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Spectral graph theory

The adjacency matrix of an n-vertex graph G is the n × nmatrix A
with Aij = 0 if ij /∈ E(G) and Aij = 1 otherwise.
Amazing fact: (graph-theoretic) properties of G are related to
(linear-algebraic) properties of A.

Definition
A weighted adjacency matrix (WAM) for G is a symmetric matrixW
withWij = 0 if ij /∈ E(G).

Many connections between graph theory and linear algebra hold
for arbitrary WAMs. The difficulty is picking a good weighting.
Example: Huang’s proof (2019) of the sensitivity conjecture used a
well-known connection between ∆(G) and λmax(W), for a
carefully-chosen WAM of the hypercube graph.
General problem: Understand the space of all WAMs of G, and
optimize some quantity over this space.
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The ratio bound

Theorem (Hoffman (unpublished))
Let G be a regular n-vertex graph with adjacency matrix A . Then

α(G) ⩽
∣∣∣∣ λmin(A )

λmin(A ) − λmax(A )

∣∣∣∣n.

assuming all rows of W have the same sum.

The ratio bound is surprisingly powerful, e.g. it gives a short proof
of the Erdős–Ko–Rado theorem.
Wilson (1984) used the weighted ratio bound to prove a vast
generalization of the Erdős–Ko–Rado theorem.
Davies (2024) used the weighted ratio bound to study odd
distances in colorings of ℝ2.
The main difficulty is picking a good weighting.
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Optimizing the ratio bound
Theorem (Hoffman (unpublished), Lovász (1979))
Let G be an n-vertex graph with weighted adjacency matrix W. Then

α(G) ⩽
∣∣∣∣ λmin(W)

λmin(W) − λmax(W)

∣∣∣∣n,
assuming all rows of W have the same sum.

An optimization problem: minimize
∣∣∣ λmin
λmin−λmax

∣∣∣ over all WAMs.
For highly symmetric graphs, this optimization is pretty easy.

• Lovász (1979): If G is edge-transitive, the optimum is attained
on the unweighted adjacency matrix.

• More generally, one can work in the Bose–Mesner algebra and
use representation theory to find the optimum.

Even for general graphs, this optimization is a semidefinite
program, so the optimum is efficiently computable.

Introduction The limits of the inertia bound Proof sketch



Optimizing the ratio bound
Theorem (Hoffman (unpublished), Lovász (1979))
Let G be an n-vertex graph with weighted adjacency matrix W. Then

α(G) ⩽
∣∣∣∣ λmin(W)

λmin(W) − λmax(W)

∣∣∣∣n,
assuming all rows of W have the same sum.

An optimization problem: minimize
∣∣∣ λmin
λmin−λmax

∣∣∣ over all WAMs.

For highly symmetric graphs, this optimization is pretty easy.

• Lovász (1979): If G is edge-transitive, the optimum is attained
on the unweighted adjacency matrix.

• More generally, one can work in the Bose–Mesner algebra and
use representation theory to find the optimum.

Even for general graphs, this optimization is a semidefinite
program, so the optimum is efficiently computable.

Introduction The limits of the inertia bound Proof sketch



Optimizing the ratio bound
Theorem (Hoffman (unpublished), Lovász (1979))
Let G be an n-vertex graph with weighted adjacency matrix W. Then

α(G) ⩽
∣∣∣∣ λmin(W)

λmin(W) − λmax(W)

∣∣∣∣n,
assuming all rows of W have the same sum.

An optimization problem: minimize
∣∣∣ λmin
λmin−λmax

∣∣∣ over all WAMs.
For highly symmetric graphs, this optimization is pretty easy.

• Lovász (1979): If G is edge-transitive, the optimum is attained
on the unweighted adjacency matrix.

• More generally, one can work in the Bose–Mesner algebra and
use representation theory to find the optimum.

Even for general graphs, this optimization is a semidefinite
program, so the optimum is efficiently computable.

Introduction The limits of the inertia bound Proof sketch



Optimizing the ratio bound
Theorem (Hoffman (unpublished), Lovász (1979))
Let G be an n-vertex graph with weighted adjacency matrix W. Then

α(G) ⩽
∣∣∣∣ λmin(W)

λmin(W) − λmax(W)

∣∣∣∣n,
assuming all rows of W have the same sum.

An optimization problem: minimize
∣∣∣ λmin
λmin−λmax

∣∣∣ over all WAMs.
For highly symmetric graphs, this optimization is pretty easy.

• Lovász (1979): If G is edge-transitive, the optimum is attained
on the unweighted adjacency matrix.

• More generally, one can work in the Bose–Mesner algebra and
use representation theory to find the optimum.

Even for general graphs, this optimization is a semidefinite
program, so the optimum is efficiently computable.

Introduction The limits of the inertia bound Proof sketch



Optimizing the ratio bound
Theorem (Hoffman (unpublished), Lovász (1979))
Let G be an n-vertex graph with weighted adjacency matrix W. Then

α(G) ⩽
∣∣∣∣ λmin(W)

λmin(W) − λmax(W)

∣∣∣∣n,
assuming all rows of W have the same sum.

An optimization problem: minimize
∣∣∣ λmin
λmin−λmax

∣∣∣ over all WAMs.
For highly symmetric graphs, this optimization is pretty easy.

• Lovász (1979): If G is edge-transitive, the optimum is attained
on the unweighted adjacency matrix.

• More generally, one can work in the Bose–Mesner algebra and
use representation theory to find the optimum.

Even for general graphs, this optimization is a semidefinite
program, so the optimum is efficiently computable.

Introduction The limits of the inertia bound Proof sketch



Optimizing the ratio bound
Theorem (Hoffman (unpublished), Lovász (1979))
Let G be an n-vertex graph with weighted adjacency matrix W. Then

α(G) ⩽
∣∣∣∣ λmin(W)

λmin(W) − λmax(W)

∣∣∣∣n,
assuming all rows of W have the same sum.

An optimization problem: minimize
∣∣∣ λmin
λmin−λmax

∣∣∣ over all WAMs.
For highly symmetric graphs, this optimization is pretty easy.

• Lovász (1979): If G is edge-transitive, the optimum is attained
on the unweighted adjacency matrix.

• More generally, one can work in the Bose–Mesner algebra and
use representation theory to find the optimum.

Even for general graphs, this optimization is a semidefinite
program, so the optimum is efficiently computable.

Introduction The limits of the inertia bound Proof sketch



The inertia bound

Let n+(M) denote the number of non-negative eigenvalues ofM.

Theorem (Cvetković (1971))
If A is the adjacency matrix of G, then

α(G) ⩽ n+(A ).

Proof 1.
Let N ⊆ ℝn be the span of the eigenvectors of A corresponding to
negative eigenvalues. Then vTAv < 0 for all 0 ̸= v ∈ N.
Let S be a maximum independent set of G, and let Z ⊆ ℝn consist of
all vectors supported in S. Then vTAv = 0 for all v ∈ Z. Therefore,

n ⩾ dimN+ dimZ = (n − n+(A)) + α(G).

Proof 2.
The independent set S yields an all-zeroes principal minorM of A.
Cauchy’s interlacing formula implies n+(A) ⩾ n+(M) = α(G).

Introduction The limits of the inertia bound Proof sketch



The inertia bound
Let n+(M) denote the number of non-negative eigenvalues ofM.

Theorem (Cvetković (1971))
If A is the adjacency matrix of G, then

α(G) ⩽ n+(A ).

Proof 1.
Let N ⊆ ℝn be the span of the eigenvectors of A corresponding to
negative eigenvalues. Then vTAv < 0 for all 0 ̸= v ∈ N.
Let S be a maximum independent set of G, and let Z ⊆ ℝn consist of
all vectors supported in S. Then vTAv = 0 for all v ∈ Z. Therefore,

n ⩾ dimN+ dimZ = (n − n+(A)) + α(G).

Proof 2.
The independent set S yields an all-zeroes principal minorM of A.
Cauchy’s interlacing formula implies n+(A) ⩾ n+(M) = α(G).

Introduction The limits of the inertia bound Proof sketch



The inertia bound
Let n+(M) denote the number of non-negative eigenvalues ofM.

Theorem (Cvetković (1971))
If A is the adjacency matrix of G, then

α(G) ⩽ n+(A ).

Proof 1.
Let N ⊆ ℝn be the span of the eigenvectors of A corresponding to
negative eigenvalues. Then vTAv < 0 for all 0 ̸= v ∈ N.
Let S be a maximum independent set of G, and let Z ⊆ ℝn consist of
all vectors supported in S. Then vTAv = 0 for all v ∈ Z. Therefore,

n ⩾ dimN+ dimZ = (n − n+(A)) + α(G).

Proof 2.
The independent set S yields an all-zeroes principal minorM of A.
Cauchy’s interlacing formula implies n+(A) ⩾ n+(M) = α(G).

Introduction The limits of the inertia bound Proof sketch



The inertia bound
Let n+(M) denote the number of non-negative eigenvalues ofM.

Theorem (Cvetković (1971))
If A is the adjacency matrix of G, then

α(G) ⩽ n+(A ).

Proof 1.

Let N ⊆ ℝn be the span of the eigenvectors of A corresponding to
negative eigenvalues. Then vTAv < 0 for all 0 ̸= v ∈ N.
Let S be a maximum independent set of G, and let Z ⊆ ℝn consist of
all vectors supported in S. Then vTAv = 0 for all v ∈ Z. Therefore,

n ⩾ dimN+ dimZ = (n − n+(A)) + α(G).

Proof 2.
The independent set S yields an all-zeroes principal minorM of A.
Cauchy’s interlacing formula implies n+(A) ⩾ n+(M) = α(G).

Introduction The limits of the inertia bound Proof sketch



The inertia bound
Let n+(M) denote the number of non-negative eigenvalues ofM.

Theorem (Cvetković (1971))
If A is the adjacency matrix of G, then

α(G) ⩽ n+(A ).

Proof 1.
Let N ⊆ ℝn be the span of the eigenvectors of A corresponding to
negative eigenvalues.

Then vTAv < 0 for all 0 ̸= v ∈ N.
Let S be a maximum independent set of G, and let Z ⊆ ℝn consist of
all vectors supported in S. Then vTAv = 0 for all v ∈ Z. Therefore,

n ⩾ dimN+ dimZ = (n − n+(A)) + α(G).

Proof 2.
The independent set S yields an all-zeroes principal minorM of A.
Cauchy’s interlacing formula implies n+(A) ⩾ n+(M) = α(G).

Introduction The limits of the inertia bound Proof sketch



The inertia bound
Let n+(M) denote the number of non-negative eigenvalues ofM.

Theorem (Cvetković (1971))
If A is the adjacency matrix of G, then

α(G) ⩽ n+(A ).

Proof 1.
Let N ⊆ ℝn be the span of the eigenvectors of A corresponding to
negative eigenvalues. Then vTAv < 0 for all 0 ̸= v ∈ N.

Let S be a maximum independent set of G, and let Z ⊆ ℝn consist of
all vectors supported in S. Then vTAv = 0 for all v ∈ Z. Therefore,

n ⩾ dimN+ dimZ = (n − n+(A)) + α(G).

Proof 2.
The independent set S yields an all-zeroes principal minorM of A.
Cauchy’s interlacing formula implies n+(A) ⩾ n+(M) = α(G).

Introduction The limits of the inertia bound Proof sketch



The inertia bound
Let n+(M) denote the number of non-negative eigenvalues ofM.

Theorem (Cvetković (1971))
If A is the adjacency matrix of G, then

α(G) ⩽ n+(A ).

Proof 1.
Let N ⊆ ℝn be the span of the eigenvectors of A corresponding to
negative eigenvalues. Then vTAv < 0 for all 0 ̸= v ∈ N.
Let S be a maximum independent set of G, and let Z ⊆ ℝn consist of
all vectors supported in S.

Then vTAv = 0 for all v ∈ Z. Therefore,

n ⩾ dimN+ dimZ = (n − n+(A)) + α(G).

Proof 2.
The independent set S yields an all-zeroes principal minorM of A.
Cauchy’s interlacing formula implies n+(A) ⩾ n+(M) = α(G).

Introduction The limits of the inertia bound Proof sketch



The inertia bound
Let n+(M) denote the number of non-negative eigenvalues ofM.

Theorem (Cvetković (1971))
If A is the adjacency matrix of G, then

α(G) ⩽ n+(A ).

Proof 1.
Let N ⊆ ℝn be the span of the eigenvectors of A corresponding to
negative eigenvalues. Then vTAv < 0 for all 0 ̸= v ∈ N.
Let S be a maximum independent set of G, and let Z ⊆ ℝn consist of
all vectors supported in S. Then vTAv = 0 for all v ∈ Z.

Therefore,

n ⩾ dimN+ dimZ = (n − n+(A)) + α(G).

Proof 2.
The independent set S yields an all-zeroes principal minorM of A.
Cauchy’s interlacing formula implies n+(A) ⩾ n+(M) = α(G).

Introduction The limits of the inertia bound Proof sketch



The inertia bound
Let n+(M) denote the number of non-negative eigenvalues ofM.

Theorem (Cvetković (1971))
If A is the adjacency matrix of G, then

α(G) ⩽ n+(A ).

Proof 1.
Let N ⊆ ℝn be the span of the eigenvectors of A corresponding to
negative eigenvalues. Then vTAv < 0 for all 0 ̸= v ∈ N.
Let S be a maximum independent set of G, and let Z ⊆ ℝn consist of
all vectors supported in S. Then vTAv = 0 for all v ∈ Z.

Therefore,

n ⩾ dimN+ dimZ = (n − n+(A)) + α(G).

Proof 2.
The independent set S yields an all-zeroes principal minorM of A.
Cauchy’s interlacing formula implies n+(A) ⩾ n+(M) = α(G).

Introduction The limits of the inertia bound Proof sketch



The inertia bound
Let n+(M) denote the number of non-negative eigenvalues ofM.

Theorem (Cvetković (1971))
If A is the adjacency matrix of G, then

α(G) ⩽ n+(A ).

Proof 1.
Let N ⊆ ℝn be the span of the eigenvectors of A corresponding to
negative eigenvalues. Then vTAv < 0 for all 0 ̸= v ∈ N.
Let S be a maximum independent set of G, and let Z ⊆ ℝn consist of
all vectors supported in S. Then vTAv = 0 for all v ∈ Z. Therefore,

n ⩾ dimN+ dimZ

= (n − n+(A)) + α(G).

Proof 2.
The independent set S yields an all-zeroes principal minorM of A.
Cauchy’s interlacing formula implies n+(A) ⩾ n+(M) = α(G).

Introduction The limits of the inertia bound Proof sketch



The inertia bound
Let n+(M) denote the number of non-negative eigenvalues ofM.

Theorem (Cvetković (1971))
If A is the adjacency matrix of G, then

α(G) ⩽ n+(A ).

Proof 1.
Let N ⊆ ℝn be the span of the eigenvectors of A corresponding to
negative eigenvalues. Then vTAv < 0 for all 0 ̸= v ∈ N.
Let S be a maximum independent set of G, and let Z ⊆ ℝn consist of
all vectors supported in S. Then vTAv = 0 for all v ∈ Z. Therefore,

n ⩾ dimN+ dimZ = (n − n+(A)) + α(G).

Proof 2.
The independent set S yields an all-zeroes principal minorM of A.
Cauchy’s interlacing formula implies n+(A) ⩾ n+(M) = α(G).

Introduction The limits of the inertia bound Proof sketch



The inertia bound
Let n+(M) denote the number of non-negative eigenvalues ofM.

Theorem (Cvetković (1971))
If A is the adjacency matrix of G, then

α(G) ⩽ n+(A ).

Proof 1.
Let N ⊆ ℝn be the span of the eigenvectors of A corresponding to
negative eigenvalues. Then vTAv < 0 for all 0 ̸= v ∈ N.
Let S be a maximum independent set of G, and let Z ⊆ ℝn consist of
all vectors supported in S. Then vTAv = 0 for all v ∈ Z. Therefore,

n ⩾ dimN+ dimZ = (n − n+(A)) + α(G).

Proof 2.

The independent set S yields an all-zeroes principal minorM of A.
Cauchy’s interlacing formula implies n+(A) ⩾ n+(M) = α(G).

Introduction The limits of the inertia bound Proof sketch



The inertia bound
Let n+(M) denote the number of non-negative eigenvalues ofM.

Theorem (Cvetković (1971))
If A is the adjacency matrix of G, then

α(G) ⩽ n+(A ).

Proof 1.
Let N ⊆ ℝn be the span of the eigenvectors of A corresponding to
negative eigenvalues. Then vTAv < 0 for all 0 ̸= v ∈ N.
Let S be a maximum independent set of G, and let Z ⊆ ℝn consist of
all vectors supported in S. Then vTAv = 0 for all v ∈ Z. Therefore,

n ⩾ dimN+ dimZ = (n − n+(A)) + α(G).

Proof 2.
The independent set S yields an all-zeroes principal minorM of A.
Cauchy’s interlacing formula implies n+(A) ⩾ n+(M) = α(G).

Introduction The limits of the inertia bound Proof sketch



The inertia bound
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Optimizing the inertia bound

Theorem (Cvetković (1971), Calderbank–Frankl (1992))
If W is a weighted adjacency matrix of G, then

α(G) ⩽ n+(W).

Like the ratio bound, the inertia bound has many applications
(including another proof of Erdős–Ko–Rado). Many applications
require the weighted version.
Another optimization problem: minimize n+ over all WAMs.
This optimization problem is extremely poorly behaved!

• It’s not known to be efficiently computable—or even in NP!
• Symmetry can give heuristics, but is often unhelpful.

Example: The adjacency matrix A of Kt,t has eigenvalues t,−t, and 0
(multiplicity 2t − 2). So we get the bound α(Kt,t) ⩽ n+(A) = 2t − 1.
By choosing unstructured weights (e.g. random weights), we can
get the optimal bound α(Kt,t) ⩽ t.
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Godsil’s question
Theorem (The inertia bound)
If W is a weighted adjacency matrix of G, then

α(G) ⩽ n+(W).

It is difficult to find an optimalW, and difficult to understand how
strong this bound can be.

Question (Godsil (2004))
Is the inertia bound always tight? In other words, does there always
exist a weighted adjacency matrix W with

α(G) = n+(W)?

Theorem (Sinkovic 2018)
No! The Paley graph P17 has α(P17) = 3 but n+(W) ⩾ 4 for every
weighted adjacency matrix W.

The proof involves a lot of casework and is very specific to P17.
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A quantum leap

Another approach to Godsil’s question uses quantum graph theory.
Mančinska and Roberson defined a quantum independence
number αq, satisfying α(G) ⩽ αq(G) for all G.

Theorem (Wocjan–Elphick–Abiad (2022))
If W is a weighted adjacency matrix of G, then

α(G) ⩽ αq(G) ⩽ n+(W).

Theorem (Mančinska–Roberson (2016))
For infinitely many n, there exists an n-vertex graph G with

α(G) = O
(
n0.9999

)
and αq(G) = Ω

( n
logn

)
.

This yields an infinite family of examples for Godsil’s question.
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More questions (and an answer)

Question (Godsil (2004))
Is the inertia bound always tight?

Question
How big of a gap can there be between α(G) andminW n+(W)?

Question
Is the inertia bound “the best” spectral bound? In particular, is the
inertia bound always at least as strong as the ratio bound?

Theorem (Kwan–W. (2024))
If G is C4-free, then n+(W) ⩾ 0.232n for every WAMW of G.

If G is the polarity graph of a projective plane, then G is C4-free and
the ratio bound proves α(G) ⩽ αq(G) = O(n3/4).
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Probability and moments
Theorem (Kwan–W. (2024))
If G is C4-free, then n+(W) ⩾ 0.232n for every WAMW of G.

• Fix a WAMW of G, with eigenvalues λ1,…, λn.
• Let X be the random variable taking value λi with probability
1/n, for i ∈ [n]. We want to prove a lower bound on Pr(X ⩾ 0).

• Note that
𝔼[X] = 1

n tr(W) = 0.

Also, by rescalingW, we may assume 𝔼[X2] = 1.
• Controlling the first two moments is not enough to learn about
Pr(X ⩾ 0). However:

Lemma
If X is a RV with 𝔼[X] = 0,𝔼[X2] = 1, and 𝔼[X4] ⩽ 2, then

Pr(X ⩾ 0) ⩾
√
3 − 3

2 ≈ 0.232.
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The fourth moment
It suffices to prove an upper bound on 𝔼[X4].

We have

𝔼[X4] =
1
n tr(W4) =

1
n

n∑
i,j,k,ℓ=1

WijWjkWkℓWℓi.

In general, bounding this is hard. But we assumed G is C4-free, so

𝔼[X4] =
1
n

2 n∑
i=1

 n∑
j=1

W2
ij

2

−
n∑

i,j=1
W4

ij

 ⩽ 2
n

n∑
i=1

 n∑
j=1

W2
ij

2

.

This is still not good enough. The non-zero entries ofW are
arbitrary; if some of them are huge, then 𝔼[X4] will be huge.

Lemma
If every row of W has L2 norm equal to 1, then 𝔼[X4] ⩽ 2.

We are done under this extra assumption.
Remarkably, we will be able to reduce to this case.
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Digression: undergrad linear algebra

If Z is invertible, thenW and ZWZ−1 have the same eigenvalues.
However,W and ZWZT may have different eigenvalues.

Theorem (Sylvester’s law of inertia)
W and ZWZT have the same number of positive, negative, and zero
eigenvalues.
In particular, n+(W) = n+(ZWZT).

If Z is diagonal, ZWZT is another weighted adjacency matrix of G.
Recall: We are done if every row ofW is L2-normalized.
Does there exist Z such that every row of ZWZT is L2-normalized?
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Matrix scaling

Does there exist Z such that every row of ZWZT is L2-normalized?

This sort of question is studied in the field of matrix scaling.
Meta-theorem: The existence of such a Z is controlled by the zero
pattern ofW.

Theorem (Sinkhorn (1964), Csima–Datta (1972))
Let W be a symmetric n × n matrix with no large zero blocks: if
|S| + |T| ⩾ n, then W[S, T] ̸= 0.
Then there exists a diagonal matrix Z such that every row of ZWZT is
L2-normalized.

We are done ifW has no large zero blocks.
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The final cases

We are done ifW has no large zero blocks.

Suppose there exist S, T with |S| + |T| ⩾ n andW[S, T] = 0. 0
0

S, T disjoint


 0

S = T


 0

0

in general



In any case, we are done by induction + Cauchy interlacing.
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Proof summary

Theorem (Kwan–W. (2024))
If G is C4-free, then n+(W) ⩾ 0.232n for every WAMW of G.

Proof.

• IfW has large zero blocks, apply induction.
• If not, use matrix scaling: find a diagonal Z so that every row of
W′ := ZWZT is L2-normalized.

• W′ is another WAM of G, and n+(W) = n+(W′).
• Let X be the RV sampling eigenvalues ofW′.
• We have 𝔼[X] = 0,𝔼[X2] = 1,𝔼[X4] ⩽ 2.

Therefore,

n+(W) = n+(W′) = n · Pr(X ⩾ 0) ⩾ 0.232n.
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Open problems

Our technique seems unable to deal with graphs with many C4.
Conjecture
Let G ∼ 𝔾(n, 12 ). With probability 1 − o(1), every WAM of G satisfies

n+(W) = Ω
( n
logn

)
.

Since α(G) = O(logn) with high probability, this would show that
the inertia bound is very far from tight for almost all graphs.
There existsW such that n+(W) = χ(G), so Θ( n

log n ) is best possible.

Conjecture
For all k, there exists G with α(G) = 2 but n+(W) ⩾ k for any WAM.

Question
What’s the complexity of computing the best possible inertia bound?
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Thank you!
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