Spectral bounds on the independence number

Yuval Wigderson

ETH Zürich

January 21, 2024

Joint with Matthew Kwan

Outline

Introduction: the ratio bound and the inertia bound

The limits of the inertia bound

Proof sketch

Spectral graph theory

Spectral graph theory

The adjacency matrix of an n-vertex graph G is the $n \times n$ matrix A with $A_{i j}=0$ if $i j \notin E(G)$ and $A_{i j}=1$ otherwise.

Spectral graph theory

The adjacency matrix of an n-vertex graph G is the $n \times n$ matrix A with $A_{i j}=0$ if $i j \notin E(G)$ and $A_{i j}=1$ otherwise.
Amazing fact: (graph-theoretic) properties of G are related to (linear-algebraic) properties of A.

Spectral graph theory

The adjacency matrix of an n-vertex graph G is the $n \times n$ matrix A with $A_{i j}=0$ if $i j \notin E(G)$ and $A_{i j}=1$ otherwise.
Amazing fact: (graph-theoretic) properties of G are related to (linear-algebraic) properties of A.

Definition

A weighted adjacency matrix (WAM) for G is a symmetric matrix W with $W_{i j}=0$ if $i j \notin E(G)$.

Spectral graph theory

The adjacency matrix of an n-vertex graph G is the $n \times n$ matrix A with $A_{i j}=0$ if $i j \notin E(G)$ and $A_{i j}=1$ otherwise.
Amazing fact: (graph-theoretic) properties of G are related to (linear-algebraic) properties of A.

Definition

A weighted adjacency matrix (WAM) for G is a symmetric matrix W with $W_{i j}=0$ if ij $\notin E(G)$.

Many connections between graph theory and linear algebra hold for arbitrary WAMs.

Spectral graph theory

The adjacency matrix of an n-vertex graph G is the $n \times n$ matrix A with $A_{i j}=0$ if $i j \notin E(G)$ and $A_{i j}=1$ otherwise.
Amazing fact: (graph-theoretic) properties of G are related to (linear-algebraic) properties of A.

Definition

A weighted adjacency matrix (WAM) for G is a symmetric matrix W with $W_{i j}=0$ if $i j \notin E(G)$.

Many connections between graph theory and linear algebra hold for arbitrary WAMs. The difficulty is picking a good weighting.

Spectral graph theory

The adjacency matrix of an n-vertex graph G is the $n \times n$ matrix A with $A_{i j}=0$ if $i j \notin E(G)$ and $A_{i j}=1$ otherwise.
Amazing fact: (graph-theoretic) properties of G are related to (linear-algebraic) properties of A.

Definition

A weighted adjacency matrix (WAM) for G is a symmetric matrix W with $W_{i j}=0$ if ij $\notin E(G)$.

Many connections between graph theory and linear algebra hold for arbitrary WAMs. The difficulty is picking a good weighting.
Example: Huang's proof (2019) of the sensitivity conjecture used a well-known connection between $\Delta(G)$ and $\lambda_{\max }(W)$, for a carefully-chosen WAM of the hypercube graph.

Spectral graph theory

The adjacency matrix of an n-vertex graph G is the $n \times n$ matrix A with $A_{i j}=0$ if $i j \notin E(G)$ and $A_{i j}=1$ otherwise.
Amazing fact: (graph-theoretic) properties of G are related to (linear-algebraic) properties of A.

Definition

A weighted adjacency matrix (WAM) for G is a symmetric matrix W with $W_{i j}=0$ if ij $\notin E(G)$.

Many connections between graph theory and linear algebra hold for arbitrary WAMs. The difficulty is picking a good weighting.
Example: Huang's proof (2019) of the sensitivity conjecture used a well-known connection between $\Delta(G)$ and $\lambda_{\max }(W)$, for a carefully-chosen WAM of the hypercube graph.
General problem: Understand the space of all WAMs of G, and optimize some quantity over this space.

The ratio bound

The ratio bound

Theorem (Hoffman (unpublished))

Let G be a regular n-vertex graph with adjacency matrix A. Then

$$
\alpha(G) \leq\left|\frac{\lambda_{\min }(A)}{\lambda_{\min }(A)-\lambda_{\max }(A)}\right| n .
$$

The ratio bound

Theorem (Hoffman (unpublished))

Let G be a regular n-vertex graph with adjacency matrix A. Then

$$
\alpha(G) \leq\left|\frac{\lambda_{\min }(A)}{\lambda_{\min }(A)-\lambda_{\max }(A)}\right| n .
$$

The ratio bound is surprisingly powerful, e.g. it gives a short proof of the Erdős-Ko-Rado theorem.

The ratio bound

Theorem (Hoffman (unpublished), Lovász (1979))

Let G be an n-vertex graph with weighted adjacency matrix W. Then

$$
\alpha(G) \leq\left|\frac{\lambda_{\min }(W)}{\lambda_{\min }(W)-\lambda_{\max }(W)}\right| n
$$

assuming all rows of W have the same sum.
The ratio bound is surprisingly powerful, e.g. it gives a short proof of the Erdős-Ko-Rado theorem.

The ratio bound

Theorem (Hoffman (unpublished), Lovász (1979))

Let G be an n-vertex graph with weighted adjacency matrix W. Then

$$
\alpha(G) \leq\left|\frac{\lambda_{\min }(W)}{\lambda_{\min }(W)-\lambda_{\max }(W)}\right| n
$$

assuming all rows of W have the same sum.
The ratio bound is surprisingly powerful, e.g. it gives a short proof of the Erdős-Ko-Rado theorem.
Wilson (1984) used the weighted ratio bound to prove a vast generalization of the Erdős-Ko-Rado theorem.

The ratio bound

Theorem (Hoffman (unpublished), Lovász (1979))

Let G be an n-vertex graph with weighted adjacency matrix W. Then

$$
\alpha(G) \leq\left|\frac{\lambda_{\min }(W)}{\lambda_{\min }(W)-\lambda_{\max }(W)}\right| n
$$

assuming all rows of W have the same sum.
The ratio bound is surprisingly powerful, e.g. it gives a short proof of the Erdős-Ko-Rado theorem.
Wilson (1984) used the weighted ratio bound to prove a vast generalization of the Erdős-Ko-Rado theorem.
The main difficulty is picking a good weighting.

Optimizing the ratio bound

Theorem (Hoffman (unpublished), Lovász (1979))
Let G be an n-vertex graph with weighted adjacency matrix W. Then

$$
\alpha(G) \leq\left|\frac{\lambda_{\min }(W)}{\lambda_{\min }(W)-\lambda_{\max }(W)}\right| n
$$

assuming all rows of W have the same sum.

Optimizing the ratio bound

Theorem (Hoffman (unpublished), Lovász (1979))

Let G be an n-vertex graph with weighted adjacency matrix W. Then

$$
\alpha(G) \leq\left|\frac{\lambda_{\min }(W)}{\lambda_{\min }(W)-\lambda_{\max }(W)}\right| n,
$$

assuming all rows of W have the same sum.
An optimization problem: minimize $\left|\frac{\lambda_{\min }}{\lambda_{\min }-\lambda_{\max }}\right|$ over all WAMs.

Optimizing the ratio bound

Theorem (Hoffman (unpublished), Lovász (1979))

Let G be an n-vertex graph with weighted adjacency matrix W. Then

$$
\alpha(G) \leq\left|\frac{\lambda_{\min }(W)}{\lambda_{\min }(W)-\lambda_{\max }(W)}\right| n,
$$

assuming all rows of W have the same sum.
An optimization problem: minimize $\left|\frac{\lambda_{\min }}{\lambda_{\min }-\lambda_{\max }}\right|$ over all WAMs.
For highly symmetric graphs, this optimization is pretty easy.

Optimizing the ratio bound

Theorem (Hoffman (unpublished), Lovász (1979))

Let G be an n-vertex graph with weighted adjacency matrix W. Then

$$
\alpha(G) \leq\left|\frac{\lambda_{\min }(W)}{\lambda_{\min }(W)-\lambda_{\max }(W)}\right| n
$$

assuming all rows of W have the same sum.
An optimization problem: minimize $\left|\frac{\lambda_{\min }}{\lambda_{\min }-\lambda_{\max }}\right|$ over all WAMs.
For highly symmetric graphs, this optimization is pretty easy.

- Lovász (1979): If G is edge-transitive, the optimum is attained on the unweighted adjacency matrix.

Optimizing the ratio bound

Theorem (Hoffman (unpublished), Lovász (1979))

Let G be an n-vertex graph with weighted adjacency matrix W. Then

$$
\alpha(G) \leq\left|\frac{\lambda_{\min }(W)}{\lambda_{\min }(W)-\lambda_{\max }(W)}\right| n,
$$

assuming all rows of W have the same sum.
An optimization problem: minimize $\left|\frac{\lambda_{\min }}{\lambda_{\min }-\lambda_{\max }}\right|$ over all WAMs.
For highly symmetric graphs, this optimization is pretty easy.

- Lovász (1979): If G is edge-transitive, the optimum is attained on the unweighted adjacency matrix.
- More generally, one can work in the Bose-Mesner algebra and use representation theory to find the optimum [Wilson (1984)].

Optimizing the ratio bound

Theorem (Hoffman (unpublished), Lovász (1979))

Let G be an n-vertex graph with weighted adjacency matrix W. Then

$$
\alpha(G) \leq\left|\frac{\lambda_{\min }(W)}{\lambda_{\min }(W)-\lambda_{\max }(W)}\right| n
$$

assuming all rows of W have the same sum.
An optimization problem: minimize $\left|\frac{\lambda_{\min }}{\lambda_{\min }-\lambda_{\max }}\right|$ over all WAMs.
For highly symmetric graphs, this optimization is pretty easy.

- Lovász (1979): If G is edge-transitive, the optimum is attained on the unweighted adjacency matrix.
- More generally, one can work in the Bose-Mesner algebra and use representation theory to find the optimum [Wilson (1984)].
Even for general graphs, this optimization is a semidefinite program, so the optimum is efficiently computable.

The inertia bound

The inertia bound

Let $n_{\geq 0}(M)$ denote the number of non-negative eigenvalues of M.

The inertia bound

Let $n_{\geq 0}(M)$ denote the number of non-negative eigenvalues of M.
Theorem (Cvetković (1971))
If A is the adjacency matrix of G, then

$$
\alpha(G) \leq n_{\geq 0}(A) .
$$

The inertia bound

Let $n_{\geq 0}(M)$ denote the number of non-negative eigenvalues of M.
Theorem (Cvetković (1971))
If A is the adjacency matrix of G, then

$$
\alpha(G) \leq n_{\geq 0}(A) .
$$

Proof 1.

The inertia bound

Let $n_{\geq 0}(M)$ denote the number of non-negative eigenvalues of M.
Theorem (Cvetković (1971))
If A is the adjacency matrix of G, then

$$
\alpha(G) \leq n_{\geq 0}(A) .
$$

Proof 1.

Let $N \leq \mathbb{R}^{n}$ be the span of the eigenvectors of A corresponding to negative eigenvalues.

The inertia bound

Let $n_{\geq 0}(M)$ denote the number of non-negative eigenvalues of M.
Theorem (Cvetković (1971))
If A is the adjacency matrix of G, then

$$
\alpha(G) \leq n_{\geq 0}(A) .
$$

Proof 1.

Let $N \leq \mathbb{R}^{n}$ be the span of the eigenvectors of A corresponding to negative eigenvalues. Then $v^{\top} A v<0$ for all $0 \neq v \in N$.

The inertia bound

Let $n_{\geq 0}(M)$ denote the number of non-negative eigenvalues of M.

Theorem (Cvetković (1971))

If A is the adjacency matrix of G, then

$$
\alpha(G) \leq n_{\geq 0}(A) .
$$

Proof 1.

Let $N \leq \mathbb{R}^{n}$ be the span of the eigenvectors of A corresponding to negative eigenvalues. Then $v^{\top} A v<0$ for all $0 \neq v \in N$. Let S be a maximum independent set of G, and let $Z \leq \mathbb{R}^{n}$ consist of all vectors supported in S.

The inertia bound

Let $n_{\geq 0}(M)$ denote the number of non-negative eigenvalues of M.

Theorem (Cvetković (1971))

If A is the adjacency matrix of G, then

$$
\alpha(G) \leq n_{\geq 0}(A) .
$$

Proof 1.

Let $N \leq \mathbb{R}^{n}$ be the span of the eigenvectors of A corresponding to negative eigenvalues. Then $v^{\top} A v<0$ for all $0 \neq v \in N$.
Let S be a maximum independent set of G, and let $Z \leq \mathbb{R}^{n}$ consist of all vectors supported in S. Then $v^{\top} A v=0$ for all $v \in Z$.

The inertia bound

Let $n_{\geq 0}(M)$ denote the number of non-negative eigenvalues of M.

Theorem (Cvetković (1971))

If A is the adjacency matrix of G, then

$$
\alpha(G) \leq n_{\geq 0}(A) .
$$

Proof 1.

Let $N \leq \mathbb{R}^{n}$ be the span of the eigenvectors of A corresponding to negative eigenvalues. Then $v^{\top} A v<0$ for all $0 \neq v \in N$. Let S be a maximum independent set of G, and let $Z \leq \mathbb{R}^{n}$ consist of all vectors supported in S. Then $v^{\top} A v=0$ for all $v \in Z$.

The inertia bound

Let $n_{\geq 0}(M)$ denote the number of non-negative eigenvalues of M.

Theorem (Cvetković (1971))

If A is the adjacency matrix of G, then

$$
\alpha(G) \leq n_{\geq 0}(A) .
$$

Proof 1.

Let $N \leq \mathbb{R}^{n}$ be the span of the eigenvectors of A corresponding to negative eigenvalues. Then $v^{\top} A v<0$ for all $0 \neq v \in N$.
Let S be a maximum independent set of G, and let $Z \leq \mathbb{R}^{n}$ consist of all vectors supported in S. Then $v^{\top} A v=0$ for all $v \in Z$. Therefore,

$$
n \geq \operatorname{dim} N+\operatorname{dim} Z
$$

The inertia bound

Let $n_{\geq 0}(M)$ denote the number of non-negative eigenvalues of M.

Theorem (Cvetković (1971))

If A is the adjacency matrix of G, then

$$
\alpha(G) \leq n_{\geq 0}(A) .
$$

Proof 1.

Let $N \leq \mathbb{R}^{n}$ be the span of the eigenvectors of A corresponding to negative eigenvalues. Then $v^{\top} A v<0$ for all $0 \neq v \in N$.
Let S be a maximum independent set of G, and let $Z \leq \mathbb{R}^{n}$ consist of all vectors supported in S. Then $v^{\top} A v=0$ for all $v \in Z$. Therefore,

$$
n \geq \operatorname{dim} N+\operatorname{dim} Z=\left(n-n_{\geq 0}(A)\right)+\alpha(G)
$$

The inertia bound

Let $n_{\geq 0}(M)$ denote the number of non-negative eigenvalues of M.

Theorem (Cvetković (1971))

If A is the adjacency matrix of G, then

$$
\alpha(G) \leq n_{\geq 0}(A)
$$

Proof 1.

Let $N \leq \mathbb{R}^{n}$ be the span of the eigenvectors of A corresponding to negative eigenvalues. Then $v^{\top} A v<0$ for all $0 \neq v \in N$.
Let S be a maximum independent set of G, and let $Z \leq \mathbb{R}^{n}$ consist of all vectors supported in S. Then $v^{\top} A v=0$ for all $v \in Z$. Therefore,

$$
n \geq \operatorname{dim} N+\operatorname{dim} Z=\left(n-n_{\geq 0}(A)\right)+\alpha(G)
$$

Proof 2.

The inertia bound

Let $n_{\geq 0}(M)$ denote the number of non-negative eigenvalues of M.

Theorem (Cvetković (1971))

If A is the adjacency matrix of G, then

$$
\alpha(G) \leq n_{\geq 0}(A)
$$

Proof 1.

Let $N \leq \mathbb{R}^{n}$ be the span of the eigenvectors of A corresponding to negative eigenvalues. Then $v^{\top} A v<0$ for all $0 \neq v \in N$.
Let S be a maximum independent set of G, and let $Z \leq \mathbb{R}^{n}$ consist of all vectors supported in S. Then $v^{\top} A v=0$ for all $v \in Z$. Therefore,

$$
n \geq \operatorname{dim} N+\operatorname{dim} Z=\left(n-n_{\geq 0}(A)\right)+\alpha(G)
$$

Proof 2.

The independent set S yields an all-zeroes principal minor M of A.
Cauchy's interlacing formula implies $n_{\geq 0}(A) \geq n_{\geq 0}(M)=\alpha(G)$.

The inertia bound

Let $n_{\geq 0}(M)$ denote the number of non-negative eigenvalues of M.

Theorem (Cvetković (1971), Calderbank-Frankl (1992))

If W is a weighted adjacency matrix of G, then

$$
\alpha(G) \leq n_{\geq 0}(W) .
$$

Proof 1.

Let $N \leq \mathbb{R}^{n}$ be the span of the eigenvectors of A corresponding to negative eigenvalues. Then $v^{\top} A v<0$ for all $0 \neq v \in N$.
Let S be a maximum independent set of G, and let $Z \leq \mathbb{R}^{n}$ consist of all vectors supported in S. Then $v^{\top} A v=0$ for all $v \in Z$. Therefore,

$$
n \geq \operatorname{dim} N+\operatorname{dim} Z=\left(n-n_{\geq 0}(A)\right)+\alpha(G)
$$

Proof 2.

The independent set S yields an all-zeroes principal minor M of A.
Cauchy's interlacing formula implies $n_{\geq 0}(A) \geq n_{\geq 0}(M)=\alpha(G)$.

Optimizing the inertia bound

Theorem (Cvetković (1971), Calderbank-Frankl (1992))
If W is a weighted adjacency matrix of G, then

$$
\alpha(G) \leq n_{\geq 0}(W) .
$$

Optimizing the inertia bound

Theorem (Cvetković (1971), Calderbank-Frankl (1992))
If W is a weighted adjacency matrix of G, then

$$
\alpha(G) \leq n_{\geq 0}(W)
$$

Like the ratio bound, the inertia bound has many applications.

Optimizing the inertia bound

Theorem (Cvetković (1971), Calderbank-Frankl (1992))
If W is a weighted adjacency matrix of G, then

$$
\alpha(G) \leq n_{\geq 0}(W)
$$

Like the ratio bound, the inertia bound has many applications. Another optimization problem: minimize $n_{\geq 0}$ over all WAMs.

Optimizing the inertia bound

Theorem (Cvetković (1971), Calderbank-Frankl (1992))
If W is a weighted adjacency matrix of G, then

$$
\alpha(G) \leq n_{\geq 0}(W)
$$

Like the ratio bound, the inertia bound has many applications. Another optimization problem: minimize $n_{\geq 0}$ over all WAMs. This optimization problem is extremely poorly behaved!

Optimizing the inertia bound

Theorem (Cvetković (1971), Calderbank-Frankl (1992))
If W is a weighted adjacency matrix of G, then

$$
\alpha(G) \leq n_{\geq 0}(W)
$$

Like the ratio bound, the inertia bound has many applications.
Another optimization problem: minimize $n_{\geq 0}$ over all WAMs.
This optimization problem is extremely poorly behaved!

- It's not known to be efficiently computable-l'm not even sure whether it's decidable!

Optimizing the inertia bound

Theorem (Cvetković (1971), Calderbank-Frankl (1992))

If W is a weighted adjacency matrix of G, then

$$
\alpha(G) \leq n_{\geq 0}(W) .
$$

Like the ratio bound, the inertia bound has many applications.
Another optimization problem: minimize $n_{\geq 0}$ over all WAMs.
This optimization problem is extremely poorly behaved!

- It's not known to be efficiently computable-I'm not even sure whether it's decidable!
- Symmetry can give heuristics, but is often unhelpful.

Optimizing the inertia bound

Theorem (Cvetković (1971), Calderbank-Frankl (1992))

If W is a weighted adjacency matrix of G, then

$$
\alpha(G) \leq n_{\geq 0}(W)
$$

Like the ratio bound, the inertia bound has many applications.
Another optimization problem: minimize $n_{\geq 0}$ over all WAMs.
This optimization problem is extremely poorly behaved!

- It's not known to be efficiently computable-l'm not even sure whether it's decidable!
- Symmetry can give heuristics, but is often unhelpful.

Example: The adjacency matrix A of $K_{t, t}$ has eigenvalues $t,-t$, and 0 (multiplicity $2 t-2$). So we get the bound $\alpha\left(K_{t, t}\right) \leq n_{\geq 0}(A)=2 t-1$.

Optimizing the inertia bound

Theorem (Cvetković (1971), Calderbank-Frankl (1992))

If W is a weighted adjacency matrix of G, then

$$
\alpha(G) \leq n_{\geq 0}(W)
$$

Like the ratio bound, the inertia bound has many applications.
Another optimization problem: minimize $n_{\geq 0}$ over all WAMs.
This optimization problem is extremely poorly behaved!

- It's not known to be efficiently computable-l'm not even sure whether it's decidable!
- Symmetry can give heuristics, but is often unhelpful.

Example: The adjacency matrix A of $K_{t, t}$ has eigenvalues $t,-t$, and 0 (multiplicity $2 t-2$). So we get the bound $\alpha\left(K_{t, t}\right) \leq n_{\geq 0}(A)=2 t-1$. By choosing unstructured weights (e.g. random weights), we can get the optimal bound $\alpha\left(K_{t, t}\right) \leq t$.

Outline

Introduction: the ratio bound and the inertia bound

The limits of the inertia bound

Proof sketch

Godsil's question

Theorem (The inertia bound)
If W is a weighted adjacency matrix of G, then

$$
\alpha(G) \leq n_{\geq 0}(W) .
$$

Godsil's question

Theorem (The inertia bound)
If W is a weighted adjacency matrix of G, then

$$
\alpha(G) \leq n_{\geq 0}(W) .
$$

It is difficult to find an optimal W, and difficult to understand how strong this bound can be.

Godsil's question

Theorem (The inertia bound)

If W is a weighted adjacency matrix of G, then

$$
\alpha(G) \leq n_{\geq 0}(W) .
$$

It is difficult to find an optimal W, and difficult to understand how strong this bound can be.

Question (Godsil (2004))

Is the inertia bound always tight? In other words, does there always exist a weighted adjacency matrix W with

$$
\alpha(G)=n_{\geq 0}(W) ?
$$

Godsil's question

Theorem (The inertia bound)

If W is a weighted adjacency matrix of G, then

$$
\alpha(G) \leq n_{\geq 0}(W) .
$$

It is difficult to find an optimal W, and difficult to understand how strong this bound can be.

Question (Godsil (2004))

Is the inertia bound always tight? In other words, does there always exist a weighted adjacency matrix W with

$$
\alpha(G)=n_{\geq 0}(W) ?
$$

Theorem (Sinkovic 2018)

No! The Paley graph P_{17} has $\alpha\left(P_{17}\right)=3$ but $n_{\geq 0}(W) \geq 4$ for every weighted adjacency matrix W.

Godsil's question

Theorem (The inertia bound)

If W is a weighted adjacency matrix of G, then

$$
\alpha(G) \leq n_{\geq 0}(W) .
$$

It is difficult to find an optimal W, and difficult to understand how strong this bound can be.

Question (Godsil (2004))

Is the inertia bound always tight? In other words, does there always exist a weighted adjacency matrix W with

$$
\alpha(G)=n_{\geq 0}(W) ?
$$

Theorem (Sinkovic 2018)

No! The Paley graph P_{17} has $\alpha\left(P_{17}\right)=3$ but $n_{\geq 0}(W) \geq 4$ for every weighted adjacency matrix W.

The proof involves a lot of casework and is very specific to P_{17}.

A quantum leap

A quantum leap

Another approach to Godsil's question uses quantum graph theory.

A quantum leap

Another approach to Godsil's question uses quantum graph theory. Mančinska and Roberson defined a quantum independence number α_{q}, satisfying $\alpha(G) \leq \alpha_{q}(G)$ for all G.

A quantum leap

Another approach to Godsil's question uses quantum graph theory. Mančinska and Roberson defined a quantum independence number α_{q}, satisfying $\alpha(G) \leq \alpha_{q}(G)$ for all G.

Theorem (Mančinska-Roberson (2016))
For infinitely many n, there exists an n-vertex graph G with

$$
\alpha(G)=O\left(n^{0.9999}\right) \quad \text { and } \quad \alpha_{q}(G)=\Omega\left(\frac{n}{\log n}\right) .
$$

A quantum leap

Another approach to Godsil's question uses quantum graph theory. Mančinska and Roberson defined a quantum independence number α_{q}, satisfying $\alpha(G) \leq \alpha_{q}(G)$ for all G.

Theorem (Mančinska-Roberson (2016))
For infinitely many n, there exists an n-vertex graph G with

$$
\alpha(G)=O\left(n^{0.9999}\right) \quad \text { and } \quad \alpha_{q}(G)=\Omega\left(\frac{n}{\log n}\right) .
$$

Theorem (Wocjan-Elphick-Abiad (2022))

If W is a weighted adjacency matrix of G, then

$$
\alpha(G) \leq \alpha_{q}(G) \leq n_{\geq 0}(W)
$$

A quantum leap

Another approach to Godsil's question uses quantum graph theory. Mančinska and Roberson defined a quantum independence number α_{q}, satisfying $\alpha(G) \leq \alpha_{q}(G)$ for all G.

Theorem (Mančinska-Roberson (2016))
For infinitely many n, there exists an n-vertex graph G with

$$
\alpha(G)=O\left(n^{0.9999}\right) \quad \text { and } \quad \alpha_{q}(G)=\Omega\left(\frac{n}{\log n}\right) .
$$

Theorem (Wocjan-Elphick-Abiad (2022))

If W is a weighted adjacency matrix of G, then

$$
\alpha(G) \leq \alpha_{q}(G) \leq n_{\geq 0}(W)
$$

This yields an infinite family of examples for Godsil's question.

More questions (and an answer)

Question (Godsil (2004))
Is the inertia bound always tight?

More questions (and an answer)

Question (Godsil (2004))

Is the inertia bound always tight?
Question
How big a gap can there be between $\alpha(G)$ and $\min _{w} n_{\geq 0}(W)$?

More questions (and an answer)

Question (Godsil (2004))

Is the inertia bound always tight?

Question

How big a gap can there be between $\alpha(G)$ and $\min _{w} n_{\geq 0}(W)$?

Question

Is the inertia bound "the best" spectral bound? In particular, is the inertia bound always at least as strong as the ratio bound?

More questions (and an answer)

Question (Godsil (2004))

Is the inertia bound always tight?

Question

How big a gap can there be between $\alpha(G)$ and $\min _{w} n_{\geq 0}(W)$?

Question

Is the inertia bound "the best" spectral bound? In particular, is the inertia bound always at least as strong as the ratio bound?

Theorem (Kwan-W. (2023+))
If G is C_{4}-free, then $n_{\geq 0}(W) \geq 0.232 n$ for every WAM W of G.

More questions (and an answer)

Question (Godsil (2004))

Is the inertia bound always tight?

Question

How big a gap can there be between $\alpha(G)$ and $\min _{w} n_{\geq 0}(W)$?

Question

Is the inertia bound "the best" spectral bound? In particular, is the inertia bound always at least as strong as the ratio bound?

Theorem (Kwan-W. (2023+))
If G is C_{4}-free, then $n_{\geq 0}(W) \geq 0.232 n$ for every WAM W of G.
If G is the polarity graph of a projective plane, then G is C_{4}-free and the ratio bound proves $\alpha(G)=O\left(n^{3 / 4}\right)$.

Outline

Introduction: the ratio bound and the inertia bound

The limits of the inertia bound

Proof sketch

Probability and moments

Theorem (Kwan-W. (2023+))
If G is C_{4}-free, then $n_{\geq 0}(W) \geq 0.232 n$ for every WAM W of G.

Probability and moments

Theorem (Kwan-W. (2023+))
If G is C_{4}-free, then $n_{\geq 0}(W) \geq 0.232 n$ for every WAM W of G.

- Fix a WAM W of G, with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.

Probability and moments

Theorem (Kwan-W. (2023+))
If G is C_{4}-free, then $n_{\geq 0}(W) \geq 0.232 n$ for every WAM W of G.

- Fix a WAM W of G, with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.
- Let X be the random variable taking value λ_{i} with probability $1 / n$, for $i \in[n]$. We want to prove a lower bound on $\operatorname{Pr}(X \geq 0)$.

Probability and moments

Theorem (Kwan-W. (2023+))
If G is C_{4}-free, then $n_{\geq 0}(W) \geq 0.232 n$ for every WAM W of G.

- Fix a WAM W of G, with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.
- Let X be the random variable taking value λ_{i} with probability $1 / n$, for $i \in[n]$. We want to prove a lower bound on $\operatorname{Pr}(X \geq 0)$.
- Note that

$$
\mathbb{E}[X]=\frac{1}{n} \operatorname{tr}(W)=0 .
$$

Also, by rescaling W, we may assume $\mathbb{E}\left[X^{2}\right]=1$.

Probability and moments

Theorem (Kwan-W. (2023+))
If G is C_{4}-free, then $n_{\geq 0}(W) \geq 0.232 n$ for every WAM W of G.

- Fix a WAM W of G, with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.
- Let X be the random variable taking value λ_{i} with probability $1 / n$, for $i \in[n]$. We want to prove a lower bound on $\operatorname{Pr}(X \geq 0)$.
- Note that

$$
\mathbb{E}[X]=\frac{1}{n} \operatorname{tr}(W)=0 .
$$

Also, by rescaling W, we may assume $\mathbb{E}\left[X^{2}\right]=1$.

- Controlling the first two moments is not enough to learn about $\operatorname{Pr}(x \geq 0)$.

Probability and moments

Theorem (Kwan-W. (2023+))
If G is C_{4}-free, then $n_{\geq 0}(W) \geq 0.232 n$ for every WAM W of G.

- Fix a WAM W of G, with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.
- Let X be the random variable taking value λ_{i} with probability $1 / n$, for $i \in[n]$. We want to prove a lower bound on $\operatorname{Pr}(X \geq 0)$.
- Note that

$$
\mathbb{E}[X]=\frac{1}{n} \operatorname{tr}(W)=0 .
$$

Also, by rescaling W, we may assume $\mathbb{E}\left[X^{2}\right]=1$.

- Controlling the first two moments is not enough to learn about $\operatorname{Pr}(X \geq 0)$. However:

Lemma

If X is a $R V$ with $\mathbb{E}[X]=0, \mathbb{E}\left[X^{2}\right]=1$, and $\mathbb{E}\left[X^{4}\right] \leq 2$, then

$$
\operatorname{Pr}(X \geq 0) \geq \sqrt{3}-\frac{3}{2} \approx 0.232
$$

The fourth moment

It suffices to prove an upper bound on $\mathbb{E}\left[X^{4}\right]$.

The fourth moment

It suffices to prove an upper bound on $\mathbb{E}\left[X^{4}\right]$. We have

$$
E\left[X^{4}\right]=\frac{1}{n} \operatorname{tr}\left(W^{4}\right)
$$

The fourth moment

It suffices to prove an upper bound on $\mathbb{E}\left[X^{4}\right]$. We have

$$
E\left[X^{4}\right]=\frac{1}{n} \operatorname{tr}\left(W^{4}\right)=\frac{1}{n} \sum_{i, j, k, \ell=1}^{n} W_{i j} W_{j k} W_{k \ell} W_{\ell i} .
$$

The fourth moment

It suffices to prove an upper bound on $\mathbb{E}\left[X^{4}\right]$. We have

$$
E\left[X^{4}\right]=\frac{1}{n} \operatorname{tr}\left(W^{4}\right)=\frac{1}{n} \sum_{i, j, k, \ell=1}^{n} W_{i j} W_{j k} W_{k \ell} W_{\ell i} .
$$

In general, bounding this is hard.

The fourth moment

It suffices to prove an upper bound on $\mathbb{E}\left[X^{4}\right]$. We have

$$
E\left[X^{4}\right]=\frac{1}{n} \operatorname{tr}\left(W^{4}\right)=\frac{1}{n} \sum_{i, j, k, \ell=1}^{n} W_{i j} W_{j k} W_{k \ell} W_{\ell i} .
$$

In general, bounding this is hard. But we assumed G is C_{4}-free, so

$$
\mathbb{E}\left[X^{4}\right]=\frac{1}{n}\left[2 \sum_{i=1}^{n}\left(\sum_{j=1}^{n} W_{i j}^{2}\right)^{2}-\sum_{i, j=1}^{n} W_{i j}^{4}\right]
$$

The fourth moment

It suffices to prove an upper bound on $\mathbb{E}\left[X^{4}\right]$. We have

$$
E\left[X^{4}\right]=\frac{1}{n} \operatorname{tr}\left(W^{4}\right)=\frac{1}{n} \sum_{i, j, k, \ell=1}^{n} W_{i j} W_{j k} W_{k \ell} W_{\ell i} .
$$

In general, bounding this is hard. But we assumed G is C_{4}-free, so

$$
\mathbb{E}\left[X^{4}\right]=\frac{1}{n}\left[2 \sum_{i=1}^{n}\left(\sum_{j=1}^{n} W_{i j}^{2}\right)^{2}-\sum_{i, j=1}^{n} W_{i j}^{4}\right] \leq \frac{2}{n} \sum_{i=1}^{n}\left(\sum_{j=1}^{n} W_{i j}^{2}\right)^{2} .
$$

The fourth moment

It suffices to prove an upper bound on $\mathbb{E}\left[X^{4}\right]$. We have

$$
E\left[X^{4}\right]=\frac{1}{n} \operatorname{tr}\left(W^{4}\right)=\frac{1}{n} \sum_{i, j, k, \ell=1}^{n} W_{i j} W_{j k} W_{k \ell} W_{\ell i} .
$$

In general, bounding this is hard. But we assumed G is C_{4}-free, so

$$
\mathbb{E}\left[X^{4}\right]=\frac{1}{n}\left[2 \sum_{i=1}^{n}\left(\sum_{j=1}^{n} W_{i j}^{2}\right)^{2}-\sum_{i, j=1}^{n} W_{i j}^{4}\right] \leq \frac{2}{n} \sum_{i=1}^{n}\left(\sum_{j=1}^{n} W_{i j}^{2}\right)^{2} .
$$

This is still not good enough.

The fourth moment

It suffices to prove an upper bound on $\mathbb{E}\left[X^{4}\right]$. We have

$$
E\left[X^{4}\right]=\frac{1}{n} \operatorname{tr}\left(W^{4}\right)=\frac{1}{n} \sum_{i, j, k, \ell=1}^{n} W_{i j} W_{j k} W_{k \ell} W_{\ell i} .
$$

In general, bounding this is hard. But we assumed G is C_{4}-free, so

$$
\mathbb{E}\left[X^{4}\right]=\frac{1}{n}\left[2 \sum_{i=1}^{n}\left(\sum_{j=1}^{n} W_{i j}^{2}\right)^{2}-\sum_{i, j=1}^{n} W_{i j}^{4}\right] \leq \frac{2}{n} \sum_{i=1}^{n}\left(\sum_{j=1}^{n} W_{i j}^{2}\right)^{2} .
$$

This is still not good enough. The non-zero entries of W are arbitrary; if some of them are huge, then $\mathbb{E}\left[X^{4}\right]$ will be huge.

The fourth moment

It suffices to prove an upper bound on $\mathbb{E}\left[X^{4}\right]$. We have

$$
E\left[X^{4}\right]=\frac{1}{n} \operatorname{tr}\left(W^{4}\right)=\frac{1}{n} \sum_{i, j, k, \ell=1}^{n} W_{i j} W_{j k} W_{k \ell} W_{\ell i} .
$$

In general, bounding this is hard. But we assumed G is C_{4}-free, so

$$
\mathbb{E}\left[X^{4}\right]=\frac{1}{n}\left[2 \sum_{i=1}^{n}\left(\sum_{j=1}^{n} W_{i j}^{2}\right)^{2}-\sum_{i, j=1}^{n} W_{i j}^{4}\right] \leq \frac{2}{n} \sum_{i=1}^{n}\left(\sum_{j=1}^{n} W_{i j}^{2}\right)^{2} .
$$

This is still not good enough. The non-zero entries of W are arbitrary; if some of them are huge, then $\mathbb{E}\left[X^{4}\right]$ will be huge.

Lemma

If every row of W has L^{2} norm equal to 1 , then $\mathbb{E}\left[X^{4}\right] \leq 2$.

The fourth moment

It suffices to prove an upper bound on $\mathbb{E}\left[X^{4}\right]$. We have

$$
E\left[X^{4}\right]=\frac{1}{n} \operatorname{tr}\left(W^{4}\right)=\frac{1}{n} \sum_{i, j, k, \ell=1}^{n} W_{i j} W_{j k} W_{k \ell} W_{\ell i} .
$$

In general, bounding this is hard. But we assumed G is C_{4}-free, so

$$
\mathbb{E}\left[X^{4}\right]=\frac{1}{n}\left[2 \sum_{i=1}^{n}\left(\sum_{j=1}^{n} W_{i j}^{2}\right)^{2}-\sum_{i, j=1}^{n} W_{i j}^{4}\right] \leq \frac{2}{n} \sum_{i=1}^{n}\left(\sum_{j=1}^{n} W_{i j}^{2}\right)^{2} .
$$

This is still not good enough. The non-zero entries of W are arbitrary; if some of them are huge, then $\mathbb{E}\left[X^{4}\right]$ will be huge.

Lemma

If every row of W has L^{2} norm equal to 1 , then $\mathbb{E}\left[X^{4}\right] \leq 2$.
We are done under this extra assumption.

The fourth moment

It suffices to prove an upper bound on $\mathbb{E}\left[X^{4}\right]$. We have

$$
E\left[X^{4}\right]=\frac{1}{n} \operatorname{tr}\left(W^{4}\right)=\frac{1}{n} \sum_{i, j, k, \ell=1}^{n} W_{i j} W_{j k} W_{k \ell} W_{\ell i} .
$$

In general, bounding this is hard. But we assumed G is C_{4}-free, so

$$
\mathbb{E}\left[X^{4}\right]=\frac{1}{n}\left[2 \sum_{i=1}^{n}\left(\sum_{j=1}^{n} W_{i j}^{2}\right)^{2}-\sum_{i, j=1}^{n} W_{i j}^{4}\right] \leq \frac{2}{n} \sum_{i=1}^{n}\left(\sum_{j=1}^{n} W_{i j}^{2}\right)^{2} .
$$

This is still not good enough. The non-zero entries of W are arbitrary; if some of them are huge, then $\mathbb{E}\left[X^{4}\right]$ will be huge.

Lemma

If every row of W has L^{2} norm equal to 1 , then $\mathbb{E}\left[X^{4}\right] \leq 2$.
We are done under this extra assumption.
Remarkably, we will be able to reduce to this case.

Digression: undergrad linear algebra

Digression: undergrad linear algebra

If Z is invertible, then W and $Z W Z^{-1}$ have the same eigenvalues.

Digression: undergrad linear algebra

If Z is invertible, then W and $Z W Z^{-1}$ have the same eigenvalues. However, W and $Z W Z^{\top}$ may have different eigenvalues.

Digression: undergrad linear algebra

If Z is invertible, then W and $Z W Z^{-1}$ have the same eigenvalues. However, W and $Z W Z^{\top}$ may have different eigenvalues.

Theorem (Sylvester's law of inertia)
W and $Z W Z^{\top}$ have the same number of positive, negative, and zero eigenvalues.

Digression: undergrad linear algebra

If Z is invertible, then W and $Z W Z^{-1}$ have the same eigenvalues. However, W and $Z W Z^{\top}$ may have different eigenvalues.

Theorem (Sylvester's law of inertia)
W and $Z W Z^{\top}$ have the same number of positive, negative, and zero eigenvalues.
In particular, $n_{\geq 0}(W)=n_{\geq 0}\left(Z W Z^{\top}\right)$.

Digression: undergrad linear algebra

If Z is invertible, then W and $Z W Z^{-1}$ have the same eigenvalues. However, W and $Z W Z^{\top}$ may have different eigenvalues.

Theorem (Sylvester's law of inertia)
W and $Z W Z^{\top}$ have the same number of positive, negative, and zero eigenvalues.
In particular, $n_{\geq 0}(W)=n_{\geq 0}\left(Z W Z^{T}\right)$.
If Z is diagonal, $Z W Z^{\top}$ is another weighted adjacency matrix of G.

Digression: undergrad linear algebra

If Z is invertible, then W and $Z W Z^{-1}$ have the same eigenvalues. However, W and $Z W Z^{\top}$ may have different eigenvalues.

Theorem (Sylvester's law of inertia)
W and $Z W Z^{\top}$ have the same number of positive, negative, and zero eigenvalues.
In particular, $n_{\geq 0}(W)=n_{\geq 0}\left(Z W Z^{\top}\right)$.
If Z is diagonal, $Z W Z^{T}$ is another weighted adjacency matrix of G.
Recall: We are done if every row of W is L^{2}-normalized.

Digression: undergrad linear algebra

If Z is invertible, then W and $Z W Z^{-1}$ have the same eigenvalues. However, W and $Z W Z^{\top}$ may have different eigenvalues.

Theorem (Sylvester's law of inertia)
W and $Z W Z^{\top}$ have the same number of positive, negative, and zero eigenvalues.
In particular, $n_{\geq 0}(W)=n_{\geq 0}\left(Z W Z^{\top}\right)$.
If Z is diagonal, $Z W Z^{\top}$ is another weighted adjacency matrix of G.
Recall: We are done if every row of W is L^{2}-normalized.
Does there exist Z such that every row of $Z W Z^{\top}$ is L^{2}-normalized?

Matrix scaling

Does there exist Z such that every row of $Z W Z^{\top}$ is L^{2}-normalized?

Matrix scaling

Does there exist Z such that every row of $Z W Z^{\top}$ is L^{2}-normalized?
This sort of question is studied in the field of matrix scaling.

Matrix scaling

Does there exist Z such that every row of $Z W Z^{\top}$ is L^{2}-normalized?
This sort of question is studied in the field of matrix scaling.
Meta-theorem: The existence of such a Z is controlled by the zero pattern of W.

Matrix scaling

Does there exist Z such that every row of $Z W Z^{\top}$ is L^{2}-normalized?
This sort of question is studied in the field of matrix scaling.
Meta-theorem: The existence of such a Z is controlled by the zero pattern of W.

Theorem (Sinkhorn (1964), Csima-Datta (1972))
Let W be a symmetric $n \times n$ matrix with no large zero blocks: if $|S|+|T| \geq n$, then $W[S, T] \neq 0$.

Matrix scaling

Does there exist Z such that every row of $Z W Z^{\top}$ is L^{2}-normalized?
This sort of question is studied in the field of matrix scaling.
Meta-theorem: The existence of such a Z is controlled by the zero pattern of W.

Theorem (Sinkhorn (1964), Csima-Datta (1972))
Let W be a symmetric $n \times n$ matrix with no large zero blocks: if $|S|+|T| \geq n$, then $W[S, T] \neq 0$.
Then there exists a diagonal matrix Z such that every row of $Z W Z^{\top}$ is L^{2}-normalized.

Matrix scaling

Does there exist Z such that every row of $Z W Z^{\top}$ is L^{2}-normalized?
This sort of question is studied in the field of matrix scaling.
Meta-theorem: The existence of such a Z is controlled by the zero pattern of W.

Theorem (Sinkhorn (1964), Csima-Datta (1972))
Let W be a symmetric $n \times n$ matrix with no large zero blocks: if $|S|+|T| \geq n$, then $W[S, T] \neq 0$.
Then there exists a diagonal matrix Z such that every row of $Z W Z^{\top}$ is L^{2}-normalized.

We are done if W has no large zero blocks.

The final cases

We are done if W has no large zero blocks.

The final cases

We are done if W has no large zero blocks.
Suppose there exist S, T with $|S|+|T| \geq n$ and $W[S, T]=0$.

The final cases

We are done if W has no large zero blocks.
Suppose there exist S, T with $|S|+|T| \geq n$ and $W[S, T]=0$.

S, T disjoint

The final cases

We are done if W has no large zero blocks.
Suppose there exist S, T with $|S|+|T| \geq n$ and $W[S, T]=0$.

S, T disjoint

The final cases

We are done if W has no large zero blocks.
Suppose there exist S, T with $|S|+|T| \geq n$ and $W[S, T]=0$.

S, T disjoint

$$
S=T
$$

The final cases

We are done if W has no large zero blocks.
Suppose there exist S, T with $|S|+|T| \geq n$ and $W[S, T]=0$.

S, T disjoint

$S=T$

in general

The final cases

We are done if W has no large zero blocks.
Suppose there exist S, T with $|S|+|T| \geq n$ and $W[S, T]=0$.

In any case, we are done by induction + Cauchy interlacing.

Proof summary

Proof summary

Theorem (Kwan-W. (2023+))
If G is C_{4}-free, then $n_{\geq 0}(W) \geq 0.232 n$ for every WAM W of G.

Proof summary

Theorem (Kwan-W. (2023+))
If G is C_{4}-free, then $n_{\geq 0}(W) \geq 0.232 n$ for every WAM W of G.

Proof.

- If W has large zero blocks, apply induction.

Proof summary

Theorem (Kwan-W. (2023+))
If G is C_{4}-free, then $n_{\geq 0}(W) \geq 0.232 n$ for every WAM W of G.

Proof.

- If W has large zero blocks, apply induction.
- If not, use matrix scaling: find a diagonal Z so that every row of $W^{\prime}:=Z W Z^{\top}$ is L^{2}-normalized.

Proof summary

Theorem (Kwan-W. (2023+))
If G is C_{4}-free, then $n_{\geq 0}(W) \geq 0.232 n$ for every WAM W of G.

Proof.

- If W has large zero blocks, apply induction.
- If not, use matrix scaling: find a diagonal Z so that every row of $W^{\prime}:=Z W Z^{\top}$ is L^{2}-normalized.
- W^{\prime} is another WAM of G, and $n_{\geq 0}(W)=n_{\geq 0}\left(W^{\prime}\right)$.

Proof summary

Theorem (Kwan-W. (2023+))
If G is C_{4}-free, then $n_{\geq 0}(W) \geq 0.232 n$ for every WAM W of G.

Proof.

- If W has large zero blocks, apply induction.
- If not, use matrix scaling: find a diagonal Z so that every row of $W^{\prime}:=Z W Z^{T}$ is L^{2}-normalized.
- W^{\prime} is another WAM of G, and $n_{\geq 0}(W)=n_{\geq 0}\left(W^{\prime}\right)$.
- Let X be the RV sampling eigenvalues of W^{\prime}.

Proof summary

Theorem (Kwan-W. (2023+))
If G is C_{4}-free, then $n_{\geq 0}(W) \geq 0.232 n$ for every WAM W of G.

Proof.

- If W has large zero blocks, apply induction.
- If not, use matrix scaling: find a diagonal Z so that every row of $W^{\prime}:=Z W Z^{\top}$ is L^{2}-normalized.
- W^{\prime} is another WAM of G, and $n_{\geq 0}(W)=n_{\geq 0}\left(W^{\prime}\right)$.
- Let X be the RV sampling eigenvalues of W^{\prime}.
- We have $\mathbb{E}[X]=0, \mathbb{E}\left[X^{2}\right]=1, \mathbb{E}\left[X^{4}\right] \leq 2$.

Proof summary

Theorem (Kwan-W. (2023+))
If G is C_{4}-free, then $n_{\geq 0}(W) \geq 0.232 n$ for every WAM W of G.

Proof.

- If W has large zero blocks, apply induction.
- If not, use matrix scaling: find a diagonal Z so that every row of $W^{\prime}:=Z W Z^{\top}$ is L^{2}-normalized.
- W^{\prime} is another WAM of G, and $n_{\geq 0}(W)=n_{\geq 0}\left(W^{\prime}\right)$.
- Let X be the RV sampling eigenvalues of W^{\prime}.
- We have $\mathbb{E}[X]=0, \mathbb{E}\left[X^{2}\right]=1, \mathbb{E}\left[X^{4}\right] \leq 2$. Therefore,

$$
n_{\geq 0}(W)=n_{\geq 0}\left(W^{\prime}\right)=n \cdot \operatorname{Pr}(X \geq 0) \geq 0.232 n .
$$

Open problems

Open problems

Our technique seems unable to deal with graphs with many C_{4}.

Open problems

Our technique seems unable to deal with graphs with many C_{4}.

Conjecture

Let $G \sim \mathbb{G}\left(n, \frac{1}{2}\right)$. With probability $1-o(1)$, every WAM of G satisfies

$$
n_{\geq 0}(W)=\Omega\left(\frac{n}{\log n}\right)
$$

Open problems

Our technique seems unable to deal with graphs with many C_{4}.

Conjecture

Let $G \sim \mathbb{G}\left(n, \frac{1}{2}\right)$. With probability 1 - o(1), every WAM of G satisfies

$$
n_{\geq 0}(W)=\Omega\left(\frac{n}{\log n}\right)
$$

Since $\alpha(G)=O(\log n)$ with high probability, this would show that the inertia bound is very far from tight for almost all graphs.

Open problems

Our technique seems unable to deal with graphs with many C_{4}.

Conjecture

Let $G \sim \mathbb{G}\left(n, \frac{1}{2}\right)$. With probability $1-o(1)$, every WAM of G satisfies

$$
n_{\geq 0}(W)=\Omega\left(\frac{n}{\log n}\right)
$$

Since $\alpha(G)=O(\log n)$ with high probability, this would show that the inertia bound is very far from tight for almost all graphs.
There exists W such that $n_{\geq 0}(W)=\chi(\bar{G})$, so $\Theta\left(\frac{n}{\log n}\right)$ is best possible.

Open problems

Our technique seems unable to deal with graphs with many C_{4}.

Conjecture

Let $G \sim \mathbb{G}\left(n, \frac{1}{2}\right)$. With probability 1 - o(1), every WAM of G satisfies

$$
n_{\geq 0}(W)=\Omega\left(\frac{n}{\log n}\right) .
$$

Since $\alpha(G)=O(\log n)$ with high probability, this would show that the inertia bound is very far from tight for almost all graphs.
There exists W such that $n_{\geq 0}(W)=\chi(\bar{G})$, so $\Theta\left(\frac{n}{\log n}\right)$ is best possible.

Conjecture

For all k, there exists G with $\alpha(G)=2$ but $n_{\geq 0}(W) \geq k$ for any WAM.

Open problems

Our technique seems unable to deal with graphs with many C_{4}.

Conjecture

Let $G \sim \mathbb{G}\left(n, \frac{1}{2}\right)$. With probability $1-o(1)$, every WAM of G satisfies

$$
n_{\geq 0}(W)=\Omega\left(\frac{n}{\log n}\right) .
$$

Since $\alpha(G)=O(\log n)$ with high probability, this would show that the inertia bound is very far from tight for almost all graphs.
There exists W such that $n_{\geq 0}(W)=\chi(\bar{G})$, so $\Theta\left(\frac{n}{\log n}\right)$ is best possible.

Conjecture

For all k, there exists G with $\alpha(G)=2$ but $n_{\geq 0}(W) \geq k$ for any WAM.

Question

Is it decidable to compute the best possible inertia bound?

Thank you!

