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Abstract. A graph G is said to be Ramsey for a tuple of graphs (H1, . . . , Hr) if every r-
coloring of the edges of G contains a monochromatic copy of Hi in color i, for some i. A
fundamental question at the intersection of Ramsey theory and the theory of random graphs is
to determine the threshold at which the binomial random graph Gn,p becomes a.a.s. Ram-
sey for a fixed tuple (H1, . . . , Hr), and a famous conjecture of Kohayakawa and Kreuter
predicts this threshold. Earlier work of Mousset–Nenadov–Samotij, Bowtell–Hancock–Hyde,
and Kuperwasser–Samotij–Wigderson has reduced this probabilistic problem to a determinis-
tic graph decomposition conjecture. In this paper, we resolve this deterministic problem, thus
proving the Kohayakawa–Kreuter conjecture. Along the way, we prove a number of novel graph
decomposition results which may be of independent interest.

1. Introduction

The topic of this paper is that of graph decompositions, which we view from two different
perspectives. From a graph-theoretic perspective, a graph decomposition result is a statement of
the form “any graph G satisfying certain properties can be edge-partitioned into subgraphs with
a certain structure”. A famous result of this type is Nash-Williams’ theorem [27], which gives a
necessary and sufficient sparsity condition for when G can be decomposed into the edge-union
of k forests.

On the other hand, we also study graph decompositions from a Ramsey-theoretic perspective,
in which a typical statement is of the form “if a graph G is sufficiently complex, then it cannot
be edge-partitioned into subgraphs avoiding a certain structure”. The foundational result of
this type is Ramsey’s theorem [28], which can be phrased as saying that any sufficiently large
complete graph cannot be edge-partitioned into two subgraphs of bounded clique number. Thus,
in some sense, the graph-theoretic perspective on decomposition asks when a decomposition into
certain structures is possible, and the Ramsey-theoretic perspective asks when certain structures
are unavoidable in every decomposition.

The main results of this paper interact with both perspectives. For example, one of our main
theorems, Theorem 1.7 below, states that if a graph satisfies a certain sparsity condition (closely
related to the one appearing in Nash-Williams’ theorem), then it can be edge-partitioned into
a forest and a subgraph satisfying a different, stronger sparsity condition. This statement and
its proof are closely related to many known graph decomposition theorems, such as the main
results of [4, 8, 11, 15, 23, 24, 27]. However, the reason we care about the precise statement
comes from the Ramsey-theoretic study of random graphs, a topic we now introduce.

1.1. Ramsey properties of random graphs. Given an r-tuple (H1, . . . , Hr) of graphs, a
graph G is said to be Ramsey for (H1, . . . , Hr) if every r-coloring of the edges of G contains a
monochromatic copy of Hi in color i, for some 1 ≤ i ≤ r. Equivalently, in the language above,
G is Ramsey for (H1, . . . , Hr) if there is no decomposition of G into the edge-union of r graphs,
the ith of which is Hi-free1. In general, the fundamental question of graph Ramsey theory is
to understand which graphs G are Ramsey for a given r-tuple; for more information, see e.g.
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1We say that a graph is H-free if it does not contain a copy of H as a (not necessarily induced) subgraph.
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the survey [2]. An important special case of this question, which came to prominence in the
late 1980s thanks to pioneering work of Frankl–Rödl [6] and  Luczak–Ruciński–Voigt [21], is the
question of when a random graph is Ramsey for a given r-tuple with high probability. More
precisely, if Gn,p denotes the binomial random graph with edge density p, then the question
is for which values of p = p(n) one has that Gn,p is Ramsey for (H1, . . . , Hr) a.a.s.2 In the
symmetric case H1 = · · · = Hr, this question was completely resolved in seminal work of Rödl
and Ruciński [29, 30, 31]. For a graph J , let us denote by v(J), e(J) its number of vertices and
edges, respectively, and let us define the maximal 2-density of a graph H with3 e(H) ≥ 2 to be

m2(H) := max
{e(J) − 1

v(J) − 2 : J ⊆ H, v(J) ≥ 3
}

.

With this notation, the random Ramsey theorem of Rödl and Ruciński [29, 31] is as follows.

Theorem 1.1 (Rödl–Ruciński). Let H be a graph which is not a forest and let r ≥ 2 be an
integer. There exist constants C > c > 0 such that

lim
n→∞

Pr(Gn,p is Ramsey for (H, . . . , H︸ ︷︷ ︸
r times

)) =
{

1 if p ≥ Cn−1/m2(H),

0 if p ≤ cn−1/m2(H).

There is a simple heuristic explanation for why the threshold for the Ramsey property is
controlled by the quantity m2(H). To explain it, let us suppose for simplicity that H is strictly
2-balanced, meaning that m2(J) < m2(H) for any proper subgraph J ⊊ H. Then one can easily
verify that at the regime p ≍ n−1/m2(H), an average edge of Gn,p lies in a constant number of
copies of H. Thus, if p ≤ cn−1/m2(H) where c ≪ 1, then a typical edge lies in no copy of H, and
one expects the copies of H in Gn,p to be “well spread-out”. Thus, it is reasonable to expect
that one can r-color the edges without creating monochromatic copies of H. On the other hand,
if p ≥ Cn−1/m2(H) where C ≫ 1, then a typical edge lies in a large (constant) number of copies
of H. In this regime, we expect a lot of interaction between different H-copies, and it should
be difficult to avoid creating monochromatic copies.

The heuristic above suggests that the “reason” why Gn,p should be Ramsey for (H, . . . , H)
is because of a “global” interaction between the copies of H. However, there is also a potential
“local” reason: for any fixed graph G that is Ramsey for (H, . . . , H), if G is a subgraph of Gn,p,
then certainly Gn,p is Ramsey for (H, . . . , H). Therefore, in order to prove the 0-statement4

in Theorem 1.1, one necessarily has to prove that when p ≤ cn−1/m2(H), then Gn,p a.a.s. does
not contain any fixed G which is Ramsey for (H, . . . , H). It is well-known (e.g. [14, Theorem
3.4]) that the threshold for appearance of G in Gn,p is determined by the maximal density of
G, defined as

m(G) := max
{e(J)

v(J) : J ⊆ G, v(J) ≥ 1
}

.

Thus, a necessary condition for the 0-statement in Theorem 1.1 is the following lemma, which
Rödl and Ruciński [29] termed the deterministic lemma.

Lemma 1.2 (Rödl–Ruciński). Let H be a graph which is not a forest, and let r ≥ 2 be an
integer. If G is Ramsey for the r-tuple (H, . . . , H), then m(G) > m2(H).

Equivalently, the deterministic lemma can be phrased as a decomposition result: if m(G) ≤
m2(H), then G can be edge-partitioned into r graphs, each of which is H-free. As discussed
above, the deterministic lemma is certainly a necessary condition for the 0-statement in Theo-
rem 1.1 to hold, but in fact, Rödl and Ruciński [29] proved a so-called probabilistic lemma, which

2We say that an event happens asymptotically almost surely (a.a.s.) if its probability tends to 1 as n → ∞,
where the implicit parameter n will always be clear from context.

3By convention, one also defines m2(H) = 0 if e(H) = 0 and m2(H) = 1
2 if e(H) = 1.

4Any theorem of the same form as Theorem 1.1 really consists of two statements, which are usually called the
0- and 1-statements; the former says that the asymptotic probability of an event is 0 in a certain regime, and the
latter says that the asymptotic probability is 1 in a different regime.
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states that this simple necessary condition is also sufficient. Informally, the probabilistic lemma
guarantees that the “local” and “global” reasons discussed above are the only two reasons why
Gn,p is Ramsey for (H, . . . , H), and the deterministic lemma rules out the “local” reason.

Theorem 1.1 provides a very satisfactory answer to the question “when is Gn,p Ramsey for
(H1, . . . , Hr)?” in the case that H1 = · · · = Hr, but says nothing about the general case.
However, nearly thirty years ago, Kohayakawa and Kreuter [16] formulated a conjecture for the
threshold for an arbitrary r-tuple of graphs. Given two graphs H1, H2 with m2(H1) ≥ m2(H2),
they defined the mixed 2-density to be

m2(H1, H2) := max
{ e(J)

v(J) − 2 + 1/m2(H2) : J ⊆ H1, v(J) ≥ 2
}

.

It is well-known and easy to verify (see e.g. [19, Lemma 3.4] or [1, Proposition 3.1]) that
m2(H1) ≥ m2(H1, H2) ≥ m2(H2), and that both inequalities are strict if one is.

Conjecture 1.3 (Kohayakawa–Kreuter). Let H1, . . . , Hr be graphs, and suppose that m2(H1) ≥
· · · ≥ m2(Hr) and m2(H2) > 1. There exist constants C > c > 0 such that

lim
n→∞

Pr(Gn,p is Ramsey for (H1, . . . , Hr)) =
{

1 if p ≥ Cn−1/m2(H1,H2),

0 if p ≤ cn−1/m2(H1,H2).

We remark that the assumption m2(H2) > 1 is equivalent to saying that H2 is not a forest;
this condition was added by Kohayakawa, Schacht, and Spöhel [17] to rule out sporadic coun-
terexamples (in analogy to the statement of Theorem 1.1). Just as in the case of Theorem 1.1,
there is a simple heuristic explanation for why the function m2(H1, H2) controls the threshold
for the asymmetric Ramsey property of Gn,p. Roughly speaking, one can verify that at the den-
sity p ≍ n−1/m2(H1,H2), the number of edges appearing in a copy of H1 is of the same order as
the number of copies of H2. As the edges not participating in copies of H1 are irrelevant (they
can be colored in color 1 with no adverse consequences), we find that an average “relevant”
edge lies in a constant number of copies of H2, and the heuristic above suggests that this is the
threshold at which it becomes hard to avoid monochromatic copies of H2. We remark that this
heuristic, as well as the statement of Conjecture 1.3, does not involve H3, . . . , Hr at all; thus,
the intuition is that being Ramsey for a tuple is essentially as hard as being Ramsey for the
two “hardest” graphs in the tuple.

Conjecture 1.3 has received a great deal of attention over the past three decades [1, 9, 12,
16, 17, 18, 19, 22]. For many years, most papers on the topic aimed to prove the Kohayakawa–
Kreuter conjecture for certain special families of H1, . . . , Hr; for example, Kohayakawa and
Kreuter [16] proved it when every Hi is a cycle, Marciniszyn, Skokan, Spöhel, and Steger [22]
proved it when every Hi is a clique, Liebenau, Mattos, Mendonça, and Skokan [20] proved it
when H1 is a clique and H2 is a cycle, Hyde [13] proved it for most pairs of regular graphs,
and Kuperwasser and Samotij [18] proved it when m2(H1) = m2(H2). More recent works have
proved results in greater generality. Notably, Mousset, Nenadov, and Samotij [25] established
the 1-statement of Conjecture 1.3 for all (H1, . . . , Hr). Subsequently, Bowtell–Hancock–Hyde [1]
and Kuperwasser–Samotij–Wigderson [19] independently proved a generalization of the Rödl–
Ruciński probabilistic lemma in the asymmetric case.

Theorem 1.4 (Bowtell–Hancock–Hyde, Kuperwasser–Samotij–Wigderson). Suppose that for
every pair of graphs (H1, H2) with m2(H1) > m2(H2) > 1, the following holds: if G is Ramsey
for (H1, H2), then m(G) > m2(H1, H2). Then Conjecture 1.3 is true5.

Theorem 1.4 is a generalization of the Rödl–Ruciński probabilistic lemma discussed above.
Indeed, the condition in Theorem 1.4 is clearly necessary for the 0-statement of Conjecture 1.3
to hold, as if there were some G with m(G) ≤ m2(H1, H2) which is Ramsey for (H1, H2),

5Strictly speaking, the result of [1, 19] only implies that the 0-statement of Conjecture 1.3 is true, but the
1-statement is already known to be true unconditionally, thanks to the result of Mousset–Nenadov–Samotij [25]
mentioned above.
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then that G appears with positive probability in Gn,cn−1/m2(H1,H2) , and hence the 0-statement
of Conjecture 1.3 would be false. Theorem 1.4 then says that this necessary condition is also
sufficient. Thanks to Theorem 1.4, the validity of Conjecture 1.3 is reduced to a deterministic
graph decomposition question. In both [1, 19], this deterministic condition was verified for most
pairs (H1, H2), but its verification for all pairs remained open.

1.2. Our results. As discussed above, the earlier works [1, 19, 25] reduced Conjecture 1.3 to
verifying a certain deterministic condition. Our main result confirms that this condition always
holds, thus completing the proof of Conjecture 1.3.
Theorem 1.5. Let H1, H2 be graphs with m2(H1) > m2(H2) > 1. If a graph G is Ramsey for
(H1, H2), then m(G) > m2(H1, H2).

Equivalently, in the graph decomposition language, Theorem 1.5 states that if m(G) ≤
m2(H1, H2), then G can be edge-partitioned into an H1-free graph and an H2-free graph.

In fact, we prove two more general graph decomposition theorems, Theorems 1.6 and 1.7
below, which we expect to be of independent interest. It is not hard to see (and we show this
in the next section) that these two results, plus simple well-known arguments, suffice to prove
Theorem 1.5.

Recall that a pseudoforest is a graph in which every connected component contains at most
one cycle. If F is a subgraph of G, we denote by G − F the subgraph of G comprising all edges
not in F .
Theorem 1.6. Every graph G contains a pseudoforest F ⊆ G such that m2(G − F ) ≤ m(G).

Equivalently, the conclusion of Theorem 1.6 can be phrased as saying that G can be edge-
partitioned into a pseudoforest and a subgraph of bounded maximal 2-density. We remark that
many results along the lines of Theorem 1.6 are known in the literature, starting with Hakimi’s
theorem [11] from 1965, which states that G can be decomposed into k pseudoforests if and
only if m(G) ≤ k. More recently, several papers (e.g. [4, 8, 24]) have proved strengthenings of
Hakimi’s theorem under the assumption that m(G) ≤ m, where m is not necessarily an integer.
The novelty in Theorem 1.6 (which does not follow from any of the results mentioned above)
is that the condition we guarantee about G − F is that it is sparse with respect to m2, which
is a different density measure from the one we started with. We remark that Theorem 1.6 is a
slight weakening of a conjecture of Kuperwasser, Samotij, and Wigderson [19, Conjecture 1.5];
see Section 7 for details.

On its own, Theorem 1.6 already suffices to prove Conjecture 1.3 in almost all cases, namely
for all tuples (H1, . . . , Hr) where H2 contains a strictly 2-balanced subgraph H ′

2 with m2(H2) =
m2(H ′

2) such that H ′
2 is not a cycle; this includes almost all cases that were known before.

However, Theorem 1.6 cannot be used to resolve the remaining cases, so to prove Theorem 1.5
we need another decomposition result. To state it, let us define the maximal 4

3 -density of G to
be

m 4
3
(G) := max

{
e(J)

v(J) − 4
3

: J ⊆ G, v(J) ≥ 2
}

.

Theorem 1.7. Let m > 3
2 be a real number. Every graph G with m(G) ≤ m contains a forest

F ⊆ G such that m 4
3
(G − F ) < m.

We remark that the choice of 4
3 is somewhat arbitrary, and our techniques can prove similar

results where one replaces 4
3 by another real number. However, working with the maximal

4
3 -density is useful for combining Theorems 1.6 and 1.7 and proving Theorem 1.5.

The rest of this paper is organized as follows. In the next section, we show how to deduce
Theorem 1.5 from Theorems 1.6 and 1.7, and sketch the strategy we employ in the proofs
of both Theorems 1.6 and 1.7. We prove various general lemmas common to both proofs in
Section 3, then prove Theorem 1.6 in Section 4. The proof of Theorem 1.7 is more involved, and
is split into Section 5, where we state and prove a key technical lemma, and Section 6, where
we complete the proof. We end in Section 7 with some concluding remarks and open problems.
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2. Proof overview

2.1. Proof of Theorem 1.5 assuming Theorems 1.6 and 1.7. In addition to the new
ingredients, Theorems 1.6 and 1.7, we will need three additional lemmas, all of which are well-
known in the literature. The first is Nash-Williams’ theorem [27], which was mentioned above.
For its statement, let us define the maximal 1-density (also known as the fractional arboricity)
of a graph G to be

m1(G) := max
{ e(J)

v(J) − 1 : J ⊆ G, v(J) ≥ 2
}

.

Lemma 2.1 (Nash-Williams). Let k ≥ 1 be an integer. A graph G can be edge-partitioned into
k forests if and only if m1(G) ≤ k.

The second lemma we need is a simple inequality relating m(G) and m1(G); its short proof
can be found, for example, in [19, Lemma 5.4].
Lemma 2.2. For any graph G, we have m1(G) ≤ m(G) + 1

2 .
Finally, we quote a simple result proved independently in [19, Proposition 5.2(a)] and [1,

Lemma 1.9(ii)], which establishes Theorem 1.5 whenever H2 is not bipartite.
Lemma 2.3. Let H1, H2 be graphs with m2(H1) > m2(H2) > 1. If H2 is strictly 2-balanced and
not bipartite, then any graph G which is Ramsey for (H1, H2) satisfies m(G) > m2(H1, H2).

With these preliminaries, we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. Fix a pair of graphs H1, H2 with m2(H1) > m2(H2) > 1. Recall that
this implies that m2(H1) > m2(H1, H2) > m2(H2). We may assume without loss of generality
that H2 is strictly 2-balanced; indeed, if it is not, we pass to a strictly 2-balanced subgraph
H ′

2 ⊆ H2 with m2(H ′
2) = m2(H2), and observe that any H ′

2-free graph is necessarily H2-free.
Thus, we henceforth assume that H2 is strictly 2-balanced. This in particular implies that H2
is connected and that the minimum degree of H2 is at least 2.

Let us fix a graph G with m(G) ≤ m2(H1, H2). Our goal is to edge-partition G into an
H1-free graph and an H2-free graph. We are done by Lemma 2.3 if H2 is not bipartite, so let
us assume that H2 is bipartite.

If m(G) ≤ 3
2 , then m1(G) ≤ 2 by Lemma 2.2, and therefore Lemma 2.1 implies that G can

be edge-partitioned into two forests. As m2(H1) > m2(H2) > 1, neither H1 nor H2 is a forest,
and thus this is an edge-partition of G into an H1-free graph and an H2-free graph.

Now suppose that H2 contains at least two cycles. As H2 is connected, this implies that H2
is not contained in any pseudoforest. We now apply Theorem 1.6 to find a pseudoforest F ⊆ G
with m2(G − F ) ≤ m(G) ≤ m2(H1, H2) < m2(H1). By the above, F is H2-free. Moreover, as
m2(G − F ) < m2(H1), we see that G − F is H1-free. This is our desired decomposition.

Finally, we may assume that m(G) > 3
2 , and that H2 is connected, bipartite, and contains

only one cycle. As the minimum degree of H2 is at least 2, we find that H2 = Cℓ is a cycle,
for some even ℓ ≥ 4. As m2(Cℓ) = (ℓ − 1)/(ℓ − 2), we conclude that m2(H2) ≤ m2(C4) = 3

2 .
Therefore,

m2(H1, H2) = max
J⊆H1

e(J)
v(J) − 2 + 1/m2(H2)

≤ max
J⊆H1

e(J)
v(J) − 2 + 1/(3

2)

= max
J⊆H1

e(J)
v(J) − 4

3
= m 4

3
(H1).

We now apply Theorem 1.7 with m = m(G) > 3
2 . We find a forest F ⊆ G with m 4

3
(G−F ) < m.

As H2 is not a forest, we see that F is H2-free, whereas the above implies that m 4
3
(G − F ) <

m ≤ m2(H1, H2) ≤ m 4
3
(H1), and thus G − F is H1-free. This is the desired decomposition, and

the proof is complete. □
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2.2. Proof strategy and sketch. We now sketch the strategy we employ to prove both The-
orem 1.6 and Theorem 1.7. The same general strategy is used for both; we begin with Theo-
rem 1.6, which is somewhat simpler both conceptually and technically.

So let us fix some real number m > 0 and some graph G with m(G) ≤ m. Our goal is to
define a pseudoforest F ⊆ G, in such a way that we can control m2(G − F ). Our main tool to
do this is the concept of allocations, which are a fractional version of an edge-orientation of G.
Definition 2.4. Let G be a graph and m ≥ 0 a real number. An m-allocation of G is a mapping
θ : V (G)2 → [0, 1] such that the following hold.

(1) If u, v ∈ V (G) and uv /∈ E(G), then θ(u, v) = θ(v, u) = 0.
(2) θ(u, v) + θ(v, u) = 1 for every edge uv ∈ E(G).
(3) For every vertex u ∈ V (G), we have

∑
v∈V (G) θ(u, v) ≤ m.

Note that if θ is integer-valued, it can be viewed as an edge-orientation of G (namely we orient
an edge uv according to whether θ(u, v) is 0 or 1). If θ is integer-valued, then condition (3)
above corresponds to saying that every vertex has outdegree at most m. In general, allocations
can be thought of as fractional orientations, with an upper bound on the “fractional outdegree”
of every vertex. The reason we care about allocations is that the existence of an m-allocation
of G is equivalent to the statement m(G) ≤ m, as stated in the next theorem.
Theorem 2.5. Let G be a graph and m > 0 a real number. Then m(G) ≤ m if and only if G
admits an m-allocation.

Results of this type go back at least to work of Hakimi [11] and of Frank and Gyárfás [5],
who proved Theorem 2.5 under the extra assumption that m is an integer (in which case they
can get a true orientation, rather than an allocation). Their result actually implies Theorem 2.5
by passing to an appropriate auxiliary multigraph; one can also deduce Theorem 2.5 from the
results of [10]. We present an alternative proof, which is closely modeled on the proof of [26,
Lemma 2], in Section 3.1. For the moment we continue with the proof overview.

As we are given a graph G with m(G) ≤ m, we apply Theorem 2.5 to find an m-allocation
θ : V (G)2 → [0, 1]. We say that an edge e = uv ∈ E(G) is integral if θ(u, v), θ(v, u) ∈ {0, 1}.
Otherwise, if θ(u, v), θ(v, u) ∈ (0, 1), then we say that the edge uv is fractional. We denote by
Eint(G, θ) and Efrac(G, θ) the set of integer and fractional edges of G, respectively. Moreover, we
can naturally associate with θ a digraph Dθ = (V (G), Aθ), where Aθ := {(u, v) : θ(u, v) = 1}.
Clearly, Dθ is an orientation of the integral edges in G. Similarly, we denote by Gfrac

θ the
subgraph of G consisting of the fractional edges Efrac(G, θ).

There are a number of elementary operations one can perform on an m-allocation to get an-
other m-allocation. By doing such operations, we may assume that θ satisfies certain additional
properties; for example, we can ensure that Gθ

frac is a forest (see Lemma 3.4).
Having chosen θ so that it satisfies these extra properties, we are ready to define the pseud-

oforest F that we need to output in order to prove Theorem 1.6. To do so, for every vertex
u ∈ V (G) that is the source of at least one arc in Dθ, we pick one such arc (u, v) arbitrarily,
and define −→

F to consist of all chosen arcs. Thus, −→
F is a digraph with maximum outdegree 1,

so its underlying graph F ⊆ G is a pseudoforest.
Having defined F , it remains to prove the main claim in Theorem 1.6, namely that m2(G −

F ) ≤ m. Equivalently, we wish to prove that for every U ⊆ V (G) with |U | ≥ 3, we have
eG−F (U)−1 ≤ m(|U |−2), where we use the notation eG−F (U) := e((G−F )[U ]). So we assume
for contradiction that this is not the case, and proceed to analyze the structure of a violating
set U . The proof is somewhat involved and we defer the details to Section 4, but the basic idea
is to examine how U interacts with the digraph Dθ, and to use both the definition of F and the
extra properties we imposed on the m-allocation θ.

The proof of Theorem 1.7 follows a similar strategy, but is more involved for a few different
reasons. The first reason is that in Theorem 1.7, we wish to output a forest F ⊆ G. So we
cannot simply pick an out-arc in Dθ for every vertex of G, as this creates cycles. However,
by examining the structure of the digraph Dθ (specifically, by partitioning it into strongly
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connected components), we can pick an out-arc for almost every vertex, and control the set of
vertices with no out-arcs, while ensuring that the subgraph we so define is a forest. Having done
this, we again assume for contradiction that m 4

3
(G − F ) ≥ m, and work with a violating set

U ⊆ V (G), namely a set U with |U | ≥ 2 satisfying eG−F (U) ≥ m(|U | − 4
3). The analysis of U

in this proof is substantially more complicated, and we need to split into a number of different
cases, depending on the intersection pattern of U with the strongly connected components of
Dθ. Most of these cases can be dealt with via rather simple (but tedious) arguments; this
is done in Section 5, where we state and prove a technical lemma dealing with most of these
cases. For the remaining cases, some more care needs to be taken in the definition of θ and the
choice of F ; by imposing some further conditions on θ and F , we are able to dispense with the
remaining cases in Section 6.

3. Setup and general lemmas

In this section, we state and prove various general lemmas that we will use in the proofs of
both Theorems 1.6 and 1.7.

3.1. Proof of Theorem 2.5. We begin with the proof of Theorem 2.5 (which we deferred
in Section 2), following the proof approach of [26, Lemma 2]. As discussed above, there are
a number of other ways of proving this result, including a reduction to [5, Theorem 1] or an
application of Hall’s matching theorem.

Proof of Theorem 2.5. Associated to the graph G and the parameter m, we define a flow network
F as follows. F has a single source vertex s and a single sink vertex t, as well as two other sets
of vertices V, E. The vertices in V are identified with V (G), and the vertices in E are identified
with E(G). There are directed edges s → V → E → t, defined as follows. For every v ∈ V ,
we place a directed edge of capacity m from s to v. For every v ∈ V and e ∈ E such that v is
incident to e in G, we place an edge of infinite capacity from v to e. Finally, for every e ∈ E,
we place a directed edge of capacity 1 from e to t.

The max-flow min-cut theorem implies that the maximum s−t flow in F equals the minimum
weight of an s − t cut in F . As all edges between V and E have infinite capacity, they do not
participate in any minimum cut. Hence any minimum cut must consist of some edges between
s and V , and some edges between E and t. Fix such a minimum cut, and let A ⊆ V, B ⊆ E
be the set of vertices in V, E, respectively, incident to a cut edge. The weight of this cut is
m|A| + |B|. For this to be a true s − t cut in F , we must have no directed edges from V \ A to
E \ B; by the definition of the edges V → E, this implies that E \ B consists only of edges with
both endpoints in A. Therefore, |E \ B| ≤ e(G[A]), and thus |B| ≥ e(G) − e(G[A]). Therefore
the weight of the cut is at least m|A| + e(G) − e(G[A]). Conversely, we see that for any A ⊆ V ,
there is a cut of weight exactly m|A| + e(G) − e(G[A]), obtained by defining E \ B to be the set
of edges entirely contained in A.

Suppose first that m(G) ≤ m. In particular, we find that e(G[A])
|A| ≤ m, implying that the

weight of the minimum cut is at least e(G). Therefore, there exists an s − t flow in F of
weight at least e(G). As there are e(G) edges incident to t, each of capacity 1, we conclude
that in such a flow every vertex in E must receive weight exactly 1. This means that for any
e = uv ∈ E(G), we have a total flow of 1 into the node e, coming from its neighbors u, v ∈ V .
Defining θ(u, v) to be the flow u sends to e, and similarly θ(v, u) the flow v sends to e, we find
that θ(u, v)+θ(v, u) = 1. Moreover, the fact that every u ∈ V is incident to an edge of capacity
m from s shows that this defines a valid m-allocation.

Conversely, suppose that there is an m-allocation of G. As in the previous paragraph, this
defines an s − t flow of weight e(G) in F . Thus, every cut must have weight at least e(G).
Therefore, for any A ⊆ V , we have that m|A| + e(G) − e(G[A]) ≥ e(G), implying that m(G) ≤
m. □
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3.2. Strong components in digraphs. Let us fix the following terminology. For a directed
graph D, we denote by A(D) the set of arcs (directed edges) in D. Given a directed graph D,
a strong component of D is an inclusion-wise maximal subset X ⊆ V of vertices such that the
induced subdigraph D[X] is strongly connected. It is well-known that the strong components of
a digraph D partition its vertex-set. We call a strong component X of D a terminal component
if there are no arcs in D that start in a vertex in X and end in a vertex outside of X. We will
need the following statements about how changing a digraph affects the number and structure
of its terminal components.

Lemma 3.1.
(a) Let D1 and D2 be digraphs on the same vertex-set such that A(D1) ⊆ A(D2). Then

the number of terminal components of D2 is at most as large as the number of terminal
components of D1. Furthermore, if there exist distinct terminal components U, W of D1
and a directed path in D2 that starts in U and ends in W , then the number of terminal
components of D2 is strictly smaller than the number of terminal components of D1.

(b) Let X be a terminal component of a digraph D and let (u, v) ∈ A(D[X]). Then the
collection of terminal components of D−(u, v) is obtained from the collection of terminal
components of D by replacing X with a subset of it that contains u.

(c) Let D be a digraph and let u be a vertex of D that does not belong to any terminal
component. If there exists a directed path in D that starts in u, ends in a terminal
component of D and does not use the arc (u, v), then the digraphs D−(u, v) and D have
the same terminal components.

(d) Let D be a digraph and let u be a vertex that does not belong to any terminal component.
Let D + (u, v) be the digraph obtained by adding a new arc (u, v) to D. Then D and
D + (u, v) have the same terminal components.

(e) Let D be a digraph and {u} a singleton terminal component of D, and let D + (u, v) be
obtained from D by adding a new arc (u, v) to D. Then one of the following holds.

• The number of terminal components of D + (u, v) is smaller than that of D.
• The collection of terminal components of D+(u, v) is obtained from the collection of

terminal components of D by replacing {u} with a terminal component containing
{u, v}.

Proof.
(a) For every strong component X of D1, we have that D1[X] and thus D2[X] is strongly

connected, and hence X is fully contained in one of the strong components of D2. This
directly implies that every strong component of D2 is a disjoint union of some strong
components of D1. Now let Y be any terminal component of D2. Let X1, . . . , Xk be the
strong components of D1 such that Y =

⋃k
i=1 Xi. Consider the digraph D1[Y ], whose

strong components are X1, . . . , Xk. It is well-known (and easy to see) that every digraph
contains at least one terminal component. Hence, there exists i ∈ {1, . . . , k} such that
there are no edges in D1[Y ] that leave Xi. But since Y is a terminal component of
D2 ⊇ D1, this means that there are also no edges in the whole of D1 that leave Xi, and
hence Xi is a terminal component of D1 that is contained in Y .

We have shown that every terminal component of D2 contains a terminal component
of D1, and hence the number of terminal components of D2 is at most the number of
terminal components of D1.

Let P be a directed path in D2 that starts in U and ends in W . We claim that either
U and W are contained in the same terminal component of D2, or at least one of U, W
is not contained in any terminal component of D2. In both cases, we can immediately
conclude that there must be strictly more terminal components in D1 than in D2, as
desired.

Suppose that contrary to the above claim, there exist two distinct terminal compo-
nents Y1, Y2 of D2 such that U ⊆ Y1 and W ⊆ Y2. Since P starts in U and ends in
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W , this implies that there exists an arc in D2 leaving Y1, a contradiction to it being a
terminal component. This concludes the proof.

(b) Let Y be a terminal component of D − (u, v). If u /∈ Y , then Y is a terminal component
of D that is disjoint from X. So suppose u ∈ Y . Since every other vertex in Y is
reachable via a directed path from u in D − (u, v), and since no arc in D − (u, v) leaves
Y and no arc in D leaves X, it follows that Y is equal to the set of vertices reachable in
D − (u, v) via a directed path starting in u, and that Y ⊆ X. In fact, it can be easily
checked that the latter set of vertices always induces a strongly connected subdigraph
of D − (u, v) (since every vertex in X can reach u via a directed path in D − (u, v)).
Hence, we have shown that the set of vertices reachable from u in D − (u, v) forms the
unique terminal component of D − (u, v) contained in X.

In the other direction, note that any terminal component of D distinct from X is
also disjoint from X and hence remains a terminal component also in D − (u, v). This
shows that the terminal components of D and D − (u, v) are the same, apart from the
replacement of X by a subset containing u.

(c) Let X be a terminal component of D − (u, v). Unless u ∈ X and v /∈ X, also in D there
are no arcs leaving X and thus X forms a terminal component also of D. Now suppose
u ∈ X and v /∈ X. Then (u, v) is the only arc in D leaving X. Let P be a directed path
in D − (u, v) starting in u and ending in a terminal component Y of D. Then, since
P cannot leave X, we have V (P ) ⊆ X and thus X ∩ Y ̸= ∅. Since D[X] is strongly
connected and Y is a strong component of D, this implies that X ⊆ Y . In particular,
we have u ∈ Y , which contradicts our assumption that u is not part of any terminal
component of D. This contradiction shows that our assumption above was wrong, and
hence X is indeed a terminal component also of D.

In the other direction, suppose X is some terminal component of D. We assumed that
u is not contained in any terminal component of D, hence u /∈ X. But then necessarily
(u, v) /∈ A(D[X]), and thus X is also a terminal component of D − (u, v).

(d) Let X be a terminal component of D. Then by assumption u /∈ X, and hence also in
D + (u, v) no arc leaves X. Hence, X is also a terminal component of D + (u, v). In
the other direction, suppose that X is a terminal component of D + (u, v). If (u, v) /∈
A(D[X]), then clearly X is also a terminal component of D. So now suppose that
(u, v) ∈ A(D[X]). We can now apply item (b) of this lemma to find that there exists a
terminal component of D + (u, v) − (u, v) = D contained in X that contains u. This is
a contradiction, since we assumed that u is not part of any terminal component of D.
Hence our assumption was false, we indeed have (u, v) /∈ A(D[X]), and hence X is also
a terminal component of D.

(e) Suppose first that there exists a directed path from v to a terminal component of D
distinct from {u}. Attaching the arc (u, v) to such a path then provides a directed path
in D + (u, v) between two distinct terminal components of D, and hence D + (u, v) has
strictly fewer terminal components than D by item (a) of this lemma.

Next, suppose that such a path does not exist. Let A be the set of vertices in D
reachable from v in D (or equivalently, in D + (u, v)). By assumption A does not
intersect a terminal component of D distinct from {u}. However, for every vertex a ∈ A
there exists a directed path in D (and thus in D[A]) starting in a and ending in a
terminal component of D, and this terminal component must be equal to {u}. Hence,
every vertex in A reaches u in D[A], and it follows that (D + (u, v))[A] is strongly
connected. Since there are no edges in D + (u, v) leaving A, it is in fact a terminal
component of D + (u, v). Moreover, a set X of vertices forms a terminal component in
D disjoint from {u} if and only if it forms a terminal component of D + (u, v) disjoint
from A. Hence, the digraph D + (u, v) has the same terminal components as D, except
that the singleton terminal component {u} in D is replaced by the terminal component
A ⊇ {u, v} in D + (u, v). □
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3.3. Properties of and operations on allocations. A natural way of changing a given m-
allocation θ of a graph to another is to “shift” weights along a cycle. As this operation will
be used in several places of our proof, we isolate the elementary facts about it in the following
statement.

Observation 3.2. Let G be a graph, let m > 0 be a real number, and let θ : V (G)2 → R+ be
an m-allocation on G. Let C be a cycle in G, and let u0, u1, u2, . . . , uk = u0 for some k ≥ 3 be
the cyclic sequence of vertices along C. Let

ε := min{θ(ui−1, ui) : 1 ≤ i ≤ k}.

Suppose that ε > 0, and define a new mapping θ′ : V (G)2 → [0, 1] by setting

θ′(x, y) :=


θ(x, y) − ε, if ∃i ∈ {1, . . . , k} such that (x, y) = (ui−1, ui),
θ(x, y) + ε, if ∃i ∈ {1, . . . , k} such that (x, y) = (ui, ui−1),
θ(x, y), otherwise.

for every x, y ∈ V (G). Then θ′ is still an m-allocation of G. Furthermore, Dθ′ is obtained from
Dθ by removing the arcs

{(ui−1, ui) : 1 ≤ i ≤ k, θ(ui−1, ui) = 1}

and adding the arcs
{(ui, ui−1) : 1 ≤ i ≤ k, θ(ui−1, ui) = ε}.

Given a graph G, a cycle C equipped with a cyclic orientation and an m-allocation θ on G,
the above forms a well-defined way to generate a new m-allocation θ′ on G, which we from now
on will refer to as the m-allocation obtained from θ by shifting along C.

In our proofs, we will work with special allocations which are chosen to have certain extra
properties. The following definition captures the way we choose these special allocations

Definition 3.3. Given a real number m and a graph G for which there exists an m-allocation,
we say that an m-allocation is optimal if it is chosen such that:

(1) The number of terminal components of Dθ is minimum among all possible choices of
m-allocations θ, and

(2) subject to point (1), the number of fractional edges is minimized (equivalently, the
number of integral edges is maximized), and

(3) subject to points (1) and (2), the total number of vertices contained in terminal com-
ponents is maximized, and

(4) subject to points (1), (2) and (3), the number of arcs in Dθ that end in a vertex forming
a singleton terminal component of Dθ is maximized.

The following lemmas establish some properties that follow from this choice of θ. Recall that
Gfrac

θ is the spanning subgraph of G comprising all the fractional edges.

Lemma 3.4. If θ is an optimal m-allocation, then Gfrac
θ is a forest.

Proof. Suppose for contradiction that there exists a cycle C in Gfrac
θ , and let u0, u1, . . . , uk = u0

be its cyclic sequence of vertices. Let θ′ be the m-allocation obtained from θ by shifting along
C. By Observation 3.2, θ′ is still an m-allocation on G. Let i0 ∈ {1, . . . , k} be an index that
minimizes θ(ui0−1, ui0). By Observation 3.2 and since all edges along C are fractional in θ,
we have A(Dθ′) ⊇ A(Dθ) ∪ {(ui0 , ui0−1)}. This implies by Lemma 3.1(a) that the number of
terminal components in Dθ′ is at most as large as the number of terminal components in Dθ.
Together with the fact that |Efrac(G, θ′)| < |Efrac(G, θ)| (since A(Dθ′) ⊋ A(Dθ)) this contradicts
the optimality of θ. Hence our assumption was wrong, and the graph Gfrac

θ is indeed a forest. □

Lemma 3.5. Let θ be an optimal m-allocation, let v, w vertices of a terminal component C of
Dθ such that (v, w) ∈ A(Dθ), and let P = (w = u0, . . . , uℓ = v) be a path in Gfrac

θ such that all
10



the inner vertices are in some terminal component of Dθ different from C. Then there exists
0 ≤ i ≤ ℓ − 1 such that ui and ui+1 lie in the same terminal component of Dθ.

In particular, if U and W are distinct terminal components of Dθ, then for every u ∈ U the
set NG(u) ∩ W is independent in G.

Proof. Suppose for contradiction that for all 0 ≤ i ≤ ℓ − 1, it holds that ui and ui+1 are in
different terminal components of Dθ. Let θ′ be the m-allocation on G that is obtained from
θ by shifting along the cycle obtained by adding (v, w) to P . By Observation 3.2, A(Dθ′) is
obtained from A(Dθ) by removing the arc (v, w) and adding at least one of the arcs (ui, ui−1)
for some 1 ≤ i ≤ ℓ. Let 1 ≤ j ≤ ℓ be such that (uj , uj−1) is added. Let D′ = Dθ − (v, w).
By Lemma 3.1(b), it follows that the terminal components of D′ are the same as the terminal
components of Dθ, except that C is replaced by some X ⊆ C with v ∈ X. Observe that there
exists a path Q from w to v in D′ since Dθ[C] is strongly connected and (v, w) is not part of
any path from w to v.

Recall that by assumption, if 2 ≤ j ≤ ℓ − 1 then uj and uj−1 are in different terminal
components of Dθ, and these terminal components are distinct from C. Hence they also lie in
distinct terminal components of D′. If j = ℓ, then uj = uℓ = v is contained in the terminal
component X ⊆ C of D′, and uj−1 = uℓ−1 is in a terminal component of Dθ distinct from
C. Hence, uj , uj−1 are also in different terminal components in this case. Finally, if j = 1,
then adding the arc (u1, u0 = w) introduces a path (namely (u1, w) + Q) from u1 to v in D′,
and u1 and v are also in different terminal components of D′. In each case, we conclude by
Lemma 3.1(a) that D′ +(uj , uj−1) and thus also Dθ′ ⊇ D′ +(uj , uj−1) has strictly fewer terminal
components than Dθ, contradicting the optimality of θ.

For the second statement, note first that all edges between u and W must be fractional, as
both U and W are terminal components of Dθ. Therefore, NG(u) ∩ W cannot contain any
fractional edges, since this would produce a triangle in Gfrac

θ , contradicting Lemma 3.4. On the
other hand, if NG(u) ∩ W contains an integral edge (v, w) ∈ A(Dθ), we obtain a contradiction
to the first statement of this lemma by setting P = (w, u, v). □

3.4. Spines. In order to define the pseudoforest and forest guaranteed in Theorems 1.6 and 1.7,
respectively, we use the notion of a spine of a digraph, which we now define.

Definition 3.6. Let D be a digraph. A spanning subdigraph H ⊆ D is called a spine of D if
the following hold.

• Every vertex in a non-terminal component of D has out-degree exactly 1 in H.
• In every terminal component of D, all vertices have out-degree 1, apart from at most

one vertex of out-degree 0.
• The underlying graph of H is a forest.

Lemma 3.7. Let D be a digraph and R ⊆ V (D) a set of vertices containing exactly one vertex
from each terminal component of D. Then D has a spine H such that every vertex in V (D) \ R
has out-degree exactly one in H.

Proof. Let X be any strong component of D. Then D[X] is strongly connected, and hence for
every vertex x ∈ X it contains an in-tree with root vertex x that contains all the vertices in X.

To build H, do the following. For every non-terminal component X, pick an arc (x, y) ∈ A(D)
such that x ∈ X, y /∈ X and a spanning in-tree TX of D[X] rooted at x. Then add all the arcs
of TX as well as the arc (x, y) to the arc-set of H. Next, for every terminal component X, pick
the unique vertex r ∈ R ∩ X and an in-tree rooted at r that spans D[X] and add all the arcs
of this tree to H.

At the end of this process, H defines a spanning subdigraph of D in which every vertex has
exactly one out-arc, except for one vertex in each terminal component (namely, the vertices
in R). Finally, suppose towards a contradiction that the underlying graph F of H contains a
cycle. Then since H has maximum out-degree 1, this cycle would have to be directed in H, and
thus it would be fully contained in a strong component of D. However, it follows directly by
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definition of H that F restricted to any strong component of Dθ is a tree, yielding the desired
contradiction. Thus, F is indeed a forest, as desired. □

Lemma 3.8. Let θ be an optimal m-allocation, and let H be a digraph containing a spine
of Dθ. Let further u, v, w be vertices such that {u} is a singleton terminal component of Dθ,
uv, uw ∈ E(Gfrac

θ ), and (v, w) ∈ A(Dθ)\A(H). Then {w} is also a singleton terminal component
of Dθ.

Proof. Towards a contradiction, suppose that {w} is not a singleton terminal component of Dθ.
Let θ′ be the m-allocation on G that is obtained from θ by shifting along the triangle u, v, w

(in this cyclic order). By Observation 3.2, A(Dθ′) is obtained from A(Dθ) by removing the arc
(v, w) and adding one (or both) of the arcs (v, u), (u, w).

If v is contained in any terminal component of Dθ, then the same terminal component of Dθ

also must contain w, and hence we are in the setting of Lemma 3.5, which yields a contradiction
to this case (note that since u is contained in a singleton terminal component, it is necessarily
contained in a distinct terminal component from v, w).

So suppose in the following that v is not contained in any terminal component of Dθ. Let P
be the directed path in the spine of Dθ contained in H that one obtains by starting at v and
repeatedly following the unique out-arc in the spine until one reaches a terminal component
of Dθ. Since we assumed (v, w) /∈ A(H), the path P does not use (v, w), and so we can
apply Lemma 3.1(c) to find that the digraphs Dθ − (v, w) and Dθ have the same terminal
components. Since Dθ′ ⊇ Dθ − (v, w), by Lemma 3.1(a), we find that Dθ′ has at most as many
terminal components as Dθ. Also, since it is obtained from Dθ − (v, w) by adding at least one of
(v, u), (u, w), it has at least as many arcs as Dθ. If both of the arcs are added, then θ′ induces
strictly more integral edges than θ, which contradicts the optimality of θ. Thus, in the following
suppose that exactly one of the arcs (u, w), (v, u) is added.

For a first case, suppose that (u, w) ∈ A(Dθ′). It then follows from Lemma 3.1(e) and
Lemma 3.1(a) that one of the following holds.

• Dθ′ has strictly fewer terminal components than Dθ − (v, w) (and thus than Dθ).
• In Dθ′ we have at most as many terminal components as in Dθ, but strictly more vertices

that are contained in terminal components than in Dθ − (v, w) (and thus than in Dθ).
In both cases, this yields a contradiction to the optimality of θ.
For the second case, suppose that (v, u) ∈ A(Dθ′) and (u, w) /∈ A(Dθ′). By what was said

above and Lemma 3.1(a), we have that Dθ′ has at most as many terminal components as Dθ,
and at least as many integral edges as Dθ. Furthermore, since we assumed that v is not part
of any terminal component of Dθ, it is also not part of any terminal component of Dθ − (v, w),
since we found above that these two digraphs have the same terminal components. Hence,
Lemma 3.1(d) implies that also the digraph Dθ′ = (Dθ − (v, w)) + (v, u) has the same terminal
components as Dθ, and hence the number of vertices that are in terminal components is the
same in Dθ and Dθ′ . However, we claim that the number of edges of Dθ′ ending in singleton
terminal components is strictly larger than in Dθ, which will yield the desired contradiction to
the optimality of θ. To see this, note that by what was said above the set of singleton terminal
components of Dθ and D′

θ is identical. However, adding the edge (v, u) increases the in-degree of
the singleton terminal component u, and no in-degree of any other singleton terminal component
is reduced, since we assumed that w is not a singleton terminal component. This contradiction
concludes the proof. □

4. Proof of Theorem 1.6

Given these preliminaries, we are now ready to prove Theorem 1.6.

Proof of Theorem 1.6. Let m = m(G), and let θ be an optimal m-allocation of G. Let H
be a spine of Dθ, which exists by Lemma 3.7. Let H ′ be a digraph obtained by adding an
arbitrary out-arc to every vertex of H which does not yet have an out-arc in H but does have
at least one out-arc in Dθ. Finally, let F denote the underlying graph of H ′, and note that
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F is a pseudoforest (since it admits an orientation of maximum out-degree 1). Note that the
only vertices of H ′ which do not have an out-arc are the vertices that form singleton terminal
components of Dθ.

We now claim that m2(G − F ) ≤ m. Towards a contradiction, suppose that m2(G − F ) > m.
Then there exists a set U ⊆ V (G) such that |U | ≥ 3 and

m(|U | − 2) + 1 < eG−F (U).(1)

We make the following observation.

Claim 4.1. |U | > 2m − 1.

Proof. Suppose |U | ≤ 2m − 1. Together with (1), we get(
|U |
2

)
≥ eG−F (U) > m(|U | − 2) + 1 ≥ |U | + 1

2 (|U | − 2) + 1.

But |U |(|U | − 1) = (|U | + 1)(|U | − 2) + 2, a contradiction. □

Let d denote the number of terminal components of Dθ that intersect U in exactly one vertex.

Claim 4.2. d ≤ 1.

Proof. As Gfrac
θ forms a forest by Lemma 3.4, there are at most |U | − 1 fractional edges in

G[U ]. For every vertex u ∈ U such that there exists a terminal component W of Dθ satisfying
W ∩ U = {u}, there are no arcs in Dθ from u to U . Note that there are exactly d such vertices
in U , by definition of d. Furthermore, every other vertex in U (for which such a terminal
component does not exist) has out-degree at most m − 1 in Dθ − H ′, since each such vertex
has at most ⌊m⌋ ≤ m out-arcs in Dθ, and exactly one out-arc is included in H ′. Bounding
the number of integral edges in (G − F )[U ] by the sum over the out-degrees of vertices in
(Dθ − H ′)[U ], we get

eG−F (U) ≤ (|U | − 1) + (m − 1)(|U | − d).
Comparing this with (1), we obtain

−2m + 2 < −(m − 1)d,

implying that d < 2. □

Since for every edge uv ∈ E(G) it holds that θ(u, v) + θ(v, u) = 1, we find that

eG−F (U) =
∑

uv∈E((G−F )[U ])
(θ(u, v) + θ(v, u)) =

∑
u∈U

∑
v∈NG−F (u)∩U

θ(u, v).(2)

Let X be the set of vertices that form singleton terminal components of Dθ. Then, by definition
of an m-allocation and since every vertex outside of X has out-degree 1 in H ′, we find that for
every u ∈ V (G) \ X, we have

∑
v∈NG−F (u)∩U θ(u, v) ≤ m − 1, whereas for every u ∈ X, we have∑

v∈NG−F (u)∩U θ(u, v) ≤ m.
For now, suppose that for all u ∈ U , we have

∑
v∈NG−F (u)∩U θ(u, v) ≤ m − 1. Then (2)

together with (1) gives
m(|U | − 2) + 1 < (m − 1)|U |.

Simplifying, we have |U | < 2m − 1, contradicting Claim 4.1. Therefore, there exists at least
one vertex u ∈ U with

∑
v∈NG−F (u)∩U θ(u, v) > m − 1. Fix such a vertex and denote it by u∗.

Observe that u∗ ∈ U ∩ X, which implies by Claim 4.2 that d = 1. In particular, we find that u∗

is the unique vertex in U satisfying
∑

v∈NG−F (u)∩U θ(u, v) > m − 1. Note that u∗ does not have
any out-arcs in Dθ. We conclude that u∗ is incident to at least ⌊m⌋ edges in Gfrac

θ [U ]. Picking
k ∈ N and 0 ≤ ε < 1 such that m = k + ε, we obtain that u∗ is incident to at least k edges in
Gfrac

θ [U ].

Claim 4.3. 2m − 1 < |U | < 2m.
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Proof. The lower bound follows from Claim 4.1. Again combining (1) and (2), we get

m(|U | − 2) + 1 < eG−F (U) ≤ (m − 1)|U | + 1,

where we use the fact that u∗ is the only vertex in U satisfying
∑

v∈NG−F (u)∩U θ(u, v) > m − 1.
The upper bound follows directly. □

Claim 4.4. ε < 1/2.

Proof. Suppose towards a contradiction that ε ≥ 1/2. Since 2m − 1 < |U | < 2m, we get that
|U | = 2k + 1. Using the facts that Gfrac

θ is a forest, that every vertex in U \ {u∗} has at most
k − 1 integral out-arcs in Dθ − H ′, and that u∗ has no out-arcs, we get(

k + 1
2

)
(2k − 1) + 1 ≤ (k + ε)(2k − 1) + 1 = m(|U | − 2) + 1 < eG−F (U)

≤ (|U | − 1) + |U \ {u∗}| · (k − 1) = 2k + 2k · (2k − 1) = 2k2.

Subtracting 2k2 from both sides, we get
1
2 < 0,

a contradiction. □

So suppose ε < 1/2. By Claim 4.3, we get that |U | = 2k. Recall that u∗ is incident to at
least k fractional edges in Gfrac

θ [U ]. By Lemma 3.8 and the fact that d ≤ 1, there do not exist
v, w ∈ U such that both u∗v and u∗w are fractional edges, and such that (v, w) ∈ A(Dθ)\A(H ′).
Similarly, by Lemma 3.4, there are no fractional edges between fractional neighbors of u∗. Thus,
the fractional neighborhood of u∗ in U induces an independent set in G − F , and therefore

eG−F (U) ≤
(

2k

2

)
−
(

k

2

)
.

Together with (1), we have

k(2k − 2) + 1 ≤ m(2k − 2) + 1 < k(2k − 1) − k(k − 1)
2 .

Simplifying, we get
2 < k(3 − k).

This is a contradiction for every k ∈ N, concluding the proof. □

5. Main technical lemma for Theorem 1.7

We now begin the proof of Theorem 1.7, which is the content of this section and Section 6.
In this section, we prove the following technical lemma, which allows us to argue that a minimal
violating set U must have certain structural properties with respect to the terminal components
of Dθ, and moreover allows us to dispense of most values of m.

Lemma 5.1. Let G be a graph with an optimal m-allocation θ for some m > 3/2. Let H be any
spine of Dθ and F the underlying undirected graph of H. Let U ⊆ V (G) be an inclusion-wise
minimal set of vertices such that |U | ≥ 2 and eG−F (U) ≥ m(|U | − 4/3) (assuming such a set
exists). Then the following hold.

• Either m ≤ 9
5 or m = 9

4 .
• U intersects exactly one terminal component of Dθ, and it intersects this component in

at least two vertices.
• |U | ≤ 4

3m + 1.
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Proof. By assumption, we have that |U | ≥ 2 and

eG−F (U) ≥ m

(
|U | − 4

3

)
.(3)

Note that the above inequality together with m > 3/2 implies that |U | > 2. Let us consider the
collection C consisting of all strong components of Dθ that intersect U in at least one vertex.
Let us further split C into three parts, namely C1, consisting of all non-terminal components
in C, C2, consisting of all terminal components in C that contain at least two vertices of U ,
and C3, consisting of all terminal components in C3 that intersect U in precisely one vertex.
Clearly, the intersections (X ∩ U)X∈C form a partition of U . In the following, let us denote
U ′ :=

⋃
X∈C1 (X ∩ U) and let c := |C2|, d := |C3|.

5.1. Upper bounds on eG−F (U). An essential strategy towards proving the statement is to
compare various upper bounds on eG−F (U) to find a contradiction with (3). In this subsection
we give several upper bounds on eG−F (U) which will be useful later.

Recall that the edges of G are partitioned into Efrac(G, θ) and Eint(G, θ). Therefore,

eG−F (U) = |E(Gfrac
θ [U ])| + |A((Dθ − H)[U ])|.(4)

Since Gfrac
θ is a forest by Lemma 3.4, there are at most |U |−1 fractional edges. Additionally, we

know that every vertex has at most ⌊m⌋ out-arcs in Dθ, at most ⌊m⌋−1 out-arcs in (Dθ −H)[U ]
if it is not the root of a terminal component in C2, and no out-arcs in Dθ[U ] if it is a vertex in
C3. Thus, we get

eG−F (U) ≤ |U | − 1 + (⌊m⌋ − 1)(|U | − d) + c.(5)

Yet another way of counting eG−F (U) is by summing up θ(u, v) + θ(v, u) = 1 for each uv ∈
E((G − F )[U ]). That is,

eG−F (U) =
∑

(u,v)∈U2,uv∈E(G−F )
θ(u, v) =

∑
u∈U

∑
v∈NG−F (u)∩U

θ(u, v).(6)

5.2. Upper and lower bounds on |U |. Comparing the inequalities of the previous subsection,
we can obtain bounds on the size of U . Our next few claims provide such bounds, in terms of
c, d, m, and the size of U ′.

Claim 5.2. |U | > 2m − 1.

Proof. Suppose |U | ≤ 2m − 1. Together with (3), we get(
|U |
2

)
≥ eG−F (U) ≥ m

(
|U | − 4

3

)
≥ |U | + 1

2

(
|U | − 4

3

)
,

which simplifies to |U | ≤ 2, a contradiction. □

The following claim uses the above inequality to get an upper bound on the size of U .

Claim 5.3. |U | ≤ 4
3m + c + d.

Proof. Consider a vertex u ∈ U . Since θ is an m-allocation, we have
∑

v∈NG(u) θ(u, v) ≤ m.
Therefore, if u has out-degree one in H, then∑

v∈NG−F (u)
θ(u, v) ≤ m − 1.

By Definition 3.6, every vertex in U ′ has out-degree 1 in H, and at most one vertex in each of
the sets (U ∩ X)X∈C2∪C3 can have out-degree 0 in H, so in total there can be at most c + d such
vertices in U . Together with (6), this implies

eG−F (U) ≤ (m − 1)(|U | − c − d) + m(c + d) = (m − 1)|U | + c + d.
15



Combining with (3), we find

m

(
|U | − 4

3

)
≤ (m − 1)|U | + c + d,

and rearranging yields |U | ≤ 4
3m + c + d, as claimed. □

Observe that the previous claim implies that |U | ≤ 4
3m + 1 if (c, d) = (1, 0), which was the

third claimed result in the statement of Lemma 5.1. Therefore, to complete the proof, it remains
to prove that (c, d) = (1, 0) and either m < 9/5 or m = 9/4.

Claim 5.4. If (c, d) ̸= (1, 0), then |U | ≥ 4
3mc + md + |U ′| − 4

3m + 1. If additionally c > 0, then
|U | > 4

3mc + md + |U ′| − 4
3m + 1.

Proof. Suppose that (c, d) ̸= (1, 0), and let us prove the stated inequality. By the minimality
of U , we have that eG−F (U) ≥ m(|U | − 4

3) but eG−F (Y ) < m(|Y | − 4
3) for every Y ⊊ U with

|Y | ≥ 2. Thus, we have eG−F (X ∩ U) < m(|X ∩ U | − 4
3) for every X ∈ C2 (here we use that

no X ∈ C2 fully contains U , since in this case we would have (c, d) = (1, 0)). We furthermore
trivially have eG−F (X ∩ U) = 0 for every X ∈ C3.

Our goal in the following will be to give an upper bound on the number of all edges in eG−F (U)
based on (4). As discussed earlier, Gfrac

θ [U ] is a forest by Lemma 3.4 and hence contains at most
|U | − 1 edges.

To bound the number of arcs in (Dθ − H)[U ], we split the arc-set of this digraph into those
arcs that start in the set U ′ and those arcs that start in U \ U ′. Since H is a spine, every
vertex in a non-terminal component has out-degree 1 in H and out-degree at most m in Dθ

by definition of θ. Thus, we obtain that the number of arcs in (Dθ − H)[U ] starting in U ′ is
upper-bounded by (m − 1)|U ′|. And secondly, since by definition all components in C2 and C3
are terminal and thus have no arcs in Dθ leaving them, the number of arcs in (Dθ − H)[U ]
starting in U \U ′ is at most

∑
X∈C2∪C3 eG−F (X ∩ U). Altogether, we obtain the following upper

bound on the number of edges in (G − F )[U ]:

eG−F (U) ≤ (|U | − 1) + (m − 1)|U ′| +
∑

X∈C2∪C3

eG−F (X ∩ U).

Plugging in the upper bounds on eG−F (X ∩U) for X ∈ C2 ∪C3 mentioned above and comparing
with (3), it follows that

m

(
|U | − 4

3

)
≤ (|U | − 1) + (m − 1)|U ′| +

∑
X∈C2

m

(
|X ∩ U | − 4

3

)

= (|U | − 1) + (m − 1)|U ′| + m(|U | − |U ′| − d) − 4
3mc

= (m + 1)|U | − |U ′| − 4
3mc − md − 1.

Rearranging now yields that |U | ≥ 4
3mc + md + |U ′| − 4

3m + 1, as desired. Moreover, the first
inequality above is strict for c > 0, and thus we obtain |U | > 4

3mc + md + |U ′| − 4
3m + 1 in this

case. □

5.3. Consequences. Combining Claims 5.3 and 5.4 now directly yields the following.

Claim 5.5. If (c, d) ̸= (1, 0) then (4
3m − 1)c + (m − 1)d + |U ′| ≤ 8

3m − 1, with a strict inequality
if c > 0.

Proof. Combining the lower bound on |U | from Claim 5.4 and the upper bound on |U | from
Claim 5.3 yields that

4
3mc + md + |U ′| − 4

3m + 1 ≤ |U | ≤ 4
3m + c + d.
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Rearranging now implies (4
3m − 1

)
c + (m − 1)d + |U ′| ≤ 8

3m − 1.

Furthermore, if c > 0 then the inequality in Claim 5.4 is strict, yielding a strict inequality. □

Using the previous arguments, we are able to obtain a case distinction into a finite number
of options for the pair (c, d). The rest of the proof will involve dealing with each case in turn.

Claim 5.6. We have that c ≤ 2. Furthermore, the following hold:
• If c = 0, then d ≤ 1.
• If c = 1, then d ≤ 3 and d ≤ 2 provided m ≥ 9/5.
• If c = 2, then d ≤ 1 and d = 0 provided m ≥ 2.

Proof. The claim trivially holds if (c, d) = (1, 0), so assume in the following that (c, d) ̸= (1, 0).
Suppose first towards a contradiction that c = 0 and d ≥ 2. By Claim 5.4 we have |U | ≥

md+|U ′|− 4
3m+1. Since we also have |U | = |U ′|+d, it follows that md+|U ′|− 4

3m+1 ≤ |U ′|+d,
and thus (m − 1)d ≤ 4

3m − 1. This is a contradiction, since (m − 1)d ≥ 2(m − 1) > 4
3m − 1 for

m > 3
2 .

Next suppose that c > 0. This implies, by Claim 5.5 that(4
3m − 1

)
c + (m − 1)d + |U ′| <

8
3m − 1,

and thus

(7) d <
4
3m(2 − c) + c − 1

m − 1 .

Suppose first that c = 1. Then (7) implies d <
4
3 m

m−1 < 2
3
2 −1 = 4, so d ≤ 3, as claimed. If

m > 9
5 , we obtain the stronger bound d < 12/5

4/5 = 3, so d ≤ 2.
Similarly, if c = 2, then d < 1

m−1 < 1
3
2 −1 = 2, and so d ≤ 1. If m ≥ 2, we obtain the stronger

bound d < 1 and thus d = 0.
If c ≥ 3, we obtain d <

2− 4
3 m

m−1 < 0, a contradiction, and thus we must have c ≤ 2. □

Let us now assume towards a contradiction that one of (c, d) ̸= (1, 0), 9/5 < m < 9/4 or
m > 9/4 holds. Based on this and the previous claim, the proof now splits into the following
cases, which we list in the order that we resolve them.

(a) (c, d) = (0, 0),
(b) (c, d) = (1, 3) and m < 9/5,
(c) (c, d) = (1, 0) and m > 9/4,
(d) (c, d) = (1, 0) and 9/5 < m < 9/4,
(e) (c, d) = (2, 1) and m < 2,
(f) (c, d) = (2, 0),
(g) (c, d) = (1, 2),
(h) (c, d) = (0, 1),
(i) (c, d) = (1, 1).

5.4. Easy arguments based on set sizes. We now begin the case distinction to handle all
the cases delineated in the above list. Many of the cases can be dealt with very directly by
simply comparing the upper and lower bounds we have on the sizes of various sets. As all these
arguments are simple and similar, we collect them all in this subsection.
Case (a). If (c, d) = (0, 0), then from Claims 5.2 and 5.3 we obtain that

2m − 1 < |U | ≤ 4
3m + 0 + 0,

which simplifies to m < 3
2 , a contradiction.
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Case (b). Suppose (c, d) = (1, 3) and 3/2 < m < 9/5. Then |U | ≥ 2c + d = 5. Since there
are no arcs in Dθ between different terminal components and m < 2, the only vertex in U with
an out-arc in Dθ − H is the root of the component in C2 if it is in U . Otherwise there are no
integral edges at all. Using that Gfrac

θ is a forest by Lemma 3.4, it follows from (3) and (4) that

3|U |
2 − 2 < m

(
|U | − 4

3

)
≤ eG−F (U) ≤ (|U | − 1) + 1 = |U |,

where the first inequality uses that m > 3/2. Rearranging yields that |U | < 4, a contradiction.
Case (c). Suppose (c, d) = (1, 0) and m > 9

4 . By Claim 5.3 we then have |U | ≤ 4
3m + 1. Using

(3), it follows that

m

(
|U | − 4

3

)
≤ eG−F (U) ≤

(
|U |
2

)
= |U | − 1

2 |U | ≤ 2
3m|U |.

Rearranging now yields that |U | ≤ 4. If |U | = 4, then from the above we obtain m(4 − 4
3) ≤ 6

and thus m ≤ 9
4 , a contradiction. Similarly, if |U | = 3, then m(3 − 4

3) ≤ 3, contradicting m > 9
4 .

Case (d). Suppose that (c, d) = (1, 0) and 9/5 < m < 9/4. By Claim 5.3, we have |U | ≤
4
3m + 1 < 4, so |U | ≤ 3 and thus |U | = 3. Using (3), we find

eG−F (U) ≥ m

(
|U | − 4

3

)
= 5m

3 > 3,

which gives a contradiction since eG−F (U) can contain at most 3 edges.
Case (e). Suppose (c, d) = (2, 1) and 3/2 < m < 2. Note that |U | ≥ 2c + d = 5. By Claim 5.3,
we get

|U | ≤ 4
3m + 3 < 6.

It follows that |U | = 5. Note that this implies that U shares exactly two vertices with two
terminal components of Dθ and exactly one vertex with a third terminal component of Dθ.
Observe that there can be at most two arcs in Dθ[U ] since there are no arcs between different
terminal components. By (4) together with the fact that Gfrac

θ is a forest by Lemma 3.4, we get

eG−F (U) ≤ 4 + 2 = 6.

By (3), we get
11
2 < m

(
5 − 4

3

)
≤ eG−F (U).

It follows that (G − F )[U ] contains exactly two integral edges and four fractional edges, that
is, the fractional edges are a tree. Let (u, v) ∈ A(Dθ[U ]) be an arc corresponding to one of
those two integral edges. Since the fractional edges form a tree on U , there exists a path P in
Gfrac

θ [U ] from u to v. Note that each of these fractional edges connects two different terminal
components of Dθ, since all the edges in G[U ] within a terminal component are contained in
Dθ. Additionally, P does not have any internal vertices from the same terminal component as
u since u, v are the only two vertices of this component in U . The existence of such a path
contradicts the conclusion of Lemma 3.5.

5.5. Trickier arguments involving more careful counting. In this section we resolve the
remaining cases, which turn out to be more involved. Let us start with the following claim.

Claim 5.7. If (c, d) = (1, 2) or (c, d) = (2, 0), then U ′ = ∅.

Proof. By Claim 5.5 we have |U ′| < 8
3m − 1 − (4

3m − 1)c − (m − 1)d. If (c, d) = (1, 2) or
(c, d) = (2, 0) this implies that |U ′| < 2 − 2

3m < 2 − 2
3 · 3

2 = 1 and |U ′| < 1 respectively, so in
either case we may conclude U ′ = ∅. □
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Case (f). Suppose that (c, d) = (2, 0). By Claim 5.7 we then have U ′ = ∅. Let C1, C2 denote
the two terminal components that intersect U , and let U1 = U ∩ C1 and U2 = U ∩ C2. Note
that, by definition of c, we have |U1|, |U2| ≥ 2 and since d = 0 and U ′ = ∅ we have U1 ∪ U2 = U .
If we denote by eG−F (U1, U2) the number of edges with one endpoint in each Ui, we have that

eG−F (U) = eG−F (U1) + eG−F (U2) + eG−F (U1, U2) ≤
(

|U1|
2

)
+
(

|U2|
2

)
+ (|U | − 1),

where we used that all the edges in G − F going between U1 and U2 connect the two terminal
components C1 and C2 and are thus fractional, and that by Lemma 3.4 the fractional edges
form a forest.

Furthermore, we claim that the three estimates eG−F (U1) ≤
(|U1|

2
)
, eG−F (U2) ≤

(|U2|
2
)

and
eG−F (U1, U2) ≤ |U |−1 cannot all be equalities simultaneously. Indeed, if eG−F (U1, U2) = |U |−1
then the edges going across U1 and U2 form a tree on |U | ≥ 4 vertices, meaning there exists a
vertex in either U1 or U2 incident to at least two such edges. But if both U1 and U2 are cliques,
this would imply that there exists a triangle in G − F formed by two fractional edges that cross
between U1 and U2 and one integral edge inside U1 or U2, a contradiction to Lemma 3.5. We
therefore obtain

eG−F (U) ≤
(

|U1|
2

)
+
(

|U2|
2

)
+ (|U | − 2).

By convexity of
(x

2
)

we now get

eG−F (U) ≤
(

2
2

)
+
(

|U | − 2
2

)
+ |U | − 2

= (|U | − 2)(|U | − 3)
2 + |U | − 1

= (|U | − 2)(|U | − 1)
2 + 1.

By (3), we have eG−F (U) ≥ m(|U | − 4
3) = m(|U | − 2) + 2

3m > m(|U | − 2) + 1. The above then
implies that (|U | − 1)/2 > m, or, equivalently, |U | > 2m + 1. This contradicts Claim 5.3, which
guarantees that |U | ≤ 4

3m + 2 = 2m + 1 + (1 − 2
3m) < 2m + 1, using that m > 3

2 .
Case (g). Suppose (c, d) = (1, 2). Let k ∈ N and 0 < ε ≤ 1 be such that m = k + ε. By
Claim 5.4, we have that |U | > 2m + 1. But we also have |U | ≤ 4

3m + 3 by Claim 5.3, which
implies that |U | < 2m + 2 since m > 3/2. We thus get that

2m + 1 < |U | < 2m + 2.(8)
This is impossible if m is an integer, so we may assume that 0 < ε < 1, and thus that k = ⌊m⌋.
By Claim 5.7, we know that U ′ is empty. Let u1, u2 be the two vertices from components in
C3 and let X be the remaining vertices in U , which are vertices of the component in C2. Note
that u1, u2 are incident to no arcs in Dθ[U ] since U ′ is empty and no arcs of Dθ connect distinct
terminal components.

Suppose first that 1/2 < ε < 1. By (8), we have that |U | = 2k + 3. Using (3) and (5), we get(
k + 1

2

)(
|U | − 4

3

)
< m

(
|U | − 4

3

)
≤ (|U | − 1) + (k − 1)(|U | − 2) + 1.

Simplifying, we arrive at
|U | − 4/3

2 + 2k

3 < 2.

Using now that |U | = 2k + 3, we get 5k/3 + 5/6 < 2, which is equivalent to k < 7/10. But
k ≥ 1, a contradiction.

Suppose then that 0 < ε ≤ 1/2. By (8), we get |U | = 2k + 2. If u1 is incident to at most k
fractional edges in U , then U \ {u1} is another violating set, contradicting the minimality of U
(and the same holds for u2). So we have that u1, u2 are each incident to at least k + 1 edges in
Gfrac

θ [U ]. Recall that by Lemma 3.4 Gfrac
θ is a forest. First, suppose that u1u2 /∈ E(Gfrac

θ ). Thus,
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they both have at least k + 1 edges to X in Gfrac
θ . Using that |U | − 2 = |X| = 2k, we conclude

that |NGfrac
θ

(u1) ∩ NGfrac
θ

(u2)| ≥ 2, yielding a copy of C4 in Gfrac
θ and contradicting that Gfrac

θ

is a forest. So we may assume that u1u2 is an edge of Gfrac
θ . Then |NGfrac

θ
(u1) ∩ NGfrac

θ
(u2)| =

0, for otherwise Gfrac
θ would contain a triangle, again contradicting Lemma 3.4. Therefore,

each of the 2k vertices of X is a neighbor of either u1 or u2. Since by Lemma 3.5 the sets
NG(u1) ∩ X, NG(u2) ∩ X must be independent (and of size k), we obtain that eG−F (X) ≤ k2.
It follows that eG−F (U) ≤ k2 + 2k + 1. Comparing this to (3), we get

k

(
2k + 2

3

)
≤ k2 + 2k + 1,

which is not true for any k ≥ 2. But since k + ε = m > 3
2 ≥ 1 + ε, we have that k ≥ 2, a

contradiction.
Case (h). Suppose (c, d) = (0, 1). By Claims 5.2 and 5.3, we get

2m − 1 < |U | ≤ 4
3m + 1 < 2m,

where we use m > 3/2. Let us fix k ∈ N and 0 < ε ≤ 1 such that m = k + ε. Note that in fact,
the bounds 2m − 1 < |U | < 2m are impossible to achieve if m is an integer, and therefore, we
may assume that ε < 1 and thus that k = ⌊m⌋. Let u∗ be the vertex in the terminal component
of Dθ which is intersected by U .

Suppose first that 1/2 ≤ ε < 1. Since 2m − 1 < |U | < 2m, we get that |U | = 2k + 1. Using
(3) and (5), we get(

k + 1
2

)(
2k − 1

3

)
≤ m

(
2k − 1

3

)
< 2k + (k − 1)2k = 2k2,

which we simplify to
2k − 1/3

2 ≤ k

3 .

But this is a contradiction, since (2k − 1/3)/2 = k − 1
6 ≥ 5

6k.
So we may assume that 0 < ε < 1/2. Then k ≥ 2 and we find that |U | = 2k. Suppose that∑
v∈NG−F (u∗)∩U θ(u∗, v) ≤ m − 1. Using (3) together with (6), we get

m

(
2k − 4

3

)
≤ (m − 1)2k.

Simplifying yields
2k ≤ 4

3m <
4
3k + 2

3 ,

which does not hold for any positive integer k. It follows that
∑

v∈NG−F (u∗)∩U θ(u∗, v) > m−1 ≥
k − 1, implying that u∗ forms a singleton terminal component in Dθ, as otherwise it has an
out-arc in Dθ to a vertex not in U , which then would leave at most m − 1 outgoing weight from
u∗ to U . In particular, u∗ has no out-arcs in Dθ. Thus we obtain that u∗ must be incident to at
least k fractional edges in Gfrac

θ [U ]. By Lemma 3.8, there cannot exist any arc of (Dθ − H)[U ]
between two neighbors of u∗ in Gfrac

θ , since this would imply that one of those two neighbors
also forms a singleton terminal component contained in U , contradicting our assumption that
d = 1. Also, no two neighbors of u∗ in Gfrac

θ [U ] can be joined by a fractional edge, since Gfrac
θ

is a forest. Hence, the endpoints of those k fractional edges incident to u∗ in Gfrac
θ [U ] form an

independent set in (G − F )[U ]. We conclude that

eG−F (U) ≤
(

2k

2

)
−
(

k

2

)
.

Together with (3), we have

k

(
2k − 4

3

)
< m

(
2k − 4

3

)
≤ k(2k − 1) −

(
k

2

)
.
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Simplifying, we get (
k

2

)
<

k

3 .

This is a contradiction for every k ≥ 2.
Case (i). Suppose (c, d) = (1, 1). By Claims 5.2 and 5.3, we get

2m − 1 < |U | ≤ 4
3m + 2.

Using additionally that m > 3/2, we get that 4
3m + 2 < 2m + 1 and hence,

2m − 1 < |U | < 2m + 1.(9)
For each u ∈ U , let I(u) denote the out-degree of u in (Dθ − H)[U ]. The number of integral
edges in (G − F )[U ] is equal to

∑
u∈U I(u), so we can rewrite (4) as

eG−F (U) ≤ |U | − 1 +
∑
u∈U

I(u).(10)

Let X be the intersection of U with the component in C2. Let u∗ ∈ U be the vertex in the
component in C3 and r ∈ X chosen such that I(r) is maximal. Note that X has no out-arcs in
Dθ[U ], as it is the intersection of U with a terminal component. Fix k ∈ N and 0 ≤ ε < 1 such
that6 m = k + ε. Then, I(u∗) = 0 and I(r) ≤ ⌊m⌋ = k. Furthermore, we have I(u) ≤ k − 1 for
every u ∈ U \ {u∗, r}. Indeed, otherwise there would be at least two vertices in U \ {u∗} that
have out-degree k = ⌊m⌋ in (Dθ − H)[U ]. However, this is impossible, since by Definition 3.6
all but at most one vertex of U \ {u∗} have out-degree 1 in H. Let

I := k − I(r) +
∑

u∈U\{u∗,r}
(k − 1 − I(u)).

Intuitively, I is the number of integral edges that are “missing”. Now, we can rewrite (10) as

eG−F (U) ≤ |U | − 1 + k +

 ∑
u∈U\{u∗,r}

(k − 1)

− I

= |U | − 1 + (k − 1)(|U | − 1) + 1 − I

= k(|U | − 1) + 1 − I.

Together with (3), we get

m

(
|U | − 4

3

)
≤ k(|U | − 1) + 1 − I.

Plugging in m = k + ε, we simplify to

I ≤ k

3 − ε

(
|U | − 4

3

)
+ 1.(11)

Let M denote the number of edges in the complement of (G − F )[U ], so that

eG−F (U) =
(

|U |
2

)
− M.

Combining this with (3), we get

M ≤
(

|U |
2

)
− m

(
|U | − 4

3

)
.(12)

We now split into subcases depending on whether 0 ≤ ε ≤ 1/2 or 1/2 < ε < 1. First, suppose
that 1/2 < ε < 1. By (9), we get that |U | ∈ {2k + 1, 2k + 2}. However, plugging ε > 1/2 and
|U | ∈ {2k+1, 2k+2} into (11) (and using the fact that I must be non-negative) implies that the

6Note that this is a different choice from the one made in cases (g) and (h), as we now allow ε = 0 and earlier
allowed ε = 1.
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only possibility is I = 0, k = 1 and |U | = 2k + 1 = 3. This in turn implies that U \ {u∗} = X.
By Lemma 3.5 (G−F )[U ] cannot be a triangle, since this would imply that u∗ has two adjacent
neighbors in the terminal component containing X. Hence, we have m(3 − 4

3) ≤ eG−F (U) ≤ 2,
a contradiction.

So we may now assume that 0 ≤ ε ≤ 1/2. Since m > 3/2, we get k ≥ 2. By (9), we get that
|U | ∈ {2k, 2k + 1}. Suppose first that |U | = 2k + 1. Plugging this into (12), and using that
k ≤ m, we get

M ≤ k(2k + 1) − k

(
2k − 1

3

)
= 4

3k.

Next, let us look at (11). We get I ≤ k/3 + 1 < k, where we used k ≥ 2. Hence, I ≤ k − 1. It
follows that

(13) eG−F (X) ≥
∑
u∈X

I(u) ≥ (k − 1)|X| + 1 − I ≥ (k − 1)(|X| − 1) + 1.

It follows that |X| ≥ 2k − 1. Suppose now that
∑

v∈NG−F (u∗)∩U θ(u∗, v) ≤ m − 1. Using (6), we
get

eG−F (U) ≤ (m − 1)|U | + 1.

Comparing this with (3), we get

m

(
|U | − 4

3

)
≤ (m − 1)|U | + 1.

Simplifying gives |U | ≤ 4
3m + 1 < 2m, contradicting |U | = 2k + 1 ≥ 2m. So we may assume

that

(14)
∑

v∈NG−F (u∗)∩U

θ(u∗, v) > m − 1.

Recall that u∗ does not have any out-arcs in Dθ[U ]. Additionally, the assumption (14) implies
that u∗ cannot have an out-arc in Dθ to a vertex outside of U . It follows that u∗ does not have
any out-arcs in Dθ. Therefore, u∗ is a singleton terminal component of Dθ. Additionally, u∗

is incident to at least k edges in Gfrac
θ [U ]. Suppose that u∗ is incident to at least two edges in

the complement of (G − F )[U ]. The fact that d = 1 implies by Lemmas 3.4 and 3.8 that the
fractional neighborhood of u∗ in U is an independent set, so we find that

M ≥
(

k

2

)
+ 2.

It follows that (
k

2

)
+ 2 ≤ 4

3k,

which holds for no k ∈ N. So we may assume that u∗ has at most one non-neighbor in (G−F )[U ].
Then, using that there are no integral edges between u∗ and X, we get that u∗ is connected by
at least |X| − 1 fractional edges to X. Since by Lemma 3.5 the neighbors of u∗ in X form an
independent set in G, it follows that G[X] contains at most |X| − 1 edges. On the other hand,
(G − F )[X] must contain at least (k − 1)(|X| − 1) + 1 integral edges by (13). So we get

(k − 1)(|X| − 1) + 1 ≤ |X| − 1,

implying that k ≤ 1, a contradiction.
We move on to the last case, that is |U | = 2k. We again plug this into (12) and (11) to get,

using k ≥ 2,

M ≤ k(2k − 1) − k

(
2k − 4

3

)
= k

3 < k − 1,

and
I ≤ k

3 + 1 < k.
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As above, this implies that X has at least 2k − 1 vertices. Since there are at most k − 2 missing
edges, we get that u∗ is adjacent to at least k + 1 edges into |X|. Using Lemma 3.5, we get that
there are at least

(k+1
2
)

missing edges and thus,(
k + 1

2

)
≤ M ≤ k − 2,

a contradiction. This concludes the proof of the last remaining case and hence, of Lemma 5.1.
□

6. Proof of Theorem 1.7

Given Lemma 5.1, we now proceed with the proof of Theorem 1.7. We use Lemma 5.1 to
deal with the majority of cases, whereas a more careful selection of the forest F is needed to
resolve the final cases.

Proof of Theorem 1.7. We begin by picking an optimal m-allocation θ of G, which we may do
by Theorem 2.5. We now split the proof into three cases, depending on the value of m.
Case 1: 9/5 < m < 9/4 or m > 9/4. By Lemma 3.7, Dθ contains a spine H with underlying
undirected graph F , which is a forest. It then follows by Lemma 5.1 that for every U ⊆ V (G)
with |U | ≥ 2, it holds that eG−F (U) < m(|U | − 4/3) and the statement follows.
Case 2: m = 9/4. Again, by Lemma 3.7, there exists a spine of Dθ. Suppose that H is a spine
of Dθ minimizing the number of copies of K4 in G − F , where F is the underlying undirected
graph of H. We are done if there is no U ⊆ V (G) with |U | ≥ 2 and eG−F (U) ≥ m(|U | − 4/3),
so we may assume that U is an inclusion-wise minimal such set. By Lemma 5.1, we get that U
intersects exactly one terminal component X of Dθ and it intersects X in at least two vertices as
well as that |U | ≤ 4

3m + 1 = 4. We note that if |U | = 2, then our assumption reads eG−F (U) ≥
m(|U | − 4/3) = 2m/3 = 3/2, which is impossible since eG−F (U) ≤ 1 if |U | = 2. Similarly, the
case |U | = 3 can be ruled out as our assumption reads eG−F (U) ≥ m(3 − 4/3) = 5m/3 = 15/4,
which is impossible as 15/4 > 3. So we may conclude that |U | = 4, and moreover we have that
eG−F (U) ≥ m(4 − 4/3) = 8m/3 = 6, which implies that U induces a K4 in G − F .

Let W be any set of vertices of G. As in (2), we have that

eG−F (W ) =
∑

(u,v)∈W 2,uv∈E(G−F )
θ(u, v) =

∑
u∈W

∑
v∈NG−F (u)∩W

θ(u, v).(15)

Let us apply the above equality to U . Let r denote the unique vertex in X that has out-degree
0 in H (i.e., the root of the in-tree that H induces on X). Since H contains an out-arc for every
vertex in U \ {r}, it follows that

∑
v∈NG−F (r)∩U θ(r, v) ≤ m and that

∑
v∈NG−F (u)∩U θ(u, v) ≤

m − 1 for all u ∈ U\{r}. This implies that r ∈ U , as otherwise, eG−F (U) ≤ (m − 1)|U | = 5. For
the same reason, U must contain all out-neighbors of r in Dθ. Let u ∈ U be an out-neighbor
of r and observe that u ∈ X since X is a terminal component. From the definition of a spine,
we see that H + (r, u) contains a unique directed cycle, which necessarily includes the edge
(r, u). Let v denote the successor of u along this cycle. As U induces a K4 in G − F , and
as uv /∈ E(G − F ), we have that v /∈ U . Moreover, H + (r, u) − (u, v) is a spine of Dθ with
root u in X. As H was chosen to minimize the number of copies of K4 in G − F , it must
hold that there exists some vertex set Ũ that induces a K4 in G − (F + ru − uv) but not in
G − F . The same argument as above implies that u, v ∈ Ũ and r /∈ Ũ . Moreover, we have
eG−F (Ũ) ≥ eG−(F +ru−uv)(Ũ) − 1 = 6 − 1 = 5. Observe that Ũ is also a minimal set satisfying
|Ũ | ≥ 2 and eG−(F −ru+uv)(Ũ) ≥ m(|Ũ | − 4/3). By Lemma 5.1, it follows that Ũ only intersects
one terminal component of Dθ; this terminal component is necessarily X, since u ∈ X ∩ Ũ .

On the one hand, applying (15) to W = U ∪Ũ , we get eG−F (U ∪Ũ) ≤ (m−1)|U ∪Ũ |+1, since
every vertex in U ∪ Ũ distinct from r has out-degree 1 in H. On the other hand, eG−F (U ∪ Ũ) ≥
eG−F (U) + eG−F (Ũ) − eG−F (U ∩ Ũ) ≥ 11 −

(|U∩Ũ |
2
)
. The size of |U ∩ Ũ | is at least 1 as both sets
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contain u, and is at most 3 since r ∈ U \ Ũ . Hence, m = 9/4 must satisfy one of the inequalities

11 −
(

1
2

)
≤ 7(m − 1) + 1,

11 −
(

2
2

)
≤ 6(m − 1) + 1,

or

11 −
(

3
2

)
≤ 5(m − 1) + 1.

But none of these inequalities hold, a contradiction which concludes the proof of this case.
Case 3: 3/2 < m ≤ 9/5. We begin by noting that since m < 2, every vertex of G has out-degree
at most one in Dθ. The resolution of this case now rests on the following crucial claim.

Claim 6.1. Each non-singleton terminal component of Dθ contains an arc (u, v) such that u
and v have no common neighbors in Gfrac

θ .

Before we prove the above claim, let us first show how to use it to complete the argument.
Suppose then that every non-singleton terminal component contains an arc (u, v) ∈ A(Dθ) such
that u and v have no common neighbor in Gfrac

θ . Let R be a set of vertices containing exactly one
such vertex u for each non-singleton terminal component, as well as all the vertices in singleton
terminal components of Dθ. By Lemma 3.7, there exists a spine H of Dθ with underlying forest
F such that every vertex in V (D)\R has out-degree exactly one in H and therefore, out-degree
zero in Dθ − H. Suppose towards a contradiction that m 4

3
(G − F ) ≥ m. Then, there exists a

minimal U ⊆ V (G) with |U | ≥ 2 and eG−F (U) ≥ m(|U |−4/3). By Lemma 5.1, it follows that U
intersects a unique terminal component X of Dθ and that U intersects X in at least two vertices.
Additionally, we have that |U | ≤ 4

3m + 1 < 4. Observe that |U | > 2 since m(2 − 4/3) > 1, so
we conclude that |U | = 3. Additionally, eG−F (U) ≥ m(3 − 4/3) > 2, implying that (G − F )[U ]
is a triangle. By Lemma 3.4, Gfrac

θ is a forest and therefore (Dθ − H)[U ] contains at least one
arc. But recall that the only vertices with out-arcs in (Dθ − H)[U ] are vertices of R, and that
U intersects only one terminal component X. Let r be the root of X, so that U ∩ R = {r}. Let
(r, v) be the out-arc of r in (Dθ − H)[U ], and note that by the argument above this is the only
arc in (Dθ − H)[U ]. But by our choice of the roots, r and v do not share any neighbors in Gfrac

θ
and hence (G − F )[U ] can not be a triangle. This contradiction completes the proof, and all
that remains is to prove Claim 6.1.

Proof of Claim 6.1. Let us start by proving the following lemma.

Lemma 6.2. Let T be a forest, ℓ ≥ 2 an integer, and let v1, v2, . . . , vℓ be pairwise distinct
vertices in T such that each of the vertex pairs v1v2, v2v3, . . . , vℓv1 have a common neighbor in
T . Then there exists a vertex u that is adjacent to all vertices v1, . . . , vℓ.

Proof. We prove the lemma by induction on ℓ. It trivially holds if ℓ = 2, so suppose ℓ ≥ 3 and
that we have proved the lemma with value ℓ − 1. For each i = 1, . . . , ℓ, let wi be a common
neighbor of vi and vi+1 (index addition modulo ℓ). Let W := {v1, . . . , vℓ, w1, . . . , wℓ}. Since
T [W ] is a forest, it contains a vertex of degree at most 1, which must be one of vi, i = 1, . . . , ℓ.
Without loss of generality say that vℓ has degree 1 in T [W ]. This implies that wℓ−1 = wℓ, as both
are neighbors of vℓ. Hence, v1, . . . , vℓ−1 also has the property that any pair of two cyclically
consecutive vertices have a common neighbor in T . By the inductive hypothesis, there is a
common neighbor w of v1, . . . , vℓ−1. Since both w and wℓ−1 = wℓ are common neighbors of
v1 and vℓ−1, and since T contains no cycles, it follows that w = wℓ = wℓ−1, and thus w is a
common neighbor of v1, . . . , vℓ. □

Note that, as the maximum out-degree of Dθ is at most 1, each non-singleton terminal
component of Dθ is the vertex-set of a directed cycle. Suppose towards a contradiction that
there exists a non-singleton terminal component C such that for every arc (u, v) on the directed

24



cycle Dθ[C], the vertices u and v have a common neighbor in Gfrac
θ . By Lemma 3.4, Gfrac

θ is a
forest and therefore, by Lemma 6.2, there exists a common neighbor u of all vertices of C in
Gfrac

θ . This implies that u /∈ C. Moreover, by Lemma 3.5, u cannot be contained in another
terminal component. Recall that since m < 2, u has at most one out-arc in Dθ, and if it had
zero out-arcs it would be a singleton terminal component, which we just argued is not the case.
Therefore, u has exactly one out-arc in Dθ, and thus H contains a directed path from u to a
terminal component C ′ of Dθ.

First, suppose that C ′ ̸= C. Let (v, w) ∈ A(Dθ[C]) be any arc and θ′ the m-allocation
obtained from θ by shifting along the triangle u, v, w. By Observation 3.2, Dθ′ is obtained from
Dθ by removing the arc (v, w) and adding one (or both) of the arcs (v, u), (u, w). But as u has
an out-arc in Dθ which remains in Dθ′ , it cannot be that (u, w) gets added, since this would
contradict m < 2 and the fact that θ′ remains an m-allocation. Hence, Dθ′ = Dθ −(v, w)+(v, u).
Note that by Lemma 3.1(b) and using that v has no out-arcs in Dθ − (v, w), the terminal
components of Dθ − (v, w) are the singleton {v} and the remaining terminal components of Dθ

besides C. But then, Lemma 3.1(a) implies that Dθ′ = Dθ − (v, w) + (v, u) has strictly fewer
terminal components than Dθ, since (v, u) together with the path in H from u to C ′ forms
a directed path from v to another terminal component of Dθ − (v, w). This contradicts the
optimality of θ.

Therefore, we may assume that C ′ = C. Thus, H contains a directed path from u to C.
Let (v, w) ∈ A(Dθ[C]) be the directed edge in C such that w is the first vertex in C reached
on this path. Let θ′ be the m-allocation obtained from θ by shifting along the triangle u, v, w.
As before, we can use Observation 3.2 and the fact that u has an out-arc in Dθ that remains
in Dθ′ (recall that u is connected only by fractional edges to the vertices in C, and hence
cannot have an out-arc to one of v, w) to conclude that Dθ′ = Dθ − (v, w) + (v, u). As above,
by Lemma 3.1(b), the terminal components of Dθ − (v, w) are the same as the ones of Dθ,
except that C is replaced by the new singleton terminal component {v}. Then, it follows by
Lemma 3.1(e) and the optimality of θ that Dθ′ has the same terminal components as Dθ besides
C, which is replaced by a strong component of Dθ′ containing {v, u}. Let us denote the vertices
of this component by A. Every vertex reachable from v in Dθ′ is contained in A. By our choice
of w, we see that w is reachable from u and hence from v (via the arc (v, u)) in Dθ′ . Therefore all
vertices in C are reachable, since C − (v, w) is a path from w to v passing through all vertices
of C. Therefore, C ⊊ A, as u ∈ A \ C. Thus, there are strictly more vertices contained in
terminal components of Dθ′ than in terminal components of Dθ. Since the number of terminal
components of Dθ and D′

θ is identical and since the number of integral edges of θ and θ′ is also
identical, this is a contradiction to the optimality of θ, completing the proof. □

As argued above, Claim 6.1 finishes the last case, which concludes the proof of Theorem 1.7.
□

7. Concluding remarks

The results of this paper confirm the Kohayakawa–Kreuter conjecture, Conjecture 1.3, for all
r-tuples of graphs. However, there remain a few natural directions for future work to explore.

The first question we wish to highlight is a conjecture of Kuperwasser, Samotij, and Wigder-
son [19, Conjecture 1.5], which strengthens the conclusion of Theorem 1.6 by demanding that
F is a forest, rather than a pseudoforest.

Conjecture 7.1 (Kuperwasser–Samotij–Wigderson). Let m > 0 be a real number. Every graph
G with m(G) ≤ m contains a forest F ⊆ G such that m2(G − F ) ≤ m.

Note that this conjecture is in fact a common strengthening of both Theorem 1.6 and The-
orem 1.7, since m 4

3
(G − F ) < max{m, m2(G − F )} assuming m > 3

2 . This is an interesting
and natural graph decomposition in its own right, but would also have further implications for
the study of Ramsey properties of random graphs. Namely, as proved in [19, Theorem 1.10],
Conjecture 7.1 would imply a natural generalization of Conjecture 1.3 where one wishes to color
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Gn,p and avoid not just a single graph Hi in color i, but some finite family {H
(1)
i , . . . , H

(t)
i }.

It seems very possible that our techniques, potentially coupled with a more careful choice of
θ and F , could resolve Conjecture 7.1. We note that Conjecture 7.1 was proved in [19] under
the extra assumption that m is an integer, using matroid-theoretic techniques; however, those
techniques do not seem to work in the general case.

Another natural question that deserves more study concerns the Ramsey properties of random
hypergraphs. In this setting, even the symmetric case (i.e. the generalization of Theorem 1.1
to hypergraphs) is not well-understood. The analogous 1-statement to that in Theorem 1.1
is known to be true [3, 7]. However, it was shown in [9] that in uniformity 4 and above, the
corresponding 0-statement is not true in general; there exist hypergraphs whose symmetric
Ramsey threshold is controlled by an intermediate “reason” between the “local” and “global”
reasons discussed in the introduction. Despite this, Bowtell, Hancock, and Hyde [1] proved
an analogue of Theorem 1.4 in the hypergraph setting, so in some sense all that remains to
understand is when the hypergraph analogue of Theorem 1.5 holds.
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and asymmetric Ramsey properties in random hypergraphs, Forum Math. Sigma 5 (2017),
Paper No. e28, 47pp.

[10] B. Hajek, Performance of global load balancing by local adjustment, IEEE Trans. Inform.
Theory 36 (1990), 1398–1414.

[11] S. L. Hakimi, On the degrees of the vertices of a directed graph, J. Franklin Inst. 279
(1965), 290–308.

[12] R. Hancock, K. Staden, and A. Treglown, Independent sets in hypergraphs and Ramsey
properties of graphs and the integers, SIAM J. Discrete Math. 33 (2019), 153–188.

[13] J. Hyde, Towards the 0-statement of the Kohayakawa-Kreuter conjecture, Combin. Probab.
Comput. 32 (2023), 225–268.
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