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1 Review

First, we’re going to review some of the things that we did on the last day of the Kakeya Conjecture class.
Recall that one of the many equivalent definitions of Minkowski dimension was the following:

Definition. Let S ⊂ Rn be a bounded subset, and let δ > 0. By Nδ(S) we denote the δ-neighborhood of
S, namely all points that are at distance ≤ δ away from S. Formally,

Nδ(S) = {x ∈ Rn : ∃y ∈ S such that d(x, y) ≤ δ}

where d(x, y) is the Euclidean distance between x and y. Then, let

V (S, δ) = vol(Nδ(S))

Finally, the Minkowski dimension of S is given by

dimM S = lim
δ→0

(
n+

log V (S, δ)

log 1
δ

)
In our proof of the Kakeya Conjecture in dimension 2, we used this definition. Specifically, we started

with a Besicovitch set B ⊂ R2, and our goal was to show that V (B, δ) was reasonably large (in terms of
δ). To do this, we picked a subset of Nδ(B) that consisted of a whole bunch of 1× δ rectangles, and which
pointed in a large number of “different” directions, and then we proved that the union of these rectangles
must have fairly large area, namely at least c/ log 1

δ for some constant c. Since this union of rectangles is a
subset of Nδ(B), we concluded that V (B, δ) is fairly large, which sufficed to prove that dimM B = 2.

2 Tubes and Separation

We can generalize this idea to higher dimensions, as follows.

Definition. Let e be a direction in Rn, which we can equivalently think of as a point e ∈ Sn−1, where Sn−1

is the (n− 1)-dimensional sphere in Rn. Then for any point a ∈ Rn and any δ > 0, we will denote by T δe (a)
the tube of radius δ around a line segment of length 1 centered at a. Formally,

T δe (a) =

{
x ∈ Rn : |(x− a) · e| ≤ 1

2
,proje⊥(x− a) ≤ δ

}
where proje⊥ denotes the orthogonal projection onto the hyperplane perpendicular to e, and · denotes the
dot product of vectors in Rn.

Definition. Given δ > 0, a δ-separated set of directions in Rn is a collection of directions e1, . . . , em ∈ Sn−1
with the property that ‖ei − ej‖ ≥ δ for all 1 ≤ i 6= j ≤ m.

A maximally δ-separated set of directions is such a set that is maximal with respect to inclusion, namely
that for every other point e ∈ Sn−1, there is some 1 ≤ i ≤ m such that ‖e− ei‖ < δ.

Proposition. For any n, there exist constants c, C > 0 such that if Ω is a maximally δ-separated set of
directions in Rn, then

cδ1−n ≤ |Ω| ≤ Cδ1−n

Proof idea. The surface area of Sn−1 is some constant depending on n, and the surface area of a radius-δ
disk on this sphere is some constant times δn−1. So just by dividing, we see that the size of some maximally
δ-separated set Ω must be some constant multiplied by δ1−n.

With these notions in hand, we can state an equivalent version of the Kakeya Conjecture for Minkowski
dimension.
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Theorem. The Kakeya Conjecture for Minkowski dimension in Rn is equivalent to the following statement:
for any δ > 0, ε > 0 and any maximally δ-separated set of directions e1, . . . , em in Rn, there is some constant
cε depending only on ε such that

vol

(
m⋃
i=1

T δei(ai)

)
≥ cεδε

where a1, . . . , am are any points in Rn. In other words, no matter how we arrange 1 × δ tubes pointing in
a maximally d-separated set of directions, the volume of the union is pretty large, namely at least δε (up to
constants).

Proof. The idea is the same as what we did previously in dimension 2, though the notation is a bit more
complicated. The important implication for us will be that if this statement about tubes is true, then the
Kakeya Conjecture is true as well. For that, suppose that B ⊆ Rn is a Besicovitch set. We fix a maximally
δ-separated set of directions e1, . . . , em, and find a1, . . . , am ∈ B such that the line segment in direction ei
through ai is a subset of B. Then we have that

m⋃
i=1

T δei(ai) ⊆ Nδ(B)

So we conclude that
V (B, δ) ≥ cεδε

for every ε > 0. Therefore, we get that

lim
δ→0

log V (B, δ)

log 1
δ

≥ lim
δ→0

log cε + ε log δ

− log δ
= −ε− lim

δ→0

log cε
log δ

= −ε

Since this holds for any ε, we actually conclude that

lim
δ→0

log V (B, δ)

log 1
δ

≥ 0

and thus

dimM B = lim
δ→0

(
n+

log V (B, δ)

log 1
δ

)
≥ n

which implies that the Kakeya Conjecture for Minkowski dimension is true in Rn.
The reverse implication is more or less the same, though it’s a bit more technical. We’ll skip it, since our

ultimate goal is to discuss a conjecture that’s stronger than the Kakeya Conjecture.

Recall that there is another important notion of dimension that we didn’t discuss in any detail, namely
the Hausdorff dimension. We still won’t define it, but let me give you one important result about it.

Theorem. Fix δ > 0, and let e1, . . . , em be a maximally δ-separated set of directions in Rn. Additionally, let
T δe1(a1), . . . , T δem(am) be any collection of 1×δ tubes that point in the directions e1, . . . , em. Let λ = 1/ log2 1

δ ,
and let A1, . . . , Am be any sets such that Ai ⊆ T δei(ai) and such that

vol(Ai) ≥ λ vol(T δei(ai))

Then the Kakeya Conjecture for Hausdorff dimension is true in Rn if and only if

vol

(
m⋃
i=1

Ai

)
≥ cελnδε

for all ε > 0, where cε is some constant depending only on ε.
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The idea here is that rather than getting a lower bound for the volume of a union of tubes that point
in different directions, we’re getting a bound for the volume of a union of reasonably large subsets of these
tubes. We can get intuition for why λn is the correct correction factor as follows: suppose that all the ais
are equal, namely all these tubes are centered at a single shared point. Additionally, suppose that the set
Ai is simply the central λ × δ subtube of the given 1 × δ tube. Then in the range of λ we are considering,
these tubes have a maximal overlap, which means that

⋃m
i=1Ai is basically a ball of radius λ/2. So

vol

(
m⋃
i=1

Ai

)
= Cλn

and this λn is the reason λn is the right factor above.
When phrased in these ways, there is a generalization of both conjectures that is staring us in the face.

This is (one of the many equivalent versions of) the Kakeya Maximal Conjecture:

Conjecture (Kakeya Maximal Conjecture). Fix δ > 0, and let e1, . . . , em be a maximally δ-separated set
of directions in Rn. Additionally, let T δe1(a1), . . . , T δem(am) be any collection of 1× δ tubes that point in the
directions e1, . . . , em. Then for any λ > 0, and let A1, . . . , Am be any sets such that Ai ⊆ T δei(ai) and such
that

vol(Ai) ≥ λ vol(T δei(ai))

Then we conjecture that

vol

(
m⋃
i=1

Ai

)
≥ cελnδε

for all ε > 0, where cε is some constant depending only on ε.
The crucial difference here is that we ask this to hold for any δ > 0; the λ = 1 case is the Kakeya Con-

jecture for Minkowski dimension, and the λ = 1/ log2 1
δ is the Kakeya Conjecture for Hausdorff dimension.

This is not how the Maximal Kakeya Conjecture is usually phrased. Usually, it is described as a “restricted
weak-type Lp bound on the Kakeya Maximal Operator”; we’re not using this terminology because it requires
a lot of integration theory and functional analysis as a prerequisite, and because I don’t actually understand
it.

Why is the Kakeya Maximal Conjecture a useful conjecture to think about? There are a couple of reasons.
First of all, the entire idea of thinking about volumes of tubes is, as we saw, very useful. In particular, this
“discretized” problem allows people to bring in many geometric, algebraic, and arithmetic arguments that
seem to not be available when one considers only amorphous “infinitary” Besicovitch sets. This is basically
what we saw when we proved the Kakeya Conjecture in R2, where we could use a simple property about
how rectangles can intersect in the plane.

Additionally, the formulation of the conjecture in terms of the Lp bound on the Kakeya Maximal Operator,
whatever that means, turns out to allow a whole set of other machinery to get involved. Namely, analysts have
been spending years proving such bounds for other operators, and they’ve been able to use such techniques
to get partial results about the Kakeya Maximal Conjecture.
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