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Fundamental Measures on Matrices
Let A be an m × n matrix, with m ≤ n.

• The rank of A is the maximal number of lin. indep. columns.
• The girth of A is the minimal number of lin. dep. columns.
• The probabilistic girth of A is the maximal fraction of

columns that are lin. indep. with high probability:

girth*(A) = sup{p ∈ [0,1] :A[p] has lin. indep. cols. w.h.p.}

where A[p] = A with each column picked independently
with probability p.
• A is high-girth if

girth*(A) ∼ rank(A)/n

n( )
≈ pn

pn
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High-Girth Matrices

Why we care
Fact: A linear code C with
Parity-Check Matrix A achieves
capacity on the BEC(p)⇐⇒ A
is high-girth.

0 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0
? ? ? ? ? ? ? ?

( • • • • • • • • • • • • • • • • )• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •

Over R, girth is also called
spark, and is related to sparse
recovery [Donoho-Elad].

How to construct
Over F2, a random construction
works (take A to have iid Ber(1

2)
entries).
Let F be a field and

Gn =

(
1 1
0 1

)⊗ log2 n

Polar codes and Reed-Muller
codes are high-girth
submatrices of Gn. How about
other submatrices?
[Arıkan, Kumar-Pfister, Kudekar
et al.]
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The conditional rank (COR) process

Our construction is inspired by polar codes, but replaces an
information-theoretic measure with a linear-algebraic measure.

G(i)
n = first i rows of Gn

Basic quantity:
E(rankF(G

(i)
n [p]))

We define the conditional rank values as

ρn,p(i) = E(rankF(G
(i)
n [p]))− E(rankF(G

(i−1)
n [p]))

= P(i th row of Gn[p] indep. of G(i−1)
n [p])

Properties of ρn,p(1), . . . , ρn,p(n)? As we will see, leaves of a
branching process.
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The COR process
ρn,p(i) = P(rankF increase at row i)

G2 =

(
1 1
0 1

)
ρ2,p(1) = 2p − p2

ρ2,p(2) = p2

Theorem
The COR values are
the leaves of the
branching process

x 7→ (2x − x2, x2)

initialized at x = p.

p

ρ(1) ρ(2) ρ(3) ρ(4) ρ(5) ρ(6) ρ(7) ρ(8)

p2

2p2−p4

2x−x2 x2

2x−x2 x2 2x−x2 x2

Note 1: This is true over any field!
Note 2: This is the Bhattacharyya (Z ) process for the BEC.
Note 3: An upper bound for the Z process on any channel.
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Consequences using Polarization Results

1. The COR process polarizes:

• pn (high) values tend to 1
• (1− p)n (low) values tend to 0

2. Take the high rows as a matrix An. Then An is high-girth
over any field.

X Idea of Proof: An[p] has only rows that are likely to be
linearly independent of previous rows.

3. The code with PCM An achieves capacity on the BEC(p).
(In fact, on the symmetric erasure channel over any field.)
This gives a new proof that polar codes achieve capacity
on the BEC.

4. Working over R, these COR matrices are binary matrices
with good Sparse Recovery properties (can distinguish
most pairs of sparse patterns).
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Open Problems

1. We can prove that COR codes achieve a rate

1− 2
√

p(1− p)

≤ 1− H(p)

on the BSC(p).

Can we get a better rate?

2. This proof exploits relationship between COR codes and
polar codes. Can we prove it from the high-girth property?

⇐⇒ Some code achieves a rate on the BEC; does this
imply achieving another rate on the BSC?

3. What about error channels over larger fields?
AWGN or other continuous channels?
Polarization over other combinatorial objects?
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Thank you!
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