
Homework 1 Mathcamp 2017 The Kakeya Conjecture

1 Recall that one suggestion in class for a small-area Kakeya set is an annulus, namely the area between

two concentric circles. Prove that if you have an annulus of inner radius r and outer radius R such

that it can fit a unit line segment, then its area is
⇡
4 , the same as the circle of radius

1
2 .

1

rR

2 In class, our definition of a Kakeya set was not entirely rigorous, since we didn’t really say what it

means to continuously rotate a bedframe inside K. Write down a formal definition. [This exercise

requires you to know some calculus or analysis.]

3* Formally prove that every Kakeya set in R2
has positive area.

4 (a) Recall that a Besicovitch set in R2
is a set that contains a unit line segment in every direction.

Similarly, define a Besicovitch set in Rn
for any n.

(b) Recall that Z is an area-zero set in R2
if for every " > 0, there is an open set U" � Z with

area(U")  ". Similarly, define a volume-zero set in Rn
for any n.

(c) Prove that there exists a volume-zero Besicovitch set B ⇢ Rn
for all n � 2. For this problem, you

can assume the fact that we’ll prove tomorrow, that there is an area-zero Besicovitch set in R2
.

(d) Prove that there is no volume-zero (or rather length-zero) Besicovitch set in R1
.

5 In this problem, we will define the Cantor dust, which is another way to construct area-zero Besicovitch

sets in R2
. This is not at all the strategy we will employ tomorrow.

(a) Let D0 be the unit square in R2
, with corners at (0, 0), (0, 1), (1, 0), (1, 1). Then, let D1 be the sub-

set of D0 consisting of four squares of side length
1
4 , with lower-left corners at (0, 1

2 ), (
1
4 , 0), (

3
4 ,

1
4 ),

and (
1
2 ,

3
4 ). We now iterate this construction, at each step letting Dk be what we get when we

replace each square of Dk�1 with the corresponding four squares:

D0 D1 D2

Finally, let D =
T1

k=1 Dk; D is called the Cantor dust. Prove that D is a zero-area set.

(b) Prove that when we project D onto the x-axis, we get the whole interval [0, 1]. In other words,

prove that for all a 2 [0, 1], there is some b 2 [0, 1] such that (a, b) 2 D. Similarly, prove that D
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has a full projection onto the y-axis; on the other hand, prove that its projection onto any other

line in the plane has length zero.

(c) Let

E =

[

(a,b)2D

`a,b where `a,b = {(x, y) : y = ax+ b}

This is called the dual construction; E consists of all lines that are parametrized by points of D.

Try to picture what E looks like!

(d) Conclude that E contains a full line (not just a line segment) in every direction between 0
�
and

45
�
. Therefore, conclude that E, along with seven additional rotated copies of it, is a Besicovitch

set in R2
.

(e)* Using (5b), prove that E has zero area. [This is very very hard, and is in fact more or less

how Besicovitch originally proved his theorem. To prove it, he developed the so-called theory of

irregular 1-sets.]

(f) The only property of D that we used to get a Besicovitch set from it is that it has a full projection

on to the x-axis. Many other sets have this property; can you find another one that seems to give

an area-zero Besicovitch set?
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1 In this problem, we will explore a heuristic for determining the dimension of self-similar sets (often

called fractals). A self-similar set is a set S ⇢ Rn
such that S can be decomposed as k copies of itself,

each scaled down by a factor r.

(a) Check that the Sierpinski gasket is self-similar, with k = 3, r =
1
2 .

(b) Check that the Cantor dust from yesterday’s homework is self-similar. What are k and r here?

(c) Some non-fractals are also self-similar. Check that a square and an equilateral triangle are both

self-similar, and find k and r for them.

(d) We know that if we scale a 2-dimensional shape by a factor r, then its area changes by a factor

r2, and if we scale a 3-dimensional shape by a factor r, then its volume changes by a factor r3.
This suggests that if a set has “dimension” d and “size” s, then scaling it by r will change its

“size” by a factor of rd.

Therefore, if S is self-similar of “size” s and “dimension” d, then by decomposing it into k smaller

copies of itself, we expect that

s = k · s · rd

since the left-hand side is the “size” of S, and the right-hand side is the “size” of k copies of S,
scaled down by r. Use this to get a formula for d in terms of k and r.

(e) Using the formula from 1d, compute what the dimension of the Sierpinski gasket should be, and

check that this agrees with what we found in class.

(f) Again using this formula, compute what you expect the dimension of the Cantor dust to be.

Conclude that even though fractals can have a non-integer dimension, they need not.

(g) Check that this formula also gives the right value for the dimension of the square and the equi-

lateral triangle.

(h) If you’re so inclined, feel free to find other self-similar sets and compute their heuristic dimension.

2 Calculate the Minkowski dimension of the Cantor dust, the square, and the triangle, and check that

these agree with what you found in Problem 1.

3 Suppose we partition Rn
into cubes of side length " by drawing a very fine lattice; let N 0

(S, ") be the

number of these cubes that intersect some bounded set S. Prove that we can equivalently define the

Minkowski dimension of S using N 0
, namely that

dimM S = lim
"!0

logN 0
(S, ")

� log "

In fact, just about every similar notion you could think of gives an equivalent definition of Minkowski

dimension—for instance, covering S by cubes, covering S by tetrahedra, partitioning Rn
into rectan-

gular prisms, etc.

4* Construct a bounded set S ⇢ Rn
(for some n) for which the limit

lim
"!0

logN(S, ")

� log "

does not exist. Thus, S does not have a well-defined Minkowski dimension.
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1 Prove that any two points in Fn

q
have a unique line going through them, and that any two lines in Fn

q

intersect in at most one point. If you’re so inclined, check that various other properties of points and
lines that we’re used to from Euclidean geometry also translate over to the finite field case. On the
other hand, remember that many notions simply can’t be transferred in this way; in particular, any
facts about “length” or “angle” have no analogue over finite fields.

2 Find a polynomial P (x) over Fq that is non-zero but that vanishes on all of Fq. If you haven’t seen
other finite fields, only prove this for the integers mod a prime.

3 In this problem, you will prove that every Besicovitch set in Rn has Minkowski dimension at least n/2.
This is certainly far from the full Kakeya Conjecture, but at least shows that Besicovitch sets can’t be
too small.

(a) Let X ⇢ Rn, Y ⇢ Rm be bounded subsets with well-defined Minkowski dimension. Prove that

dimM (X ⇥ Y ) = dimM (X) + dimM (Y )

where X ⇥ Y ⇢ Rn+m is the standard Cartesian product.

(b) Prove that if X ⇢ Rn is a bounded subset with well-defined Minkowski dimension and if f : Rn !
Rm is a linear map, then

dimM (f(X))  dimM (X)

where f(X) ⇢ Rm is the image of X under f .

(c) Let B ⇢ Rn be a Besicovitch set, and consider B ⇥B ⇢ R2n. Let f : R2n ! Rn be defined by

f(~x, ~y) = ~x� ~y

where ~x, ~y 2 Rn, so that the ordered pair (~x, ~y) is a point in R2n. Prove that f(B⇥B) contains a
unit ball in Rn. Since a unit ball in Rn has Minkowski dimension n, conclude that dimM (B) � n/2.

(d) By mimicking the above argument, prove the finite field analogue of this result; namely, prove
that if B ⇢ Fn

q
is a Besicovitch set, then

|B| � qn/2

Up until Dvir proved the Finite Field Kakeya Conjecture, this was the sort of argument that was
used all the time: taking a result in the analytic world and transferring it to the combinatorial
world, or vice versa.

4* In this problem, you will be defining Hausdor↵ dimension. Note that this problem is both hard and not
particularly relevant to what we’re doing in class, so only do it if you’re interested in what Hausdor↵
dimension is.

(a) The idea for Hausdor↵ dimension is as follows. For every real number s � 0, we will define a
notion of s-dimensional volume; for s 2 N, this will agree (except for a caveat) with our usual
notion of s-dimensional volume, namely length, area, etc. Convince yourself that if a set S ⇢ Rn

“should have” dimension d, then we expect its s-dimensional volume to be 1 when s < d and
0 when s > d. This is a generalization of the idea that a plane should have “length” 1 but
“volume” 0.

(b) This notion of s-dimensional measure is the so-called s-dimensional Hausdor↵ measure. Defining
it is hard, so instead we’ll define what’s called the s-dimensional Hausdor↵ content of a set, which
is actually a really bad notion of s-dimensional volume. For a set S ✓ Rn, its s-dimensional
Hausdor↵ content is

Cs

H
(S) = inf

( 1X

i=1

diam(Ui)
s

�����{Ui}1i=1 is a countable cover of S by open sets

)
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where diam(Ui) denotes the diameter of Ui, namely the maximal distance between two points in
Ui. If you don’t know what inf means, just pretend it says min; they’re more or less the same
thing. Convince yourself that if S is a line segment of length L, then C1

H
(S) = L, so that this is

at least not an insane notion of 1-dimensional volume.

(c) On the other hand, prove that if S is two line segments of length L joined at a right angle (i.e. S
looks like ), then C1

H
(S) < 2L. This issue is resolved with the Hausdor↵ measure, but again,

we’re not taking that (better, but more complicated) approach.

(d) What is C0
H
(S)? Is this a reasonable notion of 0-dimensional volume?

(e)* Prove that if r < s and Cr

H
(S) < 1, then Cs

H
(S) = 0.

This (and also a similar fact that’s a bit harder to prove) shows that if we plot a graph where
the x-axis is the value of s and the y-axis is the value of Cs

H
(S), then this graph will be 1 for a

while, then jump to 0 at some point (and we’re not sure what it does at the jump point). This
jump point, formally defined as inf{s : Cs

H
(S) = 0}, is called the Hausdor↵ dimension of S, and

is denoted by dimH S.

(f) Prove that dimH S  dimM S. In particular, this implies that if S ✓ Rn and dimH S = n,
then dimM S = n. So the Kakeya Conjecture for Hausdor↵ dimension is stronger than that for
Minkowski dimension.

(g) Prove that the Hausdor↵ dimension has the following nice property with regards to countable
unions: if {Si}1i=1 is a countable collection of sets, then

dimH

 1[

i=1

Si

!
= sup{dimH(Si) : 1  i < 1}

where again, if you don’t know what sup means, pretend it says max.

(h) Using (4g), prove that dimH Q = 0. On the other hand, prove that dimM Q = 1. Thus, the
inequality in part (4f) can be a strict inequality.
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1 Prove, as I stated in class, that ✓
q + n� 1

n

◆
� 1

n!
qn

This fact fully completes the proof of the Finite Field Kakeya Conjecture.

2 As I mentioned in class, Dvir-Kopparty-Saraf-Sudan improved Dvir’s bound and proved that if B ✓ Fn
q

is a Besicovitch set, then |B| � qn/2n. The best-known upper bound, also due to Dvir, is almost equal
to this lower bound: he gave a construction of a Besicovitch set Bn with |Bn| ⇡ qn/2n�1, which is o↵
by a factor of 2. In this exercise, you’ll go through this construction.

(a) First, suppose that q is odd, and n � 1. Let

Dn =
�
(↵1, . . . ,↵n�1,�)

��↵i,�i 2 Fq,↵i + �2 is a square in Fq for all i
 

Prove that

|Dn| = q

✓
q + 1

2

◆n�1

Hint: There are exactly (q + 1)/2 perfect squares in Fq.

(b) Also, let Fn�1
q ⇥ {0} denote the set {(a, 0) | a 2 Fn�1

q }. Finally, let

Bn = Dn [
�
Fn�1
q ⇥ {0}

�

Conclude that

|Bn|  q

✓
q + 1

2

◆n�1

+ qn�1 ⇡ qn

2n�1

(c) Finally, we need to check that Bn is a Besicovitch set. For that, we need to check that for each
m 2 Fn

q , we have some b 2 Fn
q such that `m,b ✓ B, where

`m,b = {b+ t ·m|t 2 Fq}

First, suppose that mn, the last coordinate of m, is zero. Then prove that for b = 0, we have
that `m,b ✓ Bn.

(d) On the other hand, suppose that mn 6= 0. Then set

b =

 ✓
m1

2mn

◆2

,

✓
m2

2mn

◆2

, . . . ,

✓
mn�1

2mn

◆2

, 0

!

Note that this is well-defined since q is odd. Then check that for each t, we have that b+t·m 2 Dn,
so that `m,b ✓ Bn. Therefore, Bn is indeed a Besicovitch set.

(e)* If you’re interested, also do the case where q is even, which is a bit harder. In that case, set

Bn =
�
(↵i, . . . ,↵n�1,�)

��↵i,� 2 Fq, 9�i 2 Fq such that ↵i = �2
i + �i�

 

Confirm that |Bn| ⇡ qn/2n�1 and that Bn is a Besicovitch set.

3 Prove that if two 1⇥� rectangles R1, R2 make an angle ✓ between them, then the area of the intersection
is at most C�2/✓, where C is some universal constant:
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�

✓

This will be very useful tomorrow.

4* The way Dvir-Kopparty-Saraf-Sudan proved their stronger lower bound is by mimicking Dvir’s polyno-
mial method, but using multiplicities; specificially, they construct a polynomial that not only has a root
at each point of B, but actually a multiple root at each point of B. Think about what sorts of theories
you need to develop for this: a definition of multiple roots over finite fields, a Schwartz-Zippel analogue
for roots with multiplicity, an upper bound lemma with multiplicities (if a set is small, then such a low-
degree polynomial exists), and finally an actual proof of this stronger Kakeya theorem. See how many
of these steps you can do by yourself, and if you want to see the full details, read this survey by Vsevolod
Lev (this proof starts on page 3): http://math.haifa.ac.il/seva/Notes/Dvir_Kakeya.pdf

http://math.haifa.ac.il/seva/Notes/Dvir_Kakeya.pdf

