
Yuval Wigderson Graph decompositions, Ramsey theory, and random graphs

The goal of this talk is to understand the statement of the following theorem, as well as
why it has so many names attached to it and, as much as possible, what kinds of ideas go
into its proof.

Theorem (Mousset–Nenadov–Samotij, Kuperwasser–Samotij–W., Bowtell–Hancock–Hyde,
Christoph–Martinsson–Steiner–W.). Let H1, . . . , Hq be graphs with m2(H1) ⩾ · · · ⩾ m2(Hq)
and m2(H2) > 1. There exist constants C > c > 0 such that

lim
n→∞

Pr(G(n, p) is Ramsey for (H1, . . . , Hq)) =

{
0 if p ⩽ cn−1/m2(H1,H2),

1 if p ⩾ Cn−1/m2(H1,H2),

where

m2(H) := max
J⊆H

eJ − 1

vJ − 2
,

and
m2(H1, H2) := max

J⊆H1

eJ
vJ − 2 + 1/m2(H2)

.

However, we will build up to this statement very slowly, and explain what each of the
terms in the statement mean.

1 Ramsey properties of graphs

The following foundational result is known as Ramsey’s theorem; it is the basis of a large,
highly active field of mathematics called Ramsey theory.

Theorem 1.1 (Ramsey 1930). For every integer t, there exists an integer n with the property
that any 2-coloring of E(Kn) contains a monochromatic Kt.

This theorem can be equivalently stated in the following form, which looks superficially
stronger.

Theorem 1.2. For every graph H, there exists a graph G with the property that any 2-
coloring of E(G) contains a monochromatic copy of H.

One says that G is Ramsey for H if the property above holds, that is, if every 2-coloring
of E(G) contains a monochromatic copy of H. Equivalently, G is Ramsey for H if the edges
of G cannot be partitioned into two H-free subgraphs. This is a “robust” version of the
statement that G has many copies of H: not only does G have many copies, but they are so
tightly interlinked that one cannot destroy all of them by splitting E(G) into two parts.

The basic question of graph Ramsey theory is to understand, for a given graph H, which
graphs G are Ramsey for it. For example, one of the simplest results is that K6 is Ramsey for
K3 (but K5 is not). This immediately implies that every graph G with K6 ⊆ G is Ramsey
for K3. This motivated Erdős and Hajnal to ask whether this is the only reason why a graph
can be Ramsey for K3; that is, do there exist G which are Ramsey for K3, but with K6 ⊈ G?
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This question was rapidly answered in the positive independently by Cherlin, Graham,
and van Lint. Later, Pósa proved an even stronger theorem, namely the existence of G which
is Ramsey for K3, but with K5 ⊈ K3. Finally, the strongest possible version of this was
proved by Folkman.

Theorem 1.3 (Folkman 1970). There is a graph G which is Ramsey for K3, but with
K4 ⊈ G.

This is quite remarkable: it shows that the global structure of triangles in G is extremely
complicated (because G is Ramsey for K3), whereas the local structure is very simple, since
G is K4-free. Several more general versions of such a statement, yielding “locally sparse”
Ramsey graphs, were proven by Nešetřil and Rödl in the 1970s.

If you squint your eyes and forget the details, Folkman’s theorem appears to be describing
some sort of expander. Indeed, sparse expanders are graphs whose local structure is very
simple (e.g. they may have large girth), but whose global structure is very complex (e.g. they
may have sublinear independence number, hence large chromatic number). The constructions
of Folkman and Nešetřil–Rödl were completely explicit, but we know that a good way of
finding expanders is via randomized constructions. This is one of several motivations for
asking about the Ramsey properties of random graphs.

2 Ramsey properties of random graphs

In this talk we will be studying the binomial (or Erdős–Rényi) random graph model, denoted
G(n, p). This is a random n-vertex graph, obtained by making each of the

(
n
2

)
pairs of vertices

an edge with probability p, with all these choices made independently.
The study of such random graphs goes back to work of Erdős and Rényi from the 1960s.

A fundamental phenomenon that they observed is that random graphs exhibit thresholds
or phase transitions. Loosely speaking, these are results of the following type: for a given
property of graphs (e.g. being connected, or containing a triangle, or having chromatic
number at least 100, or containing a Hamiltonian path), the probability that G(n, p) has
this property is very close to 0 if p is smaller than some function p∗(n), and very close to
1 if p is larger than p∗(n). There is at this point a rich theory of powerful and general
meta-theorems, which imply that such threshold phenomena occur for essentially all natural
properties of graphs. But rather than stating these general results, I will just give one
example of such a threshold result, to give a sense of their flavor. We denote by vH , eH the
number of vertices and edges, respectively, of H, and define its maximum density to be

m(H) = max
J⊆H

eJ
vJ

,

where the maximum runs over all non-empty subgraphs of H.

Theorem 2.1 (Erdős–Rényi 1960, Bollobás 1981 in full generality). Let H be a graph. Then

lim
n→∞

Pr(H is a subgraph of G(n, p)) =

{
0 if p = o(n−1/m(H)),

1 if p = ω(n−1/m(H)).
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Such a result really consists of two statements, which need to be proved separately, and
which are usually called the 0-statement and 1-statement. In general, completely different
arguments need to be used for the two statements, since they are really saying two different
things; to prove the 1-statement you need to explain why the random graph almost surely
does contain H, whereas to prove the 0-statement you need to explain why it is almost surely
H-free. It is often the case, and this theorem is a good example of this, that the 0-statement
is substantially easier to prove than the 1-statement—often there is a simple “explanation”
for why a graph may fail to have a certain property, and then an elementary computation
implies the 0-statement. In this case, the union bound (or first moment method) easily gives
the 0-statement, whereas the 1-statement requires a somewhat more sophisticated argument.

As suggested earlier, we can combine the two topics we have been discussing and ask
the following question: for a given graph H, what is the threshold that determines whether
G(n, p) is almost surely Ramsey for H?

People started asking this question in the late 1980s, and it was resolved in seminal work
of Rödl and Ruciński in the mid-1990s. But before stating the answer, let’s try to guess it
based on some intuitive reasoning, focusing on the case H = K3. For G(n, p) to be Ramsey
for K3, we’d better have that K3 ⊆ G, hence Theorem 2.1 implies that we should take
p ≫ n−1/m(K3) = n−1. However, this is clearly not sufficient: for example, if p ≪ n−4/5,
then Theorem 2.1 implies that G(n, p) contains no copy of B2 := , the graph obtained by

gluing two triangles along an edge. If G(n, p) contains no copy of B2, then all the triangles
in G(n, p) are edge-disjoint, hence we can easily color the edges of G to destroy all the
triangles. Moreover, if p≪ n−5/7, then Theorem 2.1 implies that G(n, p) does not contain a

copy of either B3 := or P3 := , which implies that every “connected component of

triangles” contains at most two triangles. In this case, it is again easy to color the edges of
G(n, p) and destroy all triangles.

Continuing in this fashion, one comes to the conclusion that for the triangles in G(n, p)
to “interact a lot”, we should have that a typical edge lies in many (i.e. a large constant
number of) triangles; this is for essentially the same reason that G(n, p) itself becomes “very
complex” once its average degree is a large constant. A simple computation shows that the
average edge is on a constant number of triangles exactly when p ≍ n−1/2.

More generally, given any graph H, we should expect G(n, p) to become Ramsey for H
once a typical edge lies on a constant number of H-copies. Working through some simple
computations then suggests that the relvant parameter is themaximal 2-density ofH, defined
as

m2(H) := max
J⊆H

eJ − 1

vJ − 2
,

where the maximum runs over all subgraphs of H with at least three vertices.
And indeed, this intuition is proven correct by the following foundational theorem.

Theorem 2.2 (Rödl–Ruciński 1995). For every graph H with m2(H) > 1, there exist con-
stants C > c > 0 such that

lim
n→∞

Pr(G(n, p) is Ramsey for H) =

{
0 if p ⩽ cn−1/m2(H),

1 if p ⩾ Cn−1/m2(H).
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The assumption m2(H) > 1 is equivalent to saying that H is not a forest; the threshold
for forests is also well-understood, but there are a few annoying edge cases and for simplicity
I prefer to avoid them.

I tried to motivate the study of these questions via Folkman’s theorem, Theorem 1.3.
However, as written, Theorem 2.2 is not sufficient to prove Theorem 1.3. Indeed, plugging in
H = K3, we see that m2(K3) = 2, hence Theorem 2.2 implies that G(n, p) is Ramsey for K3

only once p = Ω(n−1/2). However, m(K4) =
3
2
, so at this density, there actually are plenty of

copies ofK4 in G(n, p), and hence G(n, p) does not automatically yield aK4-free graph which
is Ramsey for K3. This problem can be remedied by finding sufficiently strong estimates
for the rate of convergence in Theorem 2.2, combined with a neat application of Harris’s
inequality, but we omit the details; we will shortly see a different proof of Theorem 1.3.

While the Rödl–Ruciński theorem agrees exactly with our intuition developed above, that
is not to say that it is easy to prove. Moreover, in contrast to the examples we saw before,
neither the 0-statement or the 1-statement is easy. Indeed, Rödl and Ruciński developed a
wide array of ingeneous techniques for each of the two statements.

In the last decade, there has been a flurry of activity in developing powerful, general tools
which allow one to prove the 1-statement of many results, including Theorem 2.2. These be-
gan with the transference principles of Conlon–Gowers, Schacht, and Friedgut–Rödl–Schacht,
and more recently the hypergraph container method of Balogh–Morris–Samotij and Saxton–
Thomason, which was applied in this setting by Nenadov–Steger. With these techniques,
it is now quite straightforward to prove the 1-statement of Theorem 2.2, and, moreover, to
view it as a special case of a general theory, rather than relying on the complex, ad hoc
arguments used by Rödl and Ruciński.

However, the 0-statement of Theorem 2.2 has resisted any such simplification. To un-
derstand why, suppose we fix some H, and fix some G which is Ramsey for H. If G is a
subgraph of G(n, p), then certainly G(n, p) is Ramsey for H. Therefore,

Pr(G(n, p) is Ramsey for H) ⩾ Pr(G is a subgraph of G(n, p)).

By Theorem 2.1, we know that this latter quantity is bounded away from zero if and only if
p = Ω(n−1/m(G)). Hence, if m(G) ⩽ m2(H), then the 0-statement of Theorem 2.2 cannot be
true.

This explains (part of) the reason why the 0-statement of Theorem 2.2 is difficult: al-
though it is a probabilistic statement, it is at least as hard as the following statement, which
Rödl and Ruciński termed the “deterministic lemma”.

Lemma 2.3 (Deterministic lemma, Rödl–Ruciński 1995). Let H be a graph with m2(H) > 1.
If G is Ramsey for H, then m(G) > m2(H).

As explained above the deterministic lemma is a natural necessary condition for the 0-
statement of Theorem 2.2 to hold. More surprisingly, Rödl–Ruciński proved that this simple
necessary condition is also sufficient.

Lemma 2.4 (Probabilistic lemma, Rödl–Ruciński 1995). Let H be a graph, and suppose
that m(G) > m2(H) for all graphs G which are Ramsey for H (i.e. the deterministic lemma
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is true). There exists a constant c > 0 such that if p ⩽ cn−1/m2(H), then

lim
n→∞

Pr(G(n, p) is Ramsey for H) = 0,

i.e. the 0-statement of Theorem 2.2 is true.

To understand why the probabilistic lemma is true, let us return to the intuition above.
Recall that we argued that if p ≪ n−5/7, then all “connected components of triangles” in
G(n, p) contain at most two triangles. More generally, one can prove that if p ⩽ cn−1/m2(H)

for a sufficiently small constant c > 0, then all “connected components of H-copies” have
constant size. Therefore, to prove that G(n, p) is not Ramsey for H, it suffices to prove that
each of these constant-sized connected components can be edge-colored without creating any
monochromatic copy of H. But this is precisely the statement of the deterministic lemma!
Indeed, by Theorem 2.1, we know that the only constant-sized graphs G that can appear
in G(n, p) are those with m(G) ⩽ m2(H), and hence each of the connected components
corresponds to a graph G satisfying m(G) ⩽ m2(H). By the deterministic lemma, all of
these are non-Ramsey for H, which is exactly what we wanted to show.

This perspective also gives a nice way of thinking about the significance of the deter-
ministic lemma, and the meaning of Theorem 2.2. By the deterministic lemma, even when
p = Cn−1/m2(H), every “small” portion of G(n, p) is not Ramsey for H. Instead, the Ram-
seyness comes from the global structure of G(n, p), rather than from any local portion. This
is closely analogous to the fact that random graphs can have high chromatic number, despite
having low chromatic number whenever one considers only a small portion of the graph.

Incidentally, it is the failure of the deterministic lemma which makes Theorem 2.2 some-
what more subtle for forests. For example, one can check that if H is a path on four vertices
and G is obtained from C5 by adding a leaf to each vertex of the C5, then G is Ramsey for
H and satisfies m(G) = 1 = m2(H). Thus, the deterministic lemma is simply false for this
choice of H, and therefore so is the 0-statement of Theorem 2.2.

3 Asymmetric Ramsey properties

Up to now, we have been concerned with symmetric Ramsey properties, wherein one is
interested in finding a monochromatic copy of H in either of the two colors. But one can
equally well study asymmetric Ramsey properties. Concretely, given any set of graphs
H1, . . . , Hq, let us say that a graph G is Ramsey for (H1, . . . , Hq) if every q-coloring of E(G)
contains a monochromatic copy of Hi in the ith color, for some i.

For the moment, let us focus on the case q = 2. We may assume without loss of generality
that m2(H1) ⩾ m2(H2). It is natural to expect that being Ramsey for (H1, H2) is of “inter-
mediate difficulty” between being Ramsey for H1 and being Ramsey for H2. Therefore, we
should expect the threshold for G(n, p) to be Ramsey for (H1, H2) to be somewhere between
n−1/m2(H2) and n−1/m2(H1).

At such an “intermediate” density, a typical edge is in very many copies of H2, but in
very few copies of H1. Note that if an edge of G(n, p) lies in no copy of H1, then it is
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essentially irrelevant for the Ramsey problem: we may safely color it with color 1 without
fear of creating a monochromatic copy of H1, and thus we can effectively simply ignore this
edge. In other words, we can focus on the subgraph G′ ⊆ G(n, p) consisting of all edges which
lie in a copy of H1. Intuitively, we should expect the Ramsey property to be determined
by whether the copies of H2 which survive in G′ still “interact in a complicated manner”.
Applying some more heuristics along the lines discussed above, one can eventually determine
that the relevant quantity seems to be the mixed 2-density, which is defined by

m2(H1, H2) := max
J⊆H1

eJ
vJ − 2 + 1/m2(H2)

.

This reasoning motivates the following conjecture.

Conjecture 3.1 (Kohayakawa–Kreuter 1997). Let H1, . . . , Hq be graphs with m2(H1) ⩾
· · · ⩾ m2(Hq) and m2(H2) > 1. There exist constants C > c > 0 such that

lim
n→∞

Pr(G(n, p) is Ramsey for (H1, . . . , Hq)) =

{
0 if p ⩽ cn−1/m2(H1,H2),

1 if p ⩾ Cn−1/m2(H1,H2),

The motivation above hopefully supports this conjecture in the case q = 2. An interesting
feature is that adding further colors and graphs H3, . . . , Hq changes nothing (except for the
constants C and c); the intuitive reason is that, once the edges in H1-copies form complex
enough copies of H2, they will also form complex copies of H3, . . . , Hq, and hence nothing
fundamental about the problem should change by the addition of these extra graphs.

For a while, Conjecture 3.1 had only been verified in a number of special cases, including
when all Hi are cycles by Kohayakawa and Kreuter, when all Hi are complete graphs by
Marciniszyn, Skokan, Spöhel, and Steger, and when eachHi is a clique or a cycle by Liebenau,
Mattos, Mendonça, and Skokan. Recently, Conjecture 3.1 was finally proven in full generality.

Theorem 3.2 (Mousset–Nenadov–Samotij, Kuperwasser–Samotij–W., Bowtell–Hancock-
–Hyde, Christoph–Martinsson–Steiner–W.). Conjecture 3.1 is true.

Before discussing the proof of Conjecture 3.1, let us see two quick applications, including
a proof of Folkman’s theorem.

Corollary 3.3. There exists a graph G0 which is Ramsey for (K3, K3, K3), but not Ramsey
for (K4, K3).

Proof. By Theorem 3.2, we know that the threshold forG(n, p) to be Ramsey for (K3, K3, K3)
is p ≍ n−1/m2(K3,K3) = n−1/2. On the other hand, the threshold for G(n, p) to be Ramsey for
(K4, K3) is p ≍ n−1/m2(K4,K3) = n−5/12. So if we pick p = n−11/24, or indeed any function of
the form o(n−5/12) and ω(n−1/2), then we see asymptotically almost surely, G(n, p) satisfies
the desired property. Hence, for sufficiently large n, we may set G0 to be a sample of G(n, p)
and obtain the claimed result.
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Corollary 3.3 is itself a “Folkman-type” statement, in the sense that it proves the exis-
tence of a graph G0 satisfying a Ramsey property, but which is not so complex to satisfy a
different Ramsey property. Moreover, as observed by Kuperwasser, a result like Corollary 3.3
immediately yields a proof of Folkman’s theorem, Theorem 1.3.

Proof of Theorem 1.3 (Kuperwasser). Let G0 be the graph from Corollary 3.3. Since G0 is
not Ramsey for (K4, K3), there is a coloring of its edges in, say, black and white such that
the black graph is K4-free and the white graph is K3-free. Let G be the black graph, which
is K4-free by construction. Moreover, every red/blue-coloring of G, when combined with the
white graph, gives a three-coloring of E(G0). By the fact that G0 is Ramsey for (K3, K3, K3),
this coloring must contain a monochromatic triangle, and it cannot be white since the white
graph is K3-free. Hence there is a red or blue K3, showing that G is Ramsey for K3.

4 Proof overview

As with the Rödl–Ruciński theorem, there are three main parts to the proof of Conjecture 3.1:
the 1-statement, the probabilistic lemma, and the deterministic lemma. Each of them is
substantially harder than the corresponding statement in the proof of Theorem 2.2, so let
us discuss them in turn.

First, the 1-statement was proved by Mousset, Nenadov, and Samotij, using the container
method. However, a naive application of the container method does not work, roughly be-
cause the container method “wants to” work at one of the densities n−1/m2(H1) or n−1/m2(H2),
rather than in some intermediate range. To get around this issue, Mousset–Nenadov–Samotij
introduced a sophisticated additional trick which they term “random typing”. Roughly
speaking, this trick allows one to pass to the subgraph G′ ⊆ G(n, p), which lives at the lower
density n−1/m2(H2), and then apply the container method to this graph. Of course, this can-
not be done directly, since discovering the subgraph G′ requires revealing all the randomness
in G(n, p), and resolving this issue via random typing is the main innovation of their work.

Let us now turn to the 0-statement. Note that for the 0-statement, it suffices to deal
with the case of q = 2 colors, simply because being Ramsey for (H1, . . . , Hq) implies being
Ramsey for (H1, H2), and hence a lower bound on the threshold probability for the latter
event implies the same lower bound for the former event. As mentioned above, the proof of
the 0-statement boils down to a deterministic and a probabilistic lemma.

Theorem 4.1 (Deterministic lemma, Christoph–Martinsson–Steiner–W.). Let m2(H1) ⩾
m2(H2) > 1. If G is Ramsey for (H1, H2), then m(G) > m2(H1, H2).

As before, the deterministic lemma is a clear necessary condition for the 0-statement of
Conjecture 3.1 to be true. The following probabilistic lemma, proved independently by two
groups, demonstrates that this necessary condition is also sufficient.

Lemma 4.2 (Probabilistic lemma; Bowtell–Hancock–Hyde, Kuperwasser–Samotij–W.). Let
H1, H2 be graphs with m2(H1) ⩾ m2(H2) > 1. The 0-statement of Conjecture 3.1 for (H1, H2)
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is equivalent to the deterministic lemma, i.e. to the statement m(G) > m2(H1, H2) if G is
Ramsey for (H1, H2).

I won’t say much about the proof of the probabilistic lemma, but I’ll try to give a few
ideas. The main difficulty in applying the techniques of Rödl–Ruciński is that we no longer
have constant-sized “connected components of H-copies”. Indeed, since we are in the regime
p≫ n−1/m2(H2), the set of H2-copies is very complicated, and its connected components are
very large. Of course, our saving grace is that the H1-copies are extremely simple, since
p≪ n−1/m2(H1). However, figuring out how to utilize this saving grace is quite tricky.

Instead, we use an alternative approach. Let us say that G is minimally Ramsey for
(H1, H2) if it is Ramsey for (H1, H2), but any proper subgraph of it is not. Clearly, every
Ramsey graph contains a minimally Ramsey subgraph. In particular, if we suppose for
contradiction that G(n, p) is Ramsey for (H1, H2), then there must exist some minimally
Ramsey G ⊆ G(n, p). By the deterministic lemma, such a G must be “large”, i.e. not of
constant size.

Ideally, we would like to union-bound over all potential choices for G, and say that with
high probability none of them appear in G(n, p). But this is impossible, as there are far
too many choices for G. To get around this, we define a collection S of supporting graphs,
satisfying two key properties. First, S is small, and in fact so small that we can successfully
union-bound over it; and second, every minimally Ramsey graph G contains some S ∈ S
as a subgraph. Hence, once the union bound shows us that S ⊈ G(n, p) for all S ∈ S, we
conclude that G(n, p) does not contain any minimally Ramsey G, and thus is not Ramsey for
(H1, H2). This basic idea, of replacing a large, complicated family by a smaller family that
“dominates” it, is also the basic idea of the container method. The difficulty in both cases
is the construction of the smaller family, and I won’t say anything about the construction of
S.

Finally, let us turn to the proof of the deterministic lemma, Theorem 4.1. It is a bit easier
to think about in the contrapositive: if m(G) ⩽ m2(H1, H2), then G can be partitioned into
an H1-free graph and an H2-free graph.

The difficulty with proving such a statement is that we get to assume essentially nothing
about H1 and H2, and hence it is not clear how to find these Hi-free subgraphs of G. If one
assumes certain extra structure on H1 and H2 (e.g. that H2 is non-bipartite, or that H1 is a
clique), then proving such a statement becomes fairly straightforward. However, the tricks
that work in such special cases don’t seem to work in full generality. As such, it is natural
to try to prove a more general statement, which implies Theorem 4.1 without using almost
anything about the structure of H1 and H2. The following conjecture is such a statement.

Conjecture 4.3 (Kuperwasser–Samotij–W. 2023). If G is a graph, there exists a forest
F ⊆ G such that

m2(G \ F ) ⩽ m(G).

In other words, we can partition the edge set of G into a forest F and a graph K such that
m2(K) ⩽ m(G).
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Indeed, if m2(H1) > m2(H2) > 1, then one can verify that H2 is not a forest (hence not
a subgraph of F ), and that m2(H1) > m2(H1, H2) (hence, if m(G) ⩽ m2(H1, H2), then H1

is not a subgraph of K).
Conjecture 4.3 looks very similar to a number of well-known results in the theory of graph

partitioning. For example, a famous theorem of Nash-Williams states that a graph G can
be partitioned into k forests if and only if m1(G) ⩽ k, where

m1(G) := max
J⊆G

eJ
vJ − 1

.

One consequence of this is, for example, that G can be partitioned into a forest F and a
graph K with m1(K) ⩽ ⌊m1(G)⌋.

Nash-Williams’ theorem is a special case of the very general matroid partitioning theorem
of Edmonds. Using such matroid-theoretic techniques, Kuperwasser, Samotij, and I proved
Conjecture 4.3 under the added assumption that m(G) is an integer. However, it seems
that such integrality assumptions are a necessary component of any matroid-theoretic proof
technique, and as such Conjecture 4.3 seems out of reach at the moment.

However, in order to prove Theorem 4.1, Christoph, Martinsson, Steiner, and I proved
two natural weakenings of Conjecture 4.3, which together suffice to prove the deterministic
lemma.

Theorem 4.4 (Christoph–Martinsson–Steiner–W.). Let G be a graph.

(a) There exists a pseudoforest P ⊆ G such that

m2(G \ P ) ⩽ m(G).

Here, a pseudoforest is a graph with at most one cycle per connected component.

(b) If m(G) > 3
2
, there exists a forest F ⊆ G such that

m 4
3
(G \ F ) ⩽ m(G),

where
m 4

3
(H) := max

J⊆H

eJ
vJ − 4

3

.

These are not the most general results provable by our techniques (in particular the choice
of 4

3
is not of great significance), but they are two simple statements which together imply

Theorem 4.1. I believe that there should be a much more general theory of sparsity mea-
sures on graphs, with accompanying graph partitioning results, which should hopefully yield
general-purpose proofs of Theorems 4.1 and 4.4, and other results such as Nash-Williams’
theorem.

As matroid-theoretic techniques do not seem capable of proving “fractional” results like
Theorem 4.4, we had to introduce alternative techniques. The basic tool is one we term
allocations, which a fractional version of a classical technique of Hakimi and Frank–Gyárfás.
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Basically, their results allow one to turn upper bounds on m(G) into an orientation of E(G)
with bounded out-degrees. Our technique is an extension of this, where every edge is not
assigned an orientation, but a “fractional” orientation.

Concretely, let us define an allocation to be a function θ : V (G)2 → [0, 1] satisfying
the following two properties: θ(u, v) = 0 if uv /∈ E(G), and θ(u, v) + θ(v, u) = 1 for every
uv ∈ E(G). In case θ is integer-valued, this is exactly an orientation of E(G), namely we
orient the edge uv as u → v if θ(u, v) = 1, and as u ← v if θ(v, u) = 1. Extending this
intuition, we define the θ-outdegree of a vertex u to be

∑
v∈V (G) θ(u, v). The key lemma

relating allocations to densities is the following.

Lemma 4.5. Let G be a graph and let m be a real number. Then m(G) ⩽ m if and only if
there is an allocation θ : V (G)2 → [0, 1] such that the θ-outdegree of every vertex is at most
m.

There are a number of ways of proving this lemma, but one of the simplest is as a quick
application of the max-flow min-cut theorem.

Now, the basic idea for proving Theorem 4.4 is as follows. We are given a graph G,
and let m := m(G). By Lemma 4.5, we obtain an allocation θ : V (G)2 → [0, 1] with all
θ-outdegrees bounded by m. If θ were an honest edge-orientation, then an obvious way of
picking a pseudoforest P ⊆ G is to have every vertex select one out-neighbor; the resulting
oriented subgraph has maximum outdegree 1, hence is a pseudoforest. Again, if θ were an
orientation, we would have decreased the outdegree of every vertex by 1, hence the subgraph
G \ P would have an edge-orientation with maximum outdegree at most m − 1; by the
converse of Lemma 4.5, we would conclude that m(G \ P ) ⩽ m− 1, which suffices to prove
Theorem 4.4(a). In fact, this argument can be made to work ifm is an integer, and essentially
recovers a well-known theorem of Hakimi (which is proved in the same way).

Unfortunately, θ need not be a true orienation, so we need to work a lot harder. But
the same basic strategy is the same, after some “pre-processing”. Namely, we begin by
modifying the allocation θ, while preserving the bound on the θ-outdegree. For example, it
is not hard to see that we can shift the value of θ along any cycle of G without changing the
θ-outdegree of any vertex. By performing a number of modifications of this type, we can
assume that θ is of a certain special form. We now again have every vertex pick one “outgoing
edge” (although even defining this is a bit harder, since a typical edge has only a fractional
orientation), and then argue that (a) this yields a pseudoforest, and (b) that its removal
yields m2(G \ P ) ⩽ m(G). To accomplish this latter goal, we assume for contradiction that
some subgraph of G \ P is too dense, and show that this contradicts the choice of θ.

The proof of Theorem 4.4(b) is similar, but much more involved. The biggest problem is
that we can no longer obtain a forest by simply assigning every vertex one outgoing edge, as
this may create cycles. To overcome this, we begin by analyzing the global structure of θ, in
order to identify “safe” places to put the leaves of the forest, i.e. vertices with no outgoing
edge. Additionally, the verification that m 4

3
(G\F ) < m(G) is also much more involved, and

breaks into a large number of cases depending on the exact value of m, as well as on the
structure of θ.
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