High-Girth Matrices and Polarization

Emmanuel Abbe Yuval Wigderson

Princeton University

ISIT 2015

Fundamental Measures on Matrices

Let A be an $m \times n$ matrix, with $m \leq n$.

Fundamental Measures on Matrices

Let A be an $m \times n$ matrix, with $m \leq n$.

- The rank of A is the maximal number of lin. indep. columns.

Fundamental Measures on Matrices

Let A be an $m \times n$ matrix, with $m \leq n$.

- The rank of A is the maximal number of lin. indep. columns.
- The girth of A is the minimal number of lin. dep. columns.

Fundamental Measures on Matrices

Let A be an $m \times n$ matrix, with $m \leq n$.

- The rank of A is the maximal number of lin. indep. columns.
- The girth of A is the minimal number of lin. dep. columns.
- The probabilistic girth of A is the maximal fraction of columns that are lin. indep. with high probability: $\operatorname{girth}_{*}(A)=\sup \{p \in[0,1]: A[p]$ has lin. indep. cols. w.h.p. $\}$ where $A[p]=A$ with each column picked independently with probability p.

Fundamental Measures on Matrices

Let A be an $m \times n$ matrix, with $m \leq n$.

- The rank of A is the maximal number of lin. indep. columns.
- The girth of A is the minimal number of lin. dep. columns.
- The probabilistic girth of A is the maximal fraction of columns that are lin. indep. with high probability:
$\operatorname{girth}_{*}(A)=\sup \{p \in[0,1]: A[p]$ has lin. indep. cols. w.h.p. $\}$
where $A[p]=A$ with each column picked independently with probability p.
- A is high-girth if $\operatorname{girth}_{*}(A) \sim \operatorname{rank}(A) / n$

Fundamental Measures on Matrices

Let A be an $m \times n$ matrix, with $m \leq n$.

- The rank of A is the maximal number of lin. indep. columns.
- The girth of A is the minimal number of lin. dep. columns.
- The probabilistic girth of A is the maximal fraction of columns that are lin. indep. with high probability:
$\operatorname{girth}_{*}(A)=\sup \{p \in[0,1]: A[p]$ has lin. indep. cols. w.h.p. $\}$
where $A[p]=A$ with each column picked independently with probability p.
- A is high-girth if $\operatorname{girth}_{*}(A) \sim \operatorname{rank}(A) / n$

n

$p n$

High-Girth Matrices

High-Girth Matrices

Why we care
How to construct

High-Girth Matrices

Why we care

How to construct

Fact: A linear code C with
Parity-Check Matrix A achieves capacity on the $\operatorname{BEC}(p) \Longleftrightarrow A$ is high-girth.

High-Girth Matrices

Why we care

How to construct
Fact: A linear code C with
Parity-Check Matrix A achieves capacity on the $\operatorname{BEC}(p) \Longleftrightarrow A$ is high-girth.

$$
0100101000110110
$$

High-Girth Matrices

Why we care

How to construct
Fact: A linear code C with
Parity-Check Matrix A achieves capacity on the $\operatorname{BEC}(p) \Longleftrightarrow A$ is high-girth.

$$
\begin{gathered}
0100101000110110 \\
? \quad ? ? ? \quad ? ? \text { ? ? }
\end{gathered}
$$

High-Girth Matrices

Why we care

How to construct

Fact: A linear code C with
Parity-Check Matrix A achieves capacity on the $\operatorname{BEC}(p) \Longleftrightarrow A$ is high-girth.

```
0100101000110110
    ? ??? ?? ??
```


High-Girth Matrices

Why we care
Fact: A linear code C with
Parity-Check Matrix A achieves capacity on the $\operatorname{BEC}(p) \Longleftrightarrow A$ is high-girth.

How to construct

High-Girth Matrices

Why we care

How to construct
Fact: A linear code C with
Parity-Check Matrix A achieves capacity on the $\operatorname{BEC}(p) \Longleftrightarrow A$ is high-girth.

Over \mathbb{R}, girth is also called spark, and is related to sparse recovery [Donoho-Elad].

High-Girth Matrices

Why we care

Fact: A linear code C with
Parity-Check Matrix A achieves capacity on the $\operatorname{BEC}(p) \Longleftrightarrow A$ is high-girth.

Over \mathbb{R}, girth is also called spark, and is related to sparse recovery [Donoho-Elad].

How to construct
Over \mathbb{F}_{2}, a random construction works (take A to have iid $\operatorname{Ber}\left(\frac{1}{2}\right)$ entries).

High-Girth Matrices

Why we care

Fact: A linear code C with
Parity-Check Matrix A achieves capacity on the $\operatorname{BEC}(p) \Longleftrightarrow A$ is high-girth.

Over \mathbb{R}, girth is also called spark, and is related to sparse recovery [Donoho-Elad].

How to construct
Over \mathbb{F}_{2}, a random construction works (take A to have iid $\operatorname{Ber}\left(\frac{1}{2}\right)$ entries).
Let \mathbb{F} be a field and

$$
G_{n}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{\otimes \log _{2} n}
$$

High-Girth Matrices

Why we care

Fact: A linear code C with
Parity-Check Matrix A achieves capacity on the $\operatorname{BEC}(p) \Longleftrightarrow A$ is high-girth.

Over \mathbb{R}, girth is also called spark, and is related to sparse recovery [Donoho-Elad].

How to construct

Over \mathbb{F}_{2}, a random construction works (take A to have iid $\operatorname{Ber}\left(\frac{1}{2}\right)$ entries).
Let \mathbb{F} be a field and

$$
G_{n}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{\otimes \log _{2} n}
$$

Polar codes and Reed-Muller codes are high-girth submatrices of G_{n}. How about other submatrices?
[Arıkan, Kumar-Pfister, Kudekar et al.]

The conditional rank (COR) process

Our construction is inspired by polar codes, but replaces an information-theoretic measure with a linear-algebraic measure.

The conditional rank (COR) process

Our construction is inspired by polar codes, but replaces an information-theoretic measure with a linear-algebraic measure.

$$
G_{n}^{(i)}=\text { first } i \text { rows of } G_{n}
$$

The conditional rank (COR) process

Our construction is inspired by polar codes, but replaces an information-theoretic measure with a linear-algebraic measure.

$$
\begin{aligned}
& G_{n}^{(i)}=\text { first } i \text { rows of } G_{n} \\
& \qquad G_{n}^{(i)}[p]
\end{aligned}
$$

The conditional rank (COR) process

Our construction is inspired by polar codes, but replaces an information-theoretic measure with a linear-algebraic measure.

$$
G_{n}^{(i)}=\text { first } i \text { rows of } G_{n}
$$

$$
\operatorname{rank}_{\mathbb{F}}\left(G_{n}^{(i)}[p]\right)
$$

The conditional rank (COR) process

Our construction is inspired by polar codes, but replaces an information-theoretic measure with a linear-algebraic measure.

$$
G_{n}^{(i)}=\text { first } i \text { rows of } G_{n}
$$

Basic quantity:

$$
\mathbb{E}\left(\operatorname{rank}_{\mathbb{F}}\left(G_{n}^{(i)}[p]\right)\right)
$$

The conditional rank (COR) process

Our construction is inspired by polar codes, but replaces an information-theoretic measure with a linear-algebraic measure.

$$
G_{n}^{(i)}=\text { first } i \text { rows of } G_{n}
$$

Basic quantity:

$$
\mathbb{E}\left(\operatorname{rank}_{\mathbb{F}}\left(G_{n}^{(i)}[p]\right)\right)
$$

We define the conditional rank values as

$$
\rho_{n, p}(i)=\mathbb{E}\left(\operatorname{rank}_{\mathbb{F}}\left(G_{n}^{(i)}[p]\right)\right)-\mathbb{E}\left(\operatorname{rank}_{\mathbb{F}}\left(G_{n}^{(i-1)}[p]\right)\right)
$$

The conditional rank (COR) process

Our construction is inspired by polar codes, but replaces an information-theoretic measure with a linear-algebraic measure.

$$
G_{n}^{(i)}=\text { first } i \text { rows of } G_{n}
$$

Basic quantity:

$$
\mathbb{E}\left(\operatorname{rank}_{\mathbb{F}}\left(G_{n}^{(i)}[p]\right)\right)
$$

We define the conditional rank values as

$$
\begin{aligned}
\rho_{n, p}(i) & =\mathbb{E}\left(\operatorname{rank}_{\mathbb{F}}\left(G_{n}^{(i)}[p]\right)\right)-\mathbb{E}\left(\operatorname{rank}_{\mathbb{F}}\left(G_{n}^{(i-1)}[p]\right)\right) \\
& =\mathbb{P}\left(\text { ith row of } G_{n}[p] \text { indep. of } G_{n}^{(i-1)}[p]\right)
\end{aligned}
$$

The conditional rank (COR) process

Our construction is inspired by polar codes, but replaces an information-theoretic measure with a linear-algebraic measure.

$$
G_{n}^{(i)}=\text { first } i \text { rows of } G_{n}
$$

Basic quantity:

$$
\mathbb{E}\left(\operatorname{rank}_{\mathbb{F}}\left(G_{n}^{(i)}[p]\right)\right)
$$

We define the conditional rank values as

$$
\begin{aligned}
\rho_{n, p}(i) & =\mathbb{E}\left(\operatorname{rank}_{\mathbb{F}}\left(G_{n}^{(i)}[p]\right)\right)-\mathbb{E}\left(\operatorname{rank}_{\mathbb{F}}\left(G_{n}^{(i-1)}[p]\right)\right) \\
& =\mathbb{P}\left(\text { ith row of } G_{n}[p] \text { indep. of } G_{n}^{(i-1)}[p]\right)
\end{aligned}
$$

Properties of $\rho_{n, p}(1), \ldots, \rho_{n, p}(n)$?

The conditional rank (COR) process

Our construction is inspired by polar codes, but replaces an information-theoretic measure with a linear-algebraic measure.

$$
G_{n}^{(i)}=\text { first } i \text { rows of } G_{n}
$$

Basic quantity:

$$
\mathbb{E}\left(\operatorname{rank}_{\mathbb{F}}\left(G_{n}^{(i)}[p]\right)\right)
$$

We define the conditional rank values as

$$
\begin{aligned}
\rho_{n, p}(i) & =\mathbb{E}\left(\operatorname{rank}_{\mathbb{F}}\left(G_{n}^{(i)}[p]\right)\right)-\mathbb{E}\left(\operatorname{rank}_{\mathbb{F}}\left(G_{n}^{(i-1)}[p]\right)\right) \\
& =\mathbb{P}\left(i \text { th row of } G_{n}[p] \text { indep. of } G_{n}^{(i-1)}[p]\right)
\end{aligned}
$$

Properties of $\rho_{n, p}(1), \ldots, \rho_{n, p}(n)$? As we will see, leaves of a branching process.

The COR process

$$
\rho_{n, p}(i)=\mathbb{P}\left(\text { rank }_{\mathbb{F}} \text { increase at row } i\right)
$$

The COR process

$$
\begin{aligned}
& \quad \rho_{n, p}(i)=\mathbb{P}\left(\text { rank }_{\mathbb{F}} \text { increase at row } i\right) \\
& G_{2}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

The COR process

$$
\begin{gathered}
\rho_{n, p}(i)=\mathbb{P}\left(\text { rank }_{\mathbb{F}} \text { increase at row } i\right) \\
G_{2}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \rho_{2, p}(1)=2 p-p^{2}
\end{gathered}
$$

The COR process

$$
\begin{gathered}
\rho_{n, p}(i)=\mathbb{P}\left(\text { rank }_{\mathbb{F}} \text { increase at row } i\right) \\
G_{2}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
\rho_{2, p}(1)=2 p-p^{2} \\
\rho_{2, p}(2)=p^{2}
\end{gathered}
$$

The COR process

$$
\begin{gathered}
\rho_{n, p}(i)=\mathbb{P}\left(\text { rank }_{\mathbb{F}} \text { increase at row } i\right) \\
G_{2}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \begin{array}{l}
\rho_{2, p}(1)=2 p-p^{2} \\
\rho_{2, p}(2)=p^{2}
\end{array}
\end{gathered}
$$

Theorem
The COR values are
the leaves of the
branching process

$$
x \mapsto\left(2 x-x^{2}, x^{2}\right)
$$

initialized at $x=p$.

The COR process

$$
\begin{gathered}
\rho_{n, p}(i)=\mathbb{P}\left(\text { rank }_{\mathbb{F}} \text { increase at row } i\right) \\
G_{2}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
\rho_{2, p}(1)=2 p-p^{2} \\
\rho_{2, p}(2)=p^{2}
\end{gathered}
$$

Theorem
The COR values are the leaves of the branching process

$$
x \mapsto\left(2 x-x^{2}, x^{2}\right)
$$

initialized at $x=p$.

The COR process

$$
\begin{gathered}
\rho_{n, p}(i)=\mathbb{P}\left(\text { rank }_{\mathbb{F}} \text { increase at row } i\right) \\
G_{2}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \begin{array}{l}
\rho_{2, p}(1)=2 p-p^{2} \\
\rho_{2, p}(2)=p^{2}
\end{array}
\end{gathered}
$$

Theorem
The COR values are the leaves of the branching process

$$
x \mapsto\left(2 x-x^{2}, x^{2}\right)
$$

initialized at $x=p$.

The COR process

$$
\begin{gathered}
\rho_{n, p}(i)=\mathbb{P}\left(\text { rank }_{\mathbb{F}} \text { increase at row } i\right) \\
G_{2}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \rho_{2, p}(1)=2 p-p^{2} \\
\rho_{2, p}(2)=p^{2}
\end{gathered}
$$

Theorem
The COR values are the leaves of the branching process

$$
x \mapsto\left(2 x-x^{2}, x^{2}\right)
$$

initialized at $x=p$.

The COR process

$$
\begin{gathered}
\rho_{n, p}(i)=\mathbb{P}\left(\text { rank }_{\mathbb{F}} \text { increase at row } i\right) \\
G_{2}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \rho_{2, p}(1)=2 p-p^{2} \\
\rho_{2, p}(2)=p^{2}
\end{gathered}
$$

Theorem
The COR values are the leaves of the
branching process

$$
x \mapsto\left(2 x-x^{2}, x^{2}\right)
$$

initialized at $x=p$.

Note 1: This is true over any field!

The COR process

$$
\begin{gathered}
\rho_{n, p}(i)=\mathbb{P}\left(\text { rank }_{\mathbb{F}} \text { increase at row } i\right) \\
G_{2}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \begin{array}{l}
\rho_{2, p}(1)=2 p-p^{2} \\
\rho_{2, p}(2)=p^{2}
\end{array}
\end{gathered}
$$

Theorem
The COR values are the leaves of the
branching process

$$
x \mapsto\left(2 x-x^{2}, x^{2}\right)
$$

initialized at $x=p$.

Note 1: This is true over any field!
Note 2: This is the Bhattacharyya (Z) process for the BEC.

The COR process

$$
\begin{gathered}
\rho_{n, p}(i)=\mathbb{P}\left(\text { rank }_{\mathbb{F}} \text { increase at row } i\right) \\
G_{2}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \begin{array}{l}
\rho_{2, p}(1)=2 p-p^{2} \\
\rho_{2, p}(2)=p^{2}
\end{array}
\end{gathered}
$$

Theorem
The COR values are the leaves of the branching process

$$
x \mapsto\left(2 x-x^{2}, x^{2}\right)
$$

initialized at $x=p$.

Note 1: This is true over any field!
Note 2: This is the Bhattacharyya (Z) process for the BEC.
Note 3: An upper bound for the Z process on any channel.

Consequences using Polarization Results

Consequences using Polarization Results

1. The COR process polarizes:

- pn (high) values tend to 1
- $(1-p) n$ (low) values tend to 0

Consequences using Polarization Results

1. The COR process polarizes:

- pn (high) values tend to 1
- $(1-p) n$ (low) values tend to 0

2. Take the high rows as a matrix A_{n}. Then A_{n} is high-girth over any field.

Consequences using Polarization Results

1. The COR process polarizes:

- pn (high) values tend to 1
- $(1-p) n$ (low) values tend to 0

2. Take the high rows as a matrix A_{n}. Then A_{n} is high-girth over any field.
\checkmark Idea of Proof: $A_{n}[p]$ has only rows that are likely to be linearly independent of previous rows.

Consequences using Polarization Results

1. The COR process polarizes:

- pn (high) values tend to 1
- $(1-p) n$ (low) values tend to 0

2. Take the high rows as a matrix A_{n}. Then A_{n} is high-girth over any field.
\checkmark Idea of Proof: $A_{n}[p]$ has only rows that are likely to be linearly independent of previous rows.
3. The code with PCM A_{n} achieves capacity on the $\operatorname{BEC}(p)$. (In fact, on the symmetric erasure channel over any field.) This gives a new proof that polar codes achieve capacity on the BEC.

Consequences using Polarization Results

1. The COR process polarizes:

- pn (high) values tend to 1
- $(1-p) n$ (low) values tend to 0

2. Take the high rows as a matrix A_{n}. Then A_{n} is high-girth over any field.
\checkmark Idea of Proof: $A_{n}[p]$ has only rows that are likely to be linearly independent of previous rows.
3. The code with PCM A_{n} achieves capacity on the $\operatorname{BEC}(p)$. (In fact, on the symmetric erasure channel over any field.) This gives a new proof that polar codes achieve capacity on the BEC.
4. Working over \mathbb{R}, these COR matrices are binary matrices with good Sparse Recovery properties (can distinguish most pairs of sparse patterns).

Open Problems

Open Problems

1. We can prove that COR codes achieve a rate

$$
1-2 \sqrt{p(1-p)}
$$

on the $\operatorname{BSC}(p)$.

Open Problems

1. We can prove that COR codes achieve a rate

$$
1-2 \sqrt{p(1-p)} \leq 1-H(p)
$$

on the $\operatorname{BSC}(p)$.

Open Problems

1. We can prove that COR codes achieve a rate

$$
1-2 \sqrt{p(1-p)} \leq 1-H(p)
$$

on the $\operatorname{BSC}(p)$. Can we get a better rate?

Open Problems

1. We can prove that COR codes achieve a rate

$$
1-2 \sqrt{p(1-p)} \leq 1-H(p)
$$

on the $\operatorname{BSC}(p)$. Can we get a better rate?
2. This proof exploits relationship between COR codes and polar codes. Can we prove it from the high-girth property?

Open Problems

1. We can prove that COR codes achieve a rate

$$
1-2 \sqrt{p(1-p)} \leq 1-H(p)
$$

on the $\operatorname{BSC}(p)$. Can we get a better rate?
2. This proof exploits relationship between COR codes and polar codes. Can we prove it from the high-girth property? \Longleftrightarrow Some code achieves a rate on the BEC; does this imply achieving another rate on the BSC?

Open Problems

1. We can prove that COR codes achieve a rate

$$
1-2 \sqrt{p(1-p)} \leq 1-H(p)
$$

on the $\operatorname{BSC}(p)$. Can we get a better rate?
2. This proof exploits relationship between COR codes and polar codes. Can we prove it from the high-girth property? \Longleftrightarrow Some code achieves a rate on the BEC; does this imply achieving another rate on the BSC?
3. What about error channels over larger fields?

AWGN or other continuous channels?
Polarization over other combinatorial objects?

Thank you!

