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Abstract

The inertia bound and ratio bound (also known as the Cvetković bound and
Hoffman bound) are two fundamental inequalities in spectral graph theory, giving
upper bounds on the independence number α(G) of a graph G in terms of spectral
information about a weighted adjacency matrix of G. For both inequalities, given
a graph G, one needs to make a judicious choice of weighted adjacency matrix to
obtain as strong a bound as possible.

While there is a well-established theory surrounding the ratio bound, the inertia
bound is much more mysterious, and its limits are rather unclear. In fact, only
recently did Sinkovic find the first example of a graph for which the inertia bound
is not tight (for any weighted adjacency matrix), answering a longstanding question
of Godsil. We show that the inertia bound can be extremely far from tight, and
in fact can significantly underperform the ratio bound: for example, one of our
results is that for infinitely many n, there is an n-vertex graph for which even the
unweighted ratio bound can prove α(G) ≤ 4n3/4, but the inertia bound is always
at least n/4. In particular, these results address questions of Rooney, Sinkovic, and
Wocjan–Elphick–Abiad.

1 Introduction

Spectral graph theory contains a wide array of deep and surprising results which relate
certain combinatorial graph parameters to linear-algebraic parameters of associated ma-
trices. Of particular importance are those results which bound the independence number
α(G) of a graph G in terms of its spectrum, as such results have many applications in
other areas of combinatorics (see e.g. the monographs [8, 9, 24, 25]).

Probably the most famous such result is the ratio bound (also known as the Hoffman
bound). To state it, we need some notation. If G is a graph with vertex set {1, . . . , n},
we say that A is a weighted adjacency matrix of G if Aij = 0 whenever ij is not an edge
of G. In other words, we can obtain A by starting with the adjacency matrix of G, and
replacing every 1 by an arbitrary real number (including zero and negative numbers),
while maintaining symmetry of the matrix.
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Theorem 1.1 (Ratio bound). Let G be a graph and let A be a weighted adjacency matrix
of G with equal row sums. Let λmin and λmax be the minimum and maximum eigenvalues
of A, respectively. Then

α(G) ≤
∣∣∣∣ λmin

λmax − λmin

∣∣∣∣n.
The ratio bound was first proved by Hoffman (unpublished), who only stated it in

the case that A is the (ordinary) adjacency matrix of G. Even this result is surprisingly
powerful; for example, it can be used to give a short proof of the Erdős–Ko–Rado the-
orem [22] (see e.g. [24, Section 2.5] for details). However, the flexibility of choosing an
arbitrary weighted adjacency matrix makes the ratio bound much more powerful (see e.g.
[48]). Determining the optimal weights to use for the ratio bound can be formulated as
a semidefinite program, and the rich theory of semidefinite optimization can therefore
be used to theoretically and computationally determine the optimal choice of weights for
any given graph.

In this paper we will mostly be concerned with a closely related, yet much more
mysterious, bound, known as the inertia bound (or the Cvetković bound). For a symmetric
n× n matrix A, we denote by n≥0(A) the number of non-negative eigenvalues of A.

Theorem 1.2 (Inertia bound). Let G be a graph and let A be a weighted adjacency matrix
of G. Then1

α(G) ≤ n≥0(A).

In many ways, the story of the inertia bound parallels that of the ratio bound. It was
first proved by Cvetković [13], who stated it only for adjacency matrices. This already has
a number of interesting applications, including another short proof of the Erdős–Ko–Rado
theorem (see e.g. [24, Section 2.10] for details), but the flexibility of general weighted
adjacency matrices makes the bound much more powerful. The general statement for
arbitrary weighted adjacency matrices was perhaps first noted by Calderbank and Frankl
[10], who used it to prove several results in extremal set theory.

Compared to the ratio bound, we know very little about optimal weight matrices for
the inertia bound: the search space is infinite, and it is unclear how to minimize n≥0 over
this search space (though see [44] for some heuristics). In many specific applications,
such as recent work of Huang–Klurman–Pohoata [30] and the Calderbank–Frankl result
mentioned above [10], the choice of weights can be guided by the symmetries inherent
in the problem. Specifically, in such applications, one can restrict to a natural subset of
the space of all weighted adjacency matrices, called the Bose–Mesner algebra, and apply
representation-theoretic techniques to understand the structure of this algebra (see e.g.
[8, 24] for introductions to this theory). Similarly, Huang’s breakthrough resolution of the
sensitivity conjecture [29] used ideas closely related to the inertia bound, and the choice of
weights comes from the inherent symmetries of the hypercube (see [3, 5, 27, 32, 34, 41, 47]
for discussion on the connections to the inertia bound, and on the theory behind the choice
of weights). For more on the general relationships between graphs and spaces of matrices
supported on their edges, see [37] and references therein.

1In the literature, the inertia bound is often stated as α(G) ≤ min{n− n>0(A), n− n<0(A)}, but it
is easy to see that this statement is equivalent to Theorem 1.2, by replacing A with −A if it has more
negative than positive eigenvalues.
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Due to our lack of understanding of optimal weighted adjacency matrices, it is unclear
what the limits of the inertia bound really are, even for specific small graphs. The most
fundamental question in this direction is the following (which seems to have been first
explicitly asked by Godsil [23], and reiterated in [16, 17, 44]).

Question 1.3 (Godsil [23]). Is the inertia bound always tight? In other words, is it the
case that for every graph G, there exists a weighted adjacency matrix A with α(G) =
n≥0(A)?

Godsil’s question was open for more than a decade, until it was finally resolved in the
negative by Sinkovic [46].

Theorem 1.4 (Sinkovic [46]). Let G be the Paley graph on 17 vertices. Then α(G) = 3,
but n≥0(A) ≥ 4 for every weighted adjacency matrix A of G.

Sinkovic’s proof involves a great deal of casework, and as such is highly specific to the
17-vertex Paley graph. However, in recent years, new techniques were developed which
shed more light on Godsil’s question. First, Mančinska and Roberson [40] introduced
a new graph parameter, the quantum independence number αq, which satisfies αq(G) ≥
α(G) for every graph G. Moreover, they proved [40, Corollary 4.8] that for infinitely
many n, there exists an n-vertex graph with independence number O(n1−ε) and quantum
independence number Ω(n/log n), for some small absolute constant ε > 0. More recently,
Wocjan, Elphick and Abiad [49] proved that the inertia bound is also an upper bound on
the quantum independence number, even when one allows Hermitian weights. Namely,
they proved [49, Theorem 3.3] that if A is a Hermitian weighted adjacency matrix2 of G,
then αq(G) ≤ n≥0(A). Putting these results together, one obtains the following, stronger,
negative answer to Question 1.3.

Theorem 1.5 ([40, 49]). There exist constants C, c, ε > 0 such that the following holds.
For infinitely many values of n, there exists an n-vertex graph with

α(G) ≤ Cn1−ε and n≥0(A) ≥ αq(G) ≥ c
n

log n

for every Hermitian weighted adjacency matrix A of G.

Theorems 1.4 and 1.5 provide answers to Question 1.3, but this is really just the
tip of the iceberg. The most obvious follow-up question (raised by Rooney [44] and
Sinkovic [46]) is how large the gap in Theorem 1.2 can be; Theorem 1.5 implies that this
gap can be as large as Ω(n/log n), but perhaps it can be even larger.

Second, there is the quantum analogue of Question 1.3, that is, the question of whether
the inertia bound3 is always tight for the quantum independence number. This question
was answered by Wocjan, Elphick, and Abiad [49], who gave an example of an 18-vertex
graph G with αq(G) < n≥0(A) for all Hermitian weighted adjacency matrices A of G.
However, this example does not rule out the possibility that every graph has a weighted

2Here, we say that A is a Hermitian weighted adjacency matrix of G if it is a Hermitian matrix with
complex entries such that Aij = 0 whenever ij /∈ E(G).

3Here, and from now on, when we say “the inertia bound” we will usually mean the minimum of
n≥0(A) over all weighted adjacency matrices A of a given graph.
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adjacency matrix for which the gap between the quantum independence number and the
inertia bound is always at most 1.

Third, even though we now know that the inertia bound is not always tight, perhaps it
is still the case that the inertia bound is in some sense “the best possible spectral bound”
on the independence number. Concretely, is the inertia bound always stronger than the
ratio bound? Actually, this question is closely related to the previous one, since the ratio
bound is also an upper bound on the quantum independence number of a graph [40,
Corollary 4.9].

As our main result, we address all the above questions, showing that in fact the inertia
bound can dramatically underperform the ratio bound, and thereby also obtaining new
bounds on the largest possible gap between the inertia bound and independence number.

Theorem 1.6. For infinitely many positive integers n, there exists an n-vertex regular
graph G, whose (ordinary) adjacency matrix has minimum and maximum eigenvalues
λmin and λmax, respectively, such that

α(G) ≤ αq(G) ≤
∣∣∣∣ λmin

λmax − λmin

∣∣∣∣n ≤ 4n
3
4 and n≥0(A) ≥

n

4

for every Hermitian weighted adjacency matrix A of G.

In fact, our main technical result is substantially stronger than Theorem 1.6: it shows
that the inertia bound is very weak whenever G is C4-free, i.e. does not contain C4 as a
subgraph. Moreover, we can obtain a small constant-factor improvement when G is also
C3-free, i.e. has girth at least 5.

Theorem 1.7. Let G be an n-vertex graph and let A be any Hermitian weighted adjacency
matrix of G.

(i) If G is C4-free, then
n≥0(A) ≥ βn,

where β =
√
3− 3

2
≈ 0.232.

(ii) If G has girth at least 5, then

n≥0(A) ≥
n

4
.

Theorem 1.7 immediately implies the existence of graphs for which the inertia bound is
far from tight, by letting G be a C4-free graph whose independence number is o(n). There
are many examples of such graphs, defined explicitly or obtained via the probabilistic
method. In particular, the statement of Theorem 1.6 follows from Theorem 1.7(ii), taking
G to be an edge-transitive induced subgraph of at least half the vertices of the polarity
graph of a finite projective plane, with girth at least 5 (such a graph was shown to exist by
Parsons [43, Theorem 1(a)])4. It is an interesting byproduct of our results that the inertia
bound is so weak for such algebraically-defined graphs, as generally speaking, techniques

4By [38, Theorem 9], the Lovász theta number of G is then |λmin/(λmax − λmin)|n, where λmin, λmax

are the minimum and maximum eigenvalues, respectively, of the ordinary adjacency matrix. The Lovász
theta number is monotonic with respect to induced subgraphs, and it is well-known (e.g. [42]) that the
theta number of the full polarity graph G0 is at most 2|V (G0)|3/4.
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from spectral graph theory seem particularly well-suited to highly structured graphs with
many symmetries.

We also remark that if one is interested in the largest possible multiplicative gap
between the independence number and inertia bound, one can combine Theorem 1.7(i)
with a result of Bohman and Keevash [6]: they used the random C4-free process to prove

the existence of C4-free graphs with independence number O((n log n)
2
3 ). It is a major

open problem, asked repeatedly by Erdős (e.g. [18, 19, 20, 21]), to determine whether

there exist C4-free graphs with independence number n
1
2
+o(1). We remark too that the

constant factors β and 1
4
in Theorem 1.7 appear to be the best possible with our technique,

although there is no reason to believe they are optimal.
Although our proof is quite short, we end this introduction with a high-level sketch

of the argument. Let A be a weighted adjacency matrix of a C4-free graph G. If we let
the eigenvalues of A be λ1 ≥ · · · ≥ λn, and let X be a random variable taking on value
λi with probability 1/n (this is the empirical spectral distribution), then our task reduces
to proving a lower bound on Pr(X ≥ 0). To this end, it suffices to study the moments
of this random variable: it turns out that Pr(X ≥ 0) is reasonably large whenever E[X4]
is not too much larger than (E[X2])2 (Lemma 2.3). So, it suffices to prove an upper
bound on the fourth moment of X. Using the hypothesis that G is C4-free, one can
obtain such an upper bound, as long as one has some control on the sizes of entries of
A (see Lemma 3.1); however, this approach cannot work if the entries of A come from
many very different scales. To overcome this obstruction, we apply techniques from the
field of matrix scaling (see Lemmas 2.6 and 2.7), together with Sylvester’s law of inertia
(Lemma 2.4), to either reduce to the case where the entries of A have roughly the same
size, or to split the problem into smaller sub-problems and apply induction.

In the next section, we collect a few preliminaries we will need in the proof of Theo-
rem 1.7, which we prove in Section 3. We end in Section 4 with some concluding remarks.

Remark. Theorem 1.2 shows that the inertia bound can be much weaker than the ratio
bound. As suggested by Anurag Bishnoi (following an early version of this paper), it
is also natural to ask the opposite question: can the ratio bound be much weaker than
the inertia bound? Perhaps the easiest way to demonstrate this is using graphs of the
form G = Kd,d ⊔ Kd+1 ⊔ · · · ⊔ Kd+1 (i.e., the disjoint union of a d-regular complete
bipartite graph with several copies of the d-regular complete graph). Indeed, if there are
d copies of Kd+1, then G has n = 2d+ d(d+ 1) vertices; one can compute that the ratio
bound is n/2 and that the inertia bound gives the exact independence number, which is
d+(1+ · · ·+1) = 2d = O(

√
n). More interestingly, Ihringer [33] showed that an n-vertex

graph arising from a so-called association scheme introduced by Cameron and Seidel [11]
has ratio bound Ω(n3/4) and inertia bound O(n1/2) (see also [15] for another application
of the same association scheme). This example is significant because for graphs arising
from association schemes, the ratio bound coincides with two other important bounds
on the independence number of a graph: the Lovász theta function and Delsarte’s linear
programming bound (see [45] for details).

2 Preliminaries

We begin with a few preliminary results, which we mostly cite from previous works.
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2.1 Probabilistic bounds via moments

First, we need two inequalities, due respectively to He, Zhang, and Zhang [26] and Zelen
[50], related to the general phenomenon that if the fourth moment of a random variable
is commensurate to its second moment squared, then the distribution of X cannot be too
“extreme”. In particular, if such a random variable has mean zero, then it must have
a reasonable proportion of its probability mass on each side of zero. We remark that a
simpler result with worse quantitative dependencies appears in [2, Lemma 3.2(i)], and a
general approach to proving such inequalities is given in [4, 36].

Lemma 2.1 ([26, Theorem 2.1]). For any real-valued random variable Y and for any
y > 0, we have

Pr(Y ≥ 0) ≤ 1− 4

9
(2
√
3− 3)

(
−2E[Y ]

y
+

3E[Y 2]

y2
− E[Y 4]

y4

)
.

One can get stronger bounds if one is given information on E[Y 3]; the following such
result is a special case of [50, equation (12)], specialized to E[Y 3] = 0.

Lemma 2.2 ([50, equation (12)]). For any real-valued random variable Y with E[Y ] =
0,E[Y 2] = 1, and E[Y 3] = 0, and any a ∈ (−

√
E[Y 4],

√
E[Y 4]), we have

Pr(Y < a) ≥ 1

2
√
E[Y 4]

(√
E[Y 4]− a

) .
We will apply Lemmas 2.1 and 2.2 in the following form, suited to our purposes.

Lemma 2.3. Let X be a real-valued random variable satisfying E[X] = 0,E[X2] = 1,
and E[X4] ≤ 2.

(i) We have Pr(X > 0) ≥ β, where β =
√
3− 3

2
as in Theorem 1.7.

(ii) If moreover E[X3] = 0, then Pr(X > 0) ≥ 1
4
.

Proof. Let Y = −X, and note that E[Y ] = 0,E[Y 2] = 1, and E[Y 4] ≤ 2. We apply
Lemma 2.1 with y = 2/

√
3 (which is chosen to yield the best possible bound). We find

that

Pr(X > 0) = Pr(Y < 0) = 1− Pr(Y ≥ 0) ≥ 4

9
(2
√
3− 3)

(
3

y2
− 2

y4

)
=

√
3− 3

2
= β,

which proves Lemma 2.3(i). Under the added assumption that E[X3] = 0, we have that
E[Y 3] = 0 as well. Applying Lemma 2.2 with a = 0 shows that

Pr(X > 0) = Pr(Y < 0) ≥ 1

2E[Y 4]
≥ 1

4
,

proving Lemma 2.3(ii).
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2.2 Simple facts about eigenvalues

We will need two basic results of linear algebra. The first is called Sylvester’s law of
inertia; see e.g. [28, Theorem 4.5.8] for a proof.

Lemma 2.4. Let A be a Hermitian n × n matrix, let Z be an invertible n × n matrix,
and let B = ZAZ∗. Then A and B have the same number of positive, negative, and zero
eigenvalues. In particular, n≥0(A) = n≥0(B).

We will also use the following simple consequence of Cauchy’s interlacing formula;
see e.g. [25, Theorem 9.1.1] or [28, Theorem 4.3.28] for a proof. We remark that it
immediately implies the inertia bound if applied to a zero principal submatrix, i.e. an
independent set.

Lemma 2.5. Let A be a Hermitian matrix, and let A′ be a principal submatrix of A.
Then n≥0(A) ≥ n≥0(A

′).

2.3 Matrix scaling

Finally, we need a result about matrix scaling. Matrix scaling deals with questions about
when one can scale the rows and columns of a matrix in order to obtain specified row and
column sums. Somewhat surprisingly, it turns out that such a scaling is possible if and
only if the set of non-zero entries of the matrix satisfies certain combinatorial conditions.
For more on the general matrix scaling problem, see e.g. the survey [31].

Specifically, we use the following result, which was proved by Datta [14] and subse-
quently reproved by Csima and Datta [12]. Here and for the rest of the paper, we use
the notation [n] = {1, . . . , n}. Recall that a matrix is doubly stochastic if all its row and
column sums are equal to 1.

Lemma 2.6 ([12, 14]). Let M be a symmetric n×n matrix with non-negative real entries.
The following two conditions are equivalent.

1. There exists a diagonal matrix D with strictly positive diagonal entries such that
DMD is doubly stochastic.

2. For every (a, b) ∈ [n]2 with Mab ̸= 0, there exists a permutation π ∈ Sn with
π(a) = b such that Miπ(i) ̸= 0 for all i ∈ [n].

We will use the following simple corollary of Lemma 2.6. If M is an n×n matrix and
S, T ⊆ [n], we denote by M [S, T ] the submatrix of M of rows and columns in S and T ,
respectively.

Lemma 2.7. Let M be a symmetric n × n matrix with non-negative entries. Suppose
that for all non-empty S, T ⊆ [n] with M [S, T ] = 0, we have |S| + |T | < n. Then there
exists a diagonal matrix D with strictly positive diagonal entries such that DMD is doubly
stochastic.

Proof. Let G be the bipartite graph with parts A,B, where A = B = [n], and where
(x, y) ∈ E(G) if and only if Mxy ̸= 0. Suppose for contradiction that there exists no
such D. By Lemma 2.6, there exists an (a, b) ∈ [n]2 such that Mab ̸= 0, but there is no
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permutation π such that π(a) = b and Miπ(i) ̸= 0 for all i. Equivalently, the edge (a, b)
participates in no perfect matching of G.

Now, let H be the subgraph of G induced on the vertex set (A \ {a}) ∪ (B \ {b}).
Then H has no perfect matching. By Hall’s theorem (see e.g. [25, Theorem 15.15.3]),
this implies that there exists some non-empty S ⊆ A with |NH(S)| < |S|. Letting
T = (B \ {b}) \NH(S), we find that there is no edge between S and T , and

|S|+ |T | = |S|+ ((|B| − 1)− |NH(S)|) > |S|+ ((n− 1)− |S|) = n− 1.

Hence, we have found non-empty subsets S, T ⊆ [n] with |S| + |T | ≥ n. Moreover, as
there is no edge between S and T in H, there is also no edge between them in G, and
hence Mst = 0 for all s ∈ S, t ∈ T , a contradiction.

3 Proof of Theorem 1.7

In this section, we prove Theorem 1.7. We begin by proving the following lemma, which
implies Theorem 1.7 in case all rows of the weighted adjacency matrix have the same L2

norm. Later, we will see how this special case actually implies the full theorem.

Lemma 3.1. Let G be an n-vertex graph, and let B be a Hermitian weighted adjacency
matrix of G. Suppose that every row of B has L2 norm 1, i.e. that

∑n
j=1|Bij|2 = 1 for

all i ∈ [n].

(i) If G is C4-free, then n≥0(B) ≥ βn, where β =
√
3− 3

2
as in Theorem 1.7.

(ii) If G has girth at least 5, then n≥0(B) ≥ n/4.

Proof. We begin with Lemma 3.1(i), so let G be a C4-free graph. Let λ1 ≥ · · · ≥ λn be
the eigenvalues of B. Let X be the random variable that takes value λi with probability
1/n, for all i ∈ [n]. We have the identity

n≥0(B) = n · Pr(X ≥ 0) ≥ n · Pr(X > 0). (1)

Since B has zero diagonal, we know that E[X] = tr(B)/n = 0. Similarly, by the assump-
tion that the rows of B have L2 norm 1, we can compute

E[X2] =
1

n
tr(B2) =

1

n

n∑
i=1

n∑
j=1

BijBji =
1

n

n∑
i=1

n∑
j=1

|Bij|2 = 1.

We would like to apply Lemma 2.3, so we need to estimate E[X4], which is equal to
1
n
tr(B4). Note that

tr(B4) =
n∑

i,j,k,ℓ=1

BijBjkBkℓBℓi.

Since B is a weighted adjacency matrix of G, a tuple of vertices (i, j, k, ℓ) can provide a
nonzero contribution only if it represents a closed walk in G.

We now use the fact that G is C4-free to find that the only closed walks of length 4
which provide a nonzero contribution to tr(B4) are degenerate (i.e. they repeat vertices).
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In G, such walks come in two combinatorial types: those that traverse a single edge four
times, and those that traverse a cherry (i.e. a 2-edge path) twice. Each single-edge walk
is counted twice, once for each of its starting vertices. Each cherry walk is counted four
times: once starting at each of its outer vertices, and twice starting at its central vertex,
since from there the cherry can be traversed in two different orientations.

We can sum over (unlabeled) cherries by first summing over choices for the central
vertex, then summing over ordered pairs of candidates for the outer vertices, then sub-
tracting the contribution from non-distinct candidates for the outer vertices (and then
dividing by 2 to account for the fact that the outer vertices should not be ordered). This
yields

tr(B4) =
n∑

i=1

n∑
j=1

|Bij|4 + 4 · 1
2

 n∑
i=1

(
n∑

j=1

|Bij|2
)2

−
n∑

i=1

n∑
j=1

|Bij|4


= 2
n∑

i=1

(
n∑

j=1

|Bij|2
)2

−
n∑

i=1

n∑
j=1

|Bij|4

= 2n−
n∑

i=1

n∑
j=1

|Bij|4 ≤ 2n.

Therefore,

E[X4] =
1

n
tr(B4) ≤ 2.

We may therefore apply Lemma 2.3(i) to find that Pr(X > 0) ≥ β. Plugging this into
(1) completes the proof of Lemma 3.1(i). Then, Lemma 3.1(ii) can be proved in virtually
the same way, using Lemma 2.3(ii) instead of Lemma 2.3(i). Indeed, note that if G has
girth at least 5 then it has no closed walks of length 3, so E[X3] = 0.

We are now ready to prove Theorem 1.7.

Proof of Theorem 1.7. We begin with Theorem 1.7(i). Our proof is by induction on n,
with the base case n = 1 being trivial as then A must be the zero matrix. We now assume
that n > 1, and that the result has been proved for all smaller values of n.

We split into two cases according to Lemma 2.7. Suppose first that there exist non-
empty sets S, T ⊆ [n] with |S|+ |T | ≥ n and A[S, T ] = 0. As A is Hermitian, this implies
that A[T, S] = 0 as well. Let us permute the rows of A so that the rows in S \ T come
first, then those in S∩T , then those in T \S, and finally those in [n]\ (S∪T ) (and apply
the same permutation to the columns, so that A remains Hermitian). Then we can write
A in block form as

S \ T S ∩ T T \ S


S \ T A1 0 0 ∗
S ∩ T 0 0 0 ∗
T \ S 0 0 A2 ∗

∗ ∗ ∗ ∗

,

where A1, A2 are principal submatrices of A of sizes |S\T |, |T \S|, respectively, and where
∗ denotes an arbitrary submatrix. By Lemma 2.5, we know that n≥0(A) ≥ n≥0(A

′),
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where A′ is the principal submatrix on rows and columns in S ∪ T . Moreover, as A′

is block-diagonal, its eigenvalues are those of A1, those of A2, plus |S ∩ T | additional
zero eigenvalues. Applying the inductive hypothesis to A1 and A2, which are Hermitian
weighted adjacency matrices of smaller C4-free graphs, we find that

n≥0(A) ≥ n≥0(A
′)

= n≥0(A1) + n≥0(A2) + |S ∩ T |
≥ β|S \ T |+ β|T \ S|+ |S ∩ T |
≥ β (|S \ T |+ |T \ S|+ 2|S ∩ T |) [as β ≤ 1

2
]

= β(|S|+ |T |)
≥ βn.

This concludes the proof in this case. Therefore, we may assume that such sets S, T
do not exist. Let M be the matrix defined by Mij = |Aij|2, and note that M has non-
negative entries and the same set of zero entries as A. In particular, if M [S, T ] = 0
for some S, T ⊆ [n], then |S| + |T | < n. By Lemma 2.7, we conclude that there exists
a diagonal matrix D with strictly positive diagonal entries such that DMD is doubly
stochastic. Let the diagonal entries of D be d1, . . . , dn.

Now, let Z be the diagonal matrix whose diagonal entries are
√
d1, . . . ,

√
dn, and let

B = ZAZ = ZAZ∗. By Lemma 2.4, we have that n≥0(B) = n≥0(A). Moreover, the (i, j)
entry of B is

√
didjAij, and hence for any i ∈ [n],

n∑
j=1

|Bij|2 =
n∑

j=1

didj|Aij|2 =
n∑

j=1

didjMij =
n∑

j=1

(DMD)ij = 1,

since the matrix DMD is doubly stochastic. We may now apply Lemma 3.1(i) to B to
conclude that n≥0(A) = n≥0(B) ≥ βn, which completes the proof. The proof of Theo-
rem 1.7(ii) is again virtually identical; one simply replaces the application of Lemma 3.1(i)
above by Lemma 3.1(ii).

4 Concluding remarks

To end this paper, we would like to highlight two further questions about the inertia
bound that our techniques seem incapable of resolving. The first is a question of Ihringer
[32], who asked whether the inertia bound is tight for almost all graphs. This is equivalent
to asking about the tightness of the inertia bound for the binomial random graph G(n, 1

2
).

We make the following conjecture.

Conjecture 4.1. The following holds with probability 1−o(1) for G ∼ G(n, 1
2
) as n → ∞.

Every weighted adjacency matrix A of G has n≥0(A) = Ω( n
logn

).

In particular, as α(G(n, 1
2
)) = O(log n) with probability 1 − o(1), Conjecture 4.1

would imply that the inertia bound is far from tight for almost all graphs. An earlier
version of this paper conjectured a stronger bound, namely that n≥0(A) ≥ (1

2
− o(1))n

for every weighted adjacency matrix of G ∼ G(n, 1
2
). However, Noga Alon pointed out to

us that such a statement is false, and that Conjecture 4.1 would be best possible if true.
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Alon observed that for every graph G, there exists a weighted adjacency matrix A with
n≥0(A) = χ(G), where χ(G) is the clique cover number of G. Indeed, one can easily check
that the adjacency matrix of a disjoint union of m cliques has exactly m non-negative
eigenvalues, which implies the claim by taking A to be the adjacency matrix of a subgraph
of G which forms an optimal clique cover. A famous result of Bollobás [7] implies that
χ(G) = O( n

logn
) with probability 1 − o(1) for G ∼ G(n, 1

2
), showing that Conjecture 4.1

would be best possible if true.
Theorem 1.7 (together with results on the C4-free process [6]) implies that there

exist graphs G for which n≥0(A) is larger than α(G)
3
2
−o(1) for any weighted adjacency

matrix A of G. If Conjecture 4.1 is true, it would imply that there exist graphs with
n≥0(A) > 2α(G)/3 for any weighted adjacency matrix A. However, neither of these rule out
the possibility that n≥0(A) is upper-bounded by some function of α(G). We conjecture
that no such upper bound exists.

Conjecture 4.2. For every integer k, there exists a graph G with α(G) = 2 and n≥0(A) ≥
k for every weighted adjacency matrix A of G.

We remark that a result of Konyagin [35] implies the analogous statement for the
ratio bound, i.e. that for every k ∈ N there exists a graph G with α(G) = 2 for which the
ratio bound (with any weighted adjacency matrix) cannot be used to prove α(G) < k.
Indeed, Konaygin showed that there are graphs G with α(G) = 2 which have arbitrarily
large values of the so-called Lovász theta number [38]. For more details, see [1] or [39,
Chapter 11].

Acknowledgements: We are grateful to Noga Alon, Anurag Bishnoi, Clive Elphick,
and Ferdinand Ihringer for helpful comments and interesting discussions on earlier drafts
of this paper.
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[18] P. Erdős, On the combinatorial problems which I would most like to see solved, Com-
binatorica 1 (1981), no. 1, 25–42.
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