
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The exact same proof will work for p = 2 and q any even integer, in basically the same
way. For other values of p and q, one ends up using the generalized binomial theorem (i.e.
writing down a Taylor series), except that things get pretty hairy because of (a) convergence
issues and (b) the fact that some coefficients are negative. A fair amount of trickery is
required to overcome these issues; everything involved is “elementary”, but I would say that
a lot of it is far from easy.

5 Hypercontractivity and log-Sobolev inequalities

In this section, I’ll move away from hypercontractivity and briefly discuss the relations this
theory has to various related topics in functional analysis. Since this is material I understand
much less well, I’ll be somewhat vague at times.

Suppose that µ is a probability measure on Rn, and suppose that µ has a smooth, strictly
positive density function h(x) with respect to Lebesgue measure. The Dirichlet form operator
associated to µ is the operator Aµ on L2 defined by

(Aµf)(x) = −∆f(x)− 1

h(x)
(∇h(x) · ∇f(x)) ,

at least for f for which this expression makes sense (e.g. for f ∈ C∞c (Rn)). The importance
of this operator is its following property, which one can easily prove by integration by parts.
For any f, g ∈ L2(Rn, µ),

〈Aµf, g〉L2(Rn,µ) =

∫
Rn
∇f(x) · ∇g(x) dµ(x).

Probably the most important example is in case µ = γ is the Gaussian measure on Rn, in
which case one has

(Aγf)(x) = −∆f(x) + x · ∇f(x).

At least in infinite dimensions, this Aγ is called the Ornstein–Uhlenbeck operator; I am not
sure if it has a name in finite dimensions.

It turns out that Dirichlet form operators are actually a pretty general class of elliptic
operators. There’s a technique known as Jacobi’s trick which allows one to convert many
other elliptic differential operators, such as the Schrödinger operator, into

Note that just like Tρ was “kind of like” the Laplacian on the hypercube, we have that
Aµ is “kind of like” the Laplacian on Rn. Continuing this analogy, we may want to come
up with a family {Dµ

ρ}ρ>0, built on Aµ, which is forms a group via the multiplication rule
Dµ
ρ ◦Dµ

σ = Dµ
ρσ. An obvious way to do this is to define

Dµ
ρ := e(log ρ)Aµ .

With this definition, we have the following theorem.
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Theorem 11 (Nelson). Let γ be Gaussian measure on Rn, and let Dγ
ρ be defined as above.

For 1 < p ≤ q <∞, the operator norm of Dγ
ρ satisfies

‖Dγ
ρ‖Lp(Rn,γ)→Lq(Rn,γ) =

{
1 if ρ ≤

√
p−1
q−1

∞ otherwise.

In other words, the operator Dγ
ρ also satisfies a hypercontractivity theorem, with the

same threshold for hypercontractivity. Though Nelson’s proof was analytic in nature, it is
also possible to prove Nelson’s theorem as a consequence of Bonami’s Theorem 8. Indeed, the
central limit theorem allows one to convert results about iid uniform ±1 random variables
into results about Gaussian random variables, and this conversion allows one to deduce
Theorem 11 from Theorem 8.

As a consequence of Nelson’s hypercontractivity theorem, Gross was able to prove the
first log-Sobolev inequality, which is as follows. Recall that γ denotes Gaussian measure on
Rn.

Theorem 12. For any f : Rn → C,∫
Rn
|f(x)|2 log

(
|f(x)|

‖f‖L2(Rn,γ)

)
dγ(x) ≤

∫
Rn
|∇f(x)|2 dγ(x).

Like the Sobolev inequalities, Gross’s log-Sobolev inequality involves integrals of both f
and its derivatives. However, unlike the Sobolev inequalities, the log-Sobolev inequality is
independent of the dimension n, which makes it much more useful in certain settings.

In addition to deducing the log-Sobolev inequality from Nelson’s hypercontractive in-
equality, Gross actually proved the following much more general result, showing that log-
Sobolev inequalities are equivalent to hypercontractive inequalities.

Theorem 13 (Gross). Let µ be a measure on Rn, let Aµ be the associated Dirichlet form
operator, and let Dµ

ρ = e(log ρ)Aµ. Then µ satisfies the log-Sobolev inequality∫
Rn
|f(x)|2 log

(
|f(x)|

‖f‖L2(Rn,µ)

)
dµ(x) ≤

∫
Rn
|∇f(x)|2 dµ(x) for any f : Rn → C

if and only if it satisfies the hypercontractive inequality

‖Dµ
ρ‖Lp(µ)→Lq(µ) = 1 for any 1 < p ≤ q <∞ and any ρ ≤

√
p− 1

q − 1
.

Since there are also direct proofs of the log-Sobolev inequality, this gives another way of
proving Nelson’s hypercontractivity theorem. Additionally, by directly proving log-Sobolev
inequalities for the uniform measure on the hypercube, one can also use this to give alter-
native proofs of Bonami’s Theorem 8 (though strictly speaking, Theorem 13 only applies to
measures on Rn, so one needs to prove an analogue for this discrete setting).

The proof of Theorem 13 is actually pretty easy, though I won’t show it. Essentially,
one takes the q-derivative of the hypercontractive inequality (with p = 2), and one obtains
the log-Sobolev inequality; integrating the log-Sobolev inequality with respect to q gives the
hypercontractive inequality.
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