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which yonder starry sphere
Of planets and of fixed in all her wheels
Resembles nearest, mazes intricate,
Eccentric, intervolved, yet regular
Then most, when most irregular they seem;

John Milton, Paradise Lost V.620–4



Talk overview

Goal: Understand the regularity lemma.

Regularity lemma

A discrete object can be partitioned into a small number of
random-like pieces.

Question 1
How small can small be?

Question 2
Can we make small smaller if we assume that the object is simple?

Question 3
What does it mean for a (hyper)graph to be simple?
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Regular pairs in graphs

The density of a bipartite graph (X,Y) is e(X,Y)
|X||Y| .

Definition
A bipartite graph (X,Y) is ε-regular if all large induced subgraphs
have basically the same density:
For every X′ ⊆ X, Y ′ ⊆ Y with |X′| ⩾ ε|X|, |Y ′| ⩾ ε|Y|, it holds that

|d(X′, Y ′) − d(X,Y)| ⩽ ε.

If ε≪ d(X,Y), this says that (X,Y) is random-like.

If ε ⩾ d(X,Y), it says basically nothing.

Theorem (Induced counting lemma)

If (X,Y) is ε-regular, it contains a bi-induced copy of any fixed
bipartite graph

… assuming d(X,Y) is bounded away from 0 and 1.

Bi-induced: edges across (X,Y) are induced, edges inside .
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Szemerédi’s regularity lemma
A bipartite graph (X,Y) is ε-regular if for every X′ ⊆ X, Y ′ ⊆ Y with
|X′| ⩾ ε|X|, |Y ′| ⩾ ε|Y|, it holds that |d(X′, Y ′) − d(X,Y)| ⩽ ε.

A partition V(G) = V1 ⊔ · · · ⊔ Vm is ε-regular if it is equitable and all
but εk2 pairs (Vi,Vj) are ε-regular.

Theorem (Szemerédi)
Every graph has an ε-regular partition with m ⩽ M(ε) parts.

Szemerédi: We may takeM(ε) ⩽ twr(ε−5) := 22
··

·2
}
ε−5

.
Gowers: Some graphs requirem ⩾ twr(ε−1/16).

Major question

Can we get a better bound if G is simple?

Triangle-free? No. Bipartite? No. Chordal? No. Perfect? No.
Geometrically defined? Yes!
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VC dimension

Geometrically defined graphs have bounded Vapnik–Chervonenkis
(VC) dimension.

Non-standard definition
If a bipartite graph B is not a bi-induced subgraph of G, then G has
VC dimension ⩽ |B|.
That is, G has bounded VC dimension if it forbids some fixed
bi-induced B.

VC dimension is a fundamental combinatorial notion capturing “low
complexity” of discrete objects. It is of central importance in
learning theory, model theory, group theory, combinatorics…

Many combinatorial questions become much simpler when
restricted to graphs of bounded VC dimension.
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Many combinatorial questions become much simpler when
restricted to graphs of bounded VC dimension.
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Graph regularity and VC dimension

G has bounded VC dimension if it forbids some fixed bi-induced B.

If (X,Y) is ε-regular, it contains a bi-induced copy of any fixed
bipartite graph, assuming d(X,Y) is bounded away from 0 and 1.

Corollary

If G has bounded VC dimension, then every ε-regular pair in G must
have density close to 0 or 1.

Definition
A pair (X,Y) is ε-homogeneous if d(X,Y) ∈ [0, ε] ∪ [1− ε,1].
A partition V(G) = V1 ⊔ · · · ⊔ Vm is ε-homogeneous if it is equitable
and all but εk2 pairs are ε-homogeneous.

Corollary (Regularity lemma for bounded VC dimension)

If G has bounded VC dimension, it has an ε-homogeneous partition
with m ⩽ M(ε) parts.
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Quantitative bounds

Szemerédi, Gowers: Every graph G has an ε-regular partition into
m ⩽ twr(ε−5) parts, and for some G such a bound is necessary.

If G has bounded VC dimension, we can strengthen this to an
ε-homogeneous partition. What about the bounds?

Theorem (Alon–Fischer–Newman, Lovász–Szegedy)

If G has bounded VC dimension, it has an ε-homogeneous partition
into m ⩽ poly(1ε ) parts (and this is best possible).

Theorem
The following are equivalent for a hereditary family of graphs G.

• G has bounded VC dimension.
• G has an ε-homogeneous partition with ⩽ poly(1ε ) parts.
• G has an ε-homogeneous partition with any number of parts.
• G has an ε-regular partition with ⩽ poly(1ε ) parts.
• G has an ε-regular partition with a sub-tower number of parts.
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Why are hypergraphs harder?

Theorem
The following are equivalent for a hereditary family of graphs G.

• G has bounded VC dimension.
• G has an ε-homogeneous partition with ⩽ poly(1ε ) parts.
• G has an ε-homogeneous partition with any number of parts.
• G has an ε-regular partition with ⩽ poly(1ε ) parts.
• G has an ε-regular partition with a sub-tower number of parts.

We seek a hypergraph generalization of this theorem.

In k-uniform hypergraphs, there are ⩾ 2 notions of regularity… and
⩾ k notions of VC dimension.

Also, the regularity notions can be very hard to work with.
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A statement of the hypergraph regularity lemma

[Rödl–Nagle–Skokan–Schacht–Kohayakawa]

Hypergraphs are scary! Let’s try to only think about graphs.

Graph regularity Hypergraphs Strong VC dimension Simple links VC2 dimension Conclusion



A statement of the hypergraph regularity lemma

[Rödl–Nagle–Skokan–Schacht–Kohayakawa]

Hypergraphs are scary! Let’s try to only think about graphs.

Graph regularity Hypergraphs Strong VC dimension Simple links VC2 dimension Conclusion



Weak regularity for hypergraphs

The density of a tripartite 3-graph (X,Y,Z) is e(X,Y,Z)
|X||Y||Z| .

It is weakly ε-regular if |d(X′, Y ′, Z′) − d(X,Y,Z)| ⩽ ε whenever
|X′| ⩾ ε|X|, |Y ′| ⩾ ε|Y|, |Z′| ⩾ ε|Z|.

Theorem (Chung)

Every 3-graph has a weakly ε-regular partition into m ⩽ M(ε) parts.

Chung’s proof givesM(ε) ⩽ twr(ε−C), and Gowers’s result shows
this is necessary in general.
Bad news: This notion of regularity is too weak for most
applications, because it does not support a counting lemma.
Nonetheless, it’s still interesting, and useful in some settings.

Question
What does it mean for a hypergraph to be simple? Can we
strengthen Chung’s regularity lemma for simple hypergraphs?

We’ll see three different answers to this question.
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strengthen Chung’s regularity lemma for simple hypergraphs?

We’ll see three different answers to this question.
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Strong VC dimension

Question
What does it mean for a 3-graph to be simple?

Hypergraphs are scary! Let’s try to only think about graphs.

Geometrically defined graphs have bounded VC dimension.

Theorem (Alon–Fischer–Newman, Lovász–Szegedy)

If G has bounded VC dimension, it has an ε-homogeneous partition
into m ⩽ poly(1ε ) parts (and this is best possible).

Geometrically defined hypergraphs have bounded strong VC
dimension… which I won’t define.

Theorem (Chernikov–Starchenko, Fox–Pach–Suk)
If H has bounded strong VC dimension, it has an ε-homogeneous
partition into m ⩽ poly(1ε ) parts (and this is best possible).
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Is it a characterization?

Theorem (Chernikov–Starchenko, Fox–Pach–Suk)
If H has bounded strong VC dimension, it has an ε-homogeneous
partition into m ⩽ poly(1ε ) parts (and this is best possible).

Theorem (Terry)

The following are equivalent for a hereditary family of 3-graphs H.

• H has bounded strong VC dimension.
• H has an ε-homogeneous partition with ⩽ poly(1ε ) parts.

• H has a weakly ε-regular partition with ⩽ poly(1ε ) parts.

However, strong VC dimension does not characterize the existence
of homogeneous partitions, nor of having sub-tower bounds.

Time to come up with some other notions!
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Simple links

Question
What does it mean for a 3-graph to be simple?

Hypergraphs are scary! Let’s try to only think about graphs.

Link of x: Graph with edge set {yz : xyz ∈ E(H)}.

“Definition”
A 3-graph H is simple if the link of every vertex is simple.

This “definition” is of central importance in the theory of
high-dimensional expanders, and shows up in many Ramsey- and
Turán-type questions in hypergraphs.
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Do simple links help with regularity?

“Definition”
A 3-graph H is simple if the link of every vertex is simple.

Suppose I promise that every link has a small ε-regular partition.
Does this help you find a weakly ε-regular partition of H?

No!

Theorem (Gishboliner–Shapira–W.)

There exists a 3-graph H such that
• every link has an ε-regular partition with ⩽ poly(1ε ) parts, but

• every weakly ε-regular partition of H has ⩾ twr(log 1
ε ) parts.

Yes!

Theorem (Gishboliner–Shapira–W.)

If every link of H has an ε-homogeneous partition with ⩽ m parts,
then H has an ε-homogeneous partition with ⩽ 2poly(m/ε) parts.
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VC1 dimension

Theorem (Gishboliner–Shapira–W.)

If every link of H has an ε-homogeneous partition with ⩽ m parts,
then H has an ε-homogeneous partition with ⩽ 2poly(m/ε) parts.

We know which graphs have small homogeneous partitions!

Definition
H has bounded VC1 dimension if all links have bounded VC dim.

Theorem (Chernikov–Towsner, Terry–Wolf)

If H has bounded VC1 dimension, then H has an ε-homogeneous
partition with ⩽ M(ε) parts.

Moreover, 2poly(1/ε) ⩽ M(ε) ⩽ 22
poly(1/ε)

.

Terry conjectured that double exponential is necessary in general.

Corollary (Gishboliner–Shapira–W.)

M(ε) = 2poly(1/ε), i.e., single exponential is necessary and sufficient.
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More characterizations

Theorem (Terry)

The following are equivalent for a hereditary family of 3-graphs H.
• H has bounded strong VC dimension.
• H has an ε-homogeneous partition with ⩽ poly(1ε ) parts.

• H has a weakly ε-regular partition with ⩽ poly(1ε ) parts.

Bounded strong VC dimension implies bounded VC1 dimension.

Theorem (Terry, CT, TW, GSW)

The following are equivalent for a hereditary family of 3-graphs H:

• H has bounded VC1 dimension.
• H has an ε-homogeneous partition with ⩽ 2poly(1/ε) parts.
• H has an ε-homogeneous partition with any number of parts.
• H has a weak ε-regular partition with ⩽ 2poly(1/ε) parts.
• H has a weak ε-regular partition with sub-tower number of parts.
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VC2 dimension

Question
What does it mean for a 3-graph to be simple?

Hypergraphs are scary! Let’s try to only think about graphs.

G has bounded VC dimension if it forbids some fixed bi-induced B.

The most natural extension to 3-graphs is:

Definition (Shelah)
H has bounded VC2 dimension if it forbids some fixed tri-induced T.

Tri-induced: Edges across all 3 parts are induced, all other edges .

Theis is a natural combinatorial notion, but it originates in logic.

Bounded VC1 dimension ⇐⇒ forbidden bi-induced B in every link
⇐⇒ forbidden tri-induced T, where one part of T is a singleton.

Bounded strong VC =⇒

bounded VC1 =⇒ bounded VC2.
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Example of bounded VC2 dimension

H has bounded VC2 dimension if it forbids some fixed tri-induced T.

Example: Let G1,G2,G3 be arbitrary bipartite
graphs.

Let H be the hypergraph of all triangles
in G1 ∪ G2 ∪ G3, denoted ∆(G1 ∪ G2 ∪ G3).
Claim: H forbids tri-induced K(3)

2,2,2 \ e, hence
has bounded VC2 dimension.

G1

G2 G3

This example is very versatile.

H can have bounded VC2 dimension, yet require tower-type
bounds in Chung’s regularity lemma.

Proof: Take Gi to be Gowers’s graphs.

H can have bounded VC2 dimension, yet not admit any
ε-homogeneous partition of bounded size.

Proof: Take Gi to be random of density 1
2 .

Weak regularity does not support a(n induced) counting lemma.

Proof: Take Gi to be random of density 1
2 .
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The full hypergraph regularity lemma

Weak regularity does not support a(n induced) counting lemma.

Proof: Take Gi to be random of density 1
2 .

This example explains the weakness of weak regularity, but also
suggests what goes wrong: a hypergraph can depend on
“lower-uniformity information”, which must be taken into account.

A hypergraph regularity partition of H consists of:

• a partition V(H) = V1 ⊔ · · · ⊔ Vm,
• a partition of each Vi × Vj into bipartite graphs G1

ij ,…,Gt
ij,

• s.t. E(H) “lies ε-regularly in” ∆(Ga
ij ∪ Gb

jk ∪ Gc
ik) for most triples,

• and each Ga
ij is very regular.

Very: Ga
ij has edge density

1
t , so we require f(

1
t )-regularity.

Theorem (Hypergraph regularity lemma)

Every H has an (ε, f)-regular partition with ⩽ Mf(ε) parts.
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Hypergraph regularity and VC2 dimension

A hypergraph regularity partition of H consists of:

• a partition V(H) = V1 ⊔ · · · ⊔ Vm,
• a partition of each Vi × Vj into bipartite graphs G1

ij ,…,Gt
ij,

• s.t. E(H) “lies ε-regularly in” ∆(Ga
ij ∪ Gb

jk ∪ Gc
ik) for most triples,

• and each Ga
ij is very regular, i.e. f(

1
t )-regular.

Theorem (Hypergraph regularity lemma)

Every H has an (ε, f)-regular partition with ⩽ Mf(ε) parts.

Theorem (Chernikov–Towsner, Terry–Wolf)

If H has bounded VC2 dimension, then E(H) lies ε-homogeneously
in ∆(Ga

ij ∪ Gb
jk ∪ Gc

ik).

If H has bounded VC2 dimension, all the information of H comes
from uniformity 2 ⇐⇒ the example we saw is the only example.
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Quantitative aspects of hypergraph regularity

Theorem (Hypergraph regularity lemma)

Every H has an (ε, f)-regular partition with ⩽ Mf(ε) parts.

The proof iterates Szemerédi’s regularity lemma, so gives

Mf(ε) ⩽ wowzer(ε−C) := 22
··

·2
}
22

···2
}

· · · 2

︸ ︷︷ ︸
ε−C times

for “sane” functions f. If f is insane, the bounds are even worse.

Most applications, e.g. the hypergraph removal lemma, use
f(x) = poly(x), which is very sane.

Theorem (Moshkovitz–Shapira)

Wowzer-type bounds are necessary, even for very sane f.
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Quantitative aspects under bounded VC2 dimension

Theorem (Hypergraph regularity lemma)

Every H has an (ε, f)-regular partition with ⩽ Mf(ε) parts.

Theorem (Moshkovitz–Shapira)

Wowzer-type bounds are necessary, even for very sane f.

Theorem (Gishboliner–Shapira–W.)

If H has bounded VC2 dimension, Mf(ε) ⩽ twr(ε−C) for sane f (and
this is best possible).

Upshot: 3-graphs of bounded VC2 dimension act like graphs, even
with respect to the bounds in the regularity lemma.

Theorem (Terry)

If H has bounded VC2 dimension and f is arbitrary, then wowzer-type
bounds are necessary.
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Higher uniformities

In a hypergraph regularity partition of a k-graph, we have to
partition the vertices, pairs, triples, …, (k − 1)-tuples.
The proof iterates the (k − 1)-uniform regularity lemma, so gives
bounds on the kth level of the Ackermann hierarchy.
Moshkovitz–Shapira: Ackermannk bounds are necessary in general.

A k-graph H has bounded VCk−1 dimension if it forbids a fixed
k-induced k-partite k-graph. It has bounded VCr dimension (r < k) if
all (r+ 1)-uniform links have bounded VCr dimension.

Theorem (Chernikov–Towsner)
If H has bounded VCr dimension, then it has a regularity partition
that is homogeneous at uniformity > r.

Theorem (Gishboliner–Shapira–W.)

If H has bounded VCr dimension, then it has a regularity partition
with only Ackermannr parts (and this is best possible).

Upshot: Bounded VCr dimension ⇐⇒ “looks like an r-graph”.
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Proof non-sketch

If every link of H has an ε-homogeneous partition with ⩽ m parts,
then H has an ε-homogeneous partition with ⩽ 2poly(m/ε) parts.

Partitions of vertices × pairs.

If H has bounded VC2 dimension,Mf(ε) ⩽ twr(ε−C) for sane f (and
this is best possible).

We prove a cylinder regularity lemma for hypergraphs.

If H has bounded VCr dimension, then it has a regularity partition
with only Ackermannr parts (and this is best possible).

Cylinder regularity at multiple uniformities simultaneously.

Traditional proofs don’t extend, because these VCr notions don’t
support a version of Haussler’s packing lemma.

Unifying theme: “Common refinement” is the enemy. Work with
unconventional partitions for as long as possible.
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Conclusion

There are several natural notions of simple hypergraphs.
They interact naturally with regularity, and characterize when we can
get qualitative/quantitative improvements on regularity lemmas.
They control how and when a hypergraph “looks like” a
lower-uniformity hypergraph.

Proposition (Strange induced counting lemma)

If (X,Y,Z) is weakly δ-regular and d(X,Y,Z) ∈ [ε,1− ε], then it has an
induced copy of any fixed tripartite T with one part a singleton.

Proof: If not, it has bounded VC1 dimension, hence an
ε
2 -homogeneous partition. Every homogeneous (X

′, Y ′, Z′) satisfies

[0, ε2 ] ∪ [1− ε
2 ,1] ∋ d(X′, Y ′, Z′) = d(X,Y,Z) ± δ.

This should be false! Weak regularity should be too weak, and the
parts can’t play symmetric roles.

Conjecture: We can take δ = poly(ε).
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Thank you!
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