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1 Properties of random graphs

In this talk we will be studying the binomial (or Erdős–Rényi) random graph model, denoted
G(n, p). This is a random n-vertex graph, obtained by making each of the

(
n
2

)
pairs of vertices

an edge with probability p, with all these choices made independently.
The study of such random graphs goes back to work of Erdős and Rényi from the 1960s.

A fundamental phenomenon that they observed is that random graphs exhibit thresholds
or phase transitions. Loosely speaking, these are results of the following type: for a given
property of graphs (e.g. being connected, or containing a triangle, or having chromatic
number at least 100, or containing a Hamiltonian path), the probability that G(n, p) has
this property is very close to 0 if p is smaller than some function p∗(n), and very close to
1 if p is larger than p∗(n). There is at this point a rich theory of powerful and general
meta-theorems, which imply that such threshold phenomena occur for essentially all natural
properties of graphs. But rather than stating these general results, I will just give a few
examples of such threshold results, to give a sense of their flavor. Let’s start with the
connectivity theorem of Erdős and Rényi.

Theorem 1 (Erdős–Rényi 1959). For any ε > 0,

lim
n→∞

Pr(G(n, p) is connected) =

{
0 if p ≤ (1− ε) logn

n
,

1 if p ≥ (1 + ε) logn
n

.

Such a result really consists of two statements, which need to be proved separately, and
which are usually called the 0-statement and 1-statement. In general, completely different
arguments need to be used for the two statements, since they are really saying two different
things; to prove the 1-statement you need to explain why the random graph is almost surely
connected, whereas to prove the 0-statement you need to explain why it is almost surely
disconnected. It is often the case, and the connectivity theorem is a good example of this,
that the 0-statement is substantially easier to prove than the 1-statement—often there is
a simple “explanation” for why a graph may fail to have a certain property, and then an
elementary computation implies the 0-statement. In the case of connectivity, one can show
that if p ≤ (1−ε) log n/n, then with high probability G(n, p) has some isolated vertices, and
hence is certainly not connected.

Another important threshold result is the following. We denote by vH , eH the number of
vertices and edges, respectively, of H, and define its maximum density to be

m(H) = max
J⊆H

eJ
vJ

,

where the maximum runs over all non-empty subgraphs of H.

Theorem 2 (Erdős–Rényi 1960, Bollobás 1981 in full generality). Let H be a graph. Then

lim
n→∞

Pr(H is a subgraph of G(n, p)) =

{
0 if p = o(n−1/m(H)),

1 if p = ω(n−1/m(H)).
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Moreover, if p = cn−1/m(H) for some constant c, then Pr(H is a subgraph of G(n, p)) is
bounded away from both 0 and 1.

To understand this, we can estimate the expected number of copies of H in G(n, p).
There are, up to a constant factor, nvH many choices for where H can appear in G(n, p).
For each such “potential” copy, the probability that it is truly a copy of H is peH , as we
need eH random trials to all succeed, and each one succeeds independently with probability
p. Therefore, the expected number of copies of H is Θ(nvHpeH ). Thus, if p = o(n−vH/eH ),
then this quantity is o(1), and we expect G(n, p) to have no copies of H. Of course, if H
has some subgraph J which is denser than H, we can run the same argument for copies of
J , which explains why the maximal density m(H) is the relevant parameter.

With an application of Markov’s inequality, the heuristic argument above can be turned
into a full proof of the 1-statement of Theorem 2, but as before, the 1-statement is noticeably
harder to prove.

To conclude this section, let me say a little bit more about the typical structure of a
sparse random graph. Denote d := pn; up to lower-order terms, this is the expected average
degree of the random graph G(n, p). It turns out that the size of d controls many aspects of
the typical behavior of G(n, p). For example, we have the following dichotomy.

• If d is a small constant (e.g. 10−10), then G(n, p) almost surely has a very simple
structure: all of its connected components have size O(log n), and the graph is 3-
colorable.

• On the other hand, if d is a large constant (e.g. 1010), then the structure of G(n, p) is
almost surely very complicated: there is a single, highly connected, “giant component”
containing the majority of the vertices, and the chromatic number of the graph is very
large.

2 Ramsey properties of graphs

The following foundational result is known as Ramsey’s theorem; it is the basis of a large,
highly active field of mathematics called Ramsey theory.

Theorem 3 (Ramsey 1930). For every integer t, there exists an integer n with the property
that any 2-coloring of E(Kn) contains a monochromatic Kt.

This theorem can be equivalently stated in the following form, which looks superficially
stronger.

Theorem 4. For every graph H, there exists a graph G with the property that any 2-coloring
of E(G) contains a monochromatic copy of H.

One says that G is Ramsey for H if the property above holds, that is, if every 2-coloring
of E(G) contains a monochromatic copy of H. Equivalently, G is Ramsey for H if the edges
of G cannot be partitioned into two H-free subgraphs. This is a “robust” version of the
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statement that G has many copies of H: not only does G have many copies, but they are so
tightly interlinked that one cannot destroy all of them by splitting E(G) into two parts.

There is an equivalent way of viewing this definition, which is a bit more abstract (and
thus somewhat harder to understand at first) but which yields a very useful perspective. Let
us denote by CH(G) the collection of copies of H within the graph G. We can view CH(G)
as an r-uniform hypergraph, where r = eH , as follows. Recall that an r-uniform hypergraph
consists of a vertex set V and a collection of hyperedges, which are subsets of V of size
r. Thus, a graph is the same as a 2-uniform hypergraph, and an r-uniform hypergraph is
essentially the same as an (r − 1)-dimensional simplicial complex. In any case, we can turn
CH(G) into a hypergraph by defining V to be the set of edges of G, and an r-subset of V is
a hyperedge of CH(G) if and only if that set of r edges define a copy of H in G.

Now, an edge-coloring of G is simply a coloring of the vertices of CH(G), and a monochro-
matic copy of H in G is simply a hyperedge of CH(G) which is monochromatic. Thus, G is
not Ramsey for H if and only if there is a coloring of the vertices of CH(G) with the property
that no hyperedge is monochromatic. In other words, G is not Ramsey for H if and only if
CH(G) is bipartite, i.e. has a proper 2-coloring. Equivalently, G is Ramsey for H if and only
if the chromatic number of CH(G) is at least 3.

3 Ramsey properties of random graphs

As one might expect, we can combine the two topics we have been discussing and ask the
following question: for a given graph H, what is the threshold that determines whether
G(n, p) is almost surely Ramsey for H?

People started asking this question in the late 1980s, and it was resolved in seminal work
of Rödl and Ruciński in the mid-1990s. But before stating the answer, let’s try to guess it
based on some intuitive reasoning.

Recall the hypergraph CH(G), consisting of all H-copies in G. If G is itself the random
graph G(n, p), then we obtain a random hypergraph CH(G(n, p)). We are interested in
understanding the threshold at which the chromatic number of this hypergraph becomes
“large”, i.e. at least 3; as discussed above, this is precisely the same as saying that G(n, p)
is Ramsey for H.

If we use our intuition from random graphs, we should expect the chromatic number to be
“small” if the average degree of CH(G(n, p)) is at most a small constant, and should expect
the chromatic number to be “large” if the average degree is at least some large constant.

What is the average degree in CH(G(n, p))? Well, recall that vertices of CH(G(n, p))
correspond to edges of G(n, p), and the expected number of copies of H containing a given
edge of G(n, p) is easily seen to be Θ(nvH−2peH−1). Define the maximal 2-density of H by

m2(H) := max
J⊆H

eJ − 1

vJ − 2
.

Using similar computations to before, we can conclude the following.
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Proposition 5. If p ≤ cn−1/m2(H), where c is a small constant, then the average degree of
CH(G(n, p)) is at most a small constant. On the other hand, if p ≥ Cn−1/m2(H), where C is
a large constant, then the average degree of CH(G(n, p)) is at least a large constant.

Because of this, the following theorem should not be surprising.

Theorem 6 (Rödl–Ruciński 1995). For every graph H with m2(H) > 1, there exist constants
C > c > 0 such that

lim
n→∞

Pr(G(n, p) is Ramsey for H) =

{
0 if p ≤ cn−1/m2(H),

1 if p ≥ Cn−1/m2(H).

The assumption m2(H) > 1 is equivalent to saying that H is not a forest; the threshold
for forests is also well-understood, but there are a few annoying edge cases and for simplicity
I prefer to avoid them.

While the Rödl–Ruciński theorem agrees exactly with our intuition developed above, that
is not to say that it is easy to prove. Moreover, in contrast to the examples we saw before,
neither the 0-statement or the 1-statement is easy. Indeed, Rödl and Ruciński developed a
wide array of ingeneous techniques for each of the two statements.

In the last decade, there has been a flurry of activity in developing powerful, general tools
which allow one to prove the 1-statement of many results, including Theorem 6. These began
with the transference principles of Conlon–Gowers, Schacht, and Friedgut–Rödl–Schacht,
and more recently the hypergraph container method of Balogh–Morris–Samotij and Saxton–
Thomason, which was applied in this setting by Nenadov–Steger. With these techniques, it
is now quite straightforward to prove the 1-statement of Theorem 6, and, moreover, to view
it as a special case of a general theory, rather than relying on the complex, ad hoc arguments
used by Rödl and Ruciński.

However, the 0-statement of Theorem 6 has resisted any such simplification. To under-
stand why, suppose we fix some H, and fix some G which is Ramsey for H. If G is a subgraph
of G(n, p), then certainly G(n, p) is Ramsey for H. Therefore,

Pr(G(n, p) is Ramsey for H) ≥ Pr(G is a subgraph of G(n, p)).

By Theorem 2, we know that this latter quantity is bounded away from zero if and only if
p = Ω(n−1/m(G)). Hence, if m(G) ≤ m2(H), then the 0-statement of Theorem 6 cannot be
true.

This explains (part of) the reason why the 0-statement of Theorem 6 is difficult: although
it is a probabilistic statement, it is at least as hard as the following statement, which Rödl
and Ruciński termed the “deterministic lemma”.

Lemma 7 (Deterministic lemma, Rödl–Ruciński 1995). Let H be a graph with m2(H) > 1.
If G is Ramsey for H, then m(G) > m2(H).

As explained above the deterministic lemma is a natural necessary condition for the 0-
statement of Theorem 6 to hold. More surprisingly, Rödl–Ruciński proved that this simple
necessary condition is also sufficient.
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Lemma 8 (Probabilistic lemma, Rödl–Ruciński 1995). Let H be a graph, and suppose that
m(G) > m2(H) for all graphs G which are Ramsey for H (i.e. the deterministic lemma is
true). There exists a constant c > 0 such that if p ≤ cn−1/m2(H), then

lim
n→∞

Pr(G(n, p) is Ramsey for H) = 0,

i.e. the 0-statement of Theorem 6 is true.

To understand why the probabilistic lemma is true, let us return to our random graph
intuition. Recall that if we have a random graph whose average degree is at most a small
constant, then all of its connected components are small. One can show that something sim-
ilar happens in the random hypergraph CH(G(n, p)): if its average degree is at most a small
constant (which is equivalent to saying p ≤ cn−1/m2(H)), then all of its connected components
have constant size. Therefore, to prove that G(n, p) is not Ramsey for H—or equivalently
that CH(G(n, p)) is 2-colorable—it suffices to prove that each of these constant-sized con-
nected components is 2-colorable. But this is precisely the statement of the deterministic
lemma! Indeed, by Theorem 2, we know that the only constant-sized graphs G that can ap-
pear in G(n, p) are those with m(G) ≤ m2(H), and hence each of the connected components
of CH(G(n, p)) corresponds to a graph G satisfying m(G) ≤ m2(H). By the determinis-
tic lemma, all of these are non-Ramsey for H, meaning that each connected component of
CH(G(n, p)) is 2-colorable.

This perspective also gives a nice way of thinking about the significance of the deter-
ministic lemma, and the meaning of Theorem 6. By the deterministic lemma, even when
p = Cn−1/m2(H), every “small” portion of G(n, p) is not Ramsey for H. Instead, the Ram-
seyness comes from the global structure of G(n, p), rather than from any local portion. This
is closely analogous to the fact that random graphs can have high chromatic number, despite
having low chromatic number whenever one considers only a small portion of the graph.

Incidentally, it is the failure of the deterministic lemma which makes Theorem 6 somewhat
more subtle for forests. For example, one can check that if H is a path on four vertices and
G is obtained from C5 by adding a leaf to each vertex of the C5, then G is Ramsey for H and
satisfies m(G) = 1 = m2(H). Thus, the deterministic lemma is simply false for this choice
of H, and therefore so is the 0-statement of Theorem 6.

4 Asymmetric Ramsey properties

Up to now, we have been concerned with symmetric Ramsey properties, wherein one is
interested in finding a monochromatic copy of H in either of the two colors. But one can
equally well study asymmetric Ramsey properties. Concretely, given a pair of graphs (H,L),
let us say that a graph G is Ramsey for (H,L) if every red/blue coloring of E(G) contains
a red copy of H or a blue copy of L.

As before, for a fixed pair (H,L), we might ask what the threshold is for G(n, p) to
be Ramsey for (H,L). Intuitively, it makes sense that being Ramsey for (H,L) is of “in-
termediate difficulty” between being Ramsey for H and being Ramsey for L. That is, if
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m2(H) ≥ m2(L), then we expect the threshold to fall somewhere between n−1/m2(L) and
n−1/m2(H). In particular, the following result should not be surprising.

Theorem 9. If m2(H) = m2(L) > 1, then there exist constants C > c > 0 such that

lim
n→∞

Pr(G(n, p) is Ramsey for (H,L)) =

{
0 if p ≤ cn−1/m2(H),

1 if p ≥ Cn−1/m2(H).

The 1-statement of Theorem 9 follows from the Nenadov–Steger proof of Theorem 6
using the container method, whereas the 0-statement was proved recently by Kuperwasser
and Samotij.

Because of Theorem 9, we should feel free to assume from now on that m2(H) > m2(L)
(the names of the graphs represent heavy and light). We expect there to be some quantity,
sandwiched between m2(L) and m2(H), which determines the threshold for being Ramsey
for G(n, p). Let us try to get some insight as to what this quantity should be; in particular,
let us assume that n−1/m2(L) ≪ p ≪ n−1/m2(H), and examine the structure of G(n, p).

Since p ≫ n−1/m2(L), we know that the hypergraph CL(G(n, p)) has high average degree,
and expect it to be very complicated. On the other hand, since p ≪ n−1/m2(H), the opposite
is true for CH(G(n, p))—almost all edges of G(n, p) lie in no copies of H, and we expect
the structure of CH(G(n, p)) to be very simple. Note that if an edge of G(n, p) lies in no
copy of H, then it is essentially irrelevant for the Ramsey problem: we may safely color it
red without fear of creating a red copy of H, and thus we can effectively simply ignore this
edge. In other words, we can focus on the subgraph G′ ⊆ G(n, p) consisting of all edges
which lie in a copy of H. We now consider the hypergraph CL(G′), which is an induced
subhypergraph of CL(G(n, p)). Heuristically, we expect the Ramsey property to now hinge
on the “complexity” (or average degree) of CL(G′).

Computing the average degree of CL(G′) is difficult. But let us pretend that G′ is a
uniformly random subgraph of G(n, p) of a given density, meaning that CL(G′) is a random
induced subhypergraph of CL(G(n, p)). Then computing its average degree becomes a simple
yet tedious computation, and it boils down to the following: our heuristic model for CL(G′)
will have constant average degree if and only if p = Θ(n−1/m2(H,L)), where the mixed 2-density
is defined by

m2(H,L) := max
J⊆H

eJ
vJ − 2 + 1/m2(L)

.

This reasoning motivates the following conjecture.

Conjecture 10 (Kohayakawa–Kreuter 1997). For all graphs H,L with m2(H) ≥ m2(L) > 1,
there exist constants C > c > 0 such that

lim
n→∞

Pr(G(n, p) is Ramsey for (H,L)) =

{
0 if p ≤ cn−1/m2(H,L),

1 if p ≥ Cn−1/m2(H,L).

It is not hard to verify that m2(L) ≤ m2(H,L) ≤ m2(H), and hence Theorem 9 implies
Conjecture 10 in the case m2(H) = m2(L). Conjecture 10 has been verified in a number of
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other special cases, including for all pairs of cycles by Kohayakawa and Kreuter, and for all
pairs of complete graphs by Marciniszyn, Skokan, Spöhel, and Steger.

The first truly general progress towards Conjecture 10 was due to Mousset, Nenadov,
and Samotij, who proved the 1-statement. Their proof also uses the container method,
plus a sophisticated additional trick which they term “random typing”. Roughly speaking,
this trick allows one to pass to the subgraph G′ discussed above, and thus get around the
bottleneck that the container method “wants to” work at one of the densities n−1/m2(H) or
n−1/m2(L), rather than in some intermediate range.

As regards the 0-statement of Conjecture 10, progress has been more limited; the most
general result prior to our work was due to Hyde, who proved the 0-statement in the majority
of cases where H and L are d-regular graphs. Our work resolves Conjecture 10 in almost all
cases.

Theorem 11 (Kuperwasser–Samotij–W. 2023). The 0-statement of Conjecture 10 holds if
m2(L) >

11
5
. Additionally, it holds in any of the following cases (as well as many others):

• H is a clique, or a clique minus a small number of edges,

• H is complete bipartite,

• H is a d-regular bipartite graph,

• L is non-bipartite,

• L is not the union of two forests.

Thus, roughly speaking, the only remaining cases are those where L is bipartite and very
sparse, whereas H is not too dense nor too structured.

However, in my opinion, our main contribution is not Theorem 11. Rather, it is a
probabilistic lemma akin to that of Rödl and Ruciński, which reduces the 0-statement of
Conjecture 10 to a purely deterministic statement.

Lemma 12 (Probabilistic lemma, Kuperwasser–Samotij–W. 2023). Suppose that m(G) >
m2(H,L) for all graphs G which are Ramsey for (H,L). Then the 0-statement of Conjec-
ture 10 holds for the pair (H,L).

Note that, just as in the symmetric case, the statement “m(G) > m2(H,L) for all graphs
G which are Ramsey for (H,L)” is a clear necessary condition for Conjecture 10 to be true;
the upshot of the probabilistic lemma is that this simple necessary condition (which we also
call the deterministic lemma) is also sufficient. Once we have this, proving Theorem 11 is
straightforward, as it turns out that proving the deterministic lemma is fairly simple in a
wide array of cases, including most of the ones in Theorem 11.

Moreover, if for some reason you care about Conjecture 10 for some specific pair of graphs
which is not covered by Theorem 11, all you need to do is to prove the deterministic lemma
for this pair, which is usually not too hard. Moreover, our proof of the probabilistic lemma
actually gives something stronger: for any pair (H,L), there exists some (explicit) constant
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K = K(H,L), such that the deterministic lemma only needs to be verified for all graphs on
at most K vertices. While the value of K given by our proof is far too large for any practical
purpose, it shows that verifying Conjecture 10 for any given pair is decidable—it boils down
to checking some property for a finite number of graphs.

I won’t say much about the proof of the probabilistic lemma, but I’ll try to give a
few ideas. The main difficulty in applying the techniques of Rödl–Ruciński is that the
relevant hypergraph no longer consists of many small components. Indeed, since we are in
the regime p ≫ n−1/m2(L), the hypergraph CL(G(n, p)) has very high average degree and is
very complicated. Of course, we don’t actually want to color this hypergraph, but rather the
“combined” hypergraph of all H-copies and L-copies; however, the complexity of CL(G(n, p))
makes getting a handle on the “combined” hypergraph very difficult.

Instead, we use an alternative approach. Let us say thatG isminimally Ramsey for (H,L)
if it is Ramsey for (H,L), but any proper subgraph of it is not. Clearly, every Ramsey graph
contains a minimally Ramsey subgraph. In particular, if we suppose for contradiction that
G(n, p) is Ramsey for (H,L), then there must exist some minimally Ramsey G ⊆ G(n, p).
By the deterministic lemma, such a G must be “large”, i.e. not of constant size.

Ideally, we would like to union-bound over all potential choices for G, and say that with
high probability none of them appear in G(n, p). But this is impossible, as there are far
too many choices for G. To get around this, we define a collection S of supporting graphs,
satisfying two key properties. First, S is small, and in fact so small that we can successfully
union-bound over it; and second, every minimally Ramsey graph G contains some S ∈ S
as a subgraph. Hence, once the union bound shows us that S ⊈ G(n, p) for all S ∈ §, we
conclude that G(n, p) does not contain any minimally Ramsey G, and thus is not Ramsey
for (H,L). This basic idea, of replacing a large, complicated family by a smaller family that
“dominates” it, is also the basic idea of the container method. The difficulty in both cases
is the construction of the smaller family, and I won’t say anything about the construction of
S.

The remaining work, of course, is to prove Conjecture 10 in full generality. By the
probabilistic lemma, this boils down to proving a simple deterministic lemma: m(G) >
m2(H,L) for all graphs G which are Ramsey for (H,L). In fact, we believe that something
much stronger should be true; it is not hard to see that it implies the deterministic lemma
in all cases, and it is also an appealing graph partitioning question in its own right.

Conjecture 13 (Kuperwasser–Samotij–W. 2023). If G is a graph, there exists a forest
F ⊆ G such that

m2(G \ F ) ≤ m(G).

In other words, we can partition the edge set of G into a forest F and a graph K such that
m2(K) ≤ m(G).

An unexpected fact about Conjecture 13 is that we know how to prove it when m(G)
is an integer, using matroid-theoretic techniques that don’t seem applicable to the general
case. It would be fantastic to prove Conjecture 13 in full generality, and thus settle the
Kohayakawa–Kreuter conjecture.
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