
Yuval Mathcamp 2017 The Kakeya Conjecture

I could be bounded in a nut shell and count
myself a king of infinite space, were it not
that I have bad dreams.

William Shakespeare, Hamlet

1 Background and the first version of the Kakeya Conjecture

If you’ve ever carried a ladder, you know that it’s pretty hard to turn corners; the ladder constantly bumps
into things, and you need way more space than you might expect. This1 is what inspired the mathematician
Sōichi Kakeya to ask the following question in 1917:

Question (Kakeya). What is the smallest area of a room in which you can turn a ladder of length 1 through
a full 360◦ rotation?

The first guess you might have as to the optimal shape is a circle of radius 1/2, since the point of a circle
is that you can turn things around in it. This gives an area of π/4 ≈ 0.785. The next thing you might try is
a quarter-circle of radius 1, which unfortunately does no better; it has area π/4 as well. If you think a bit
more about this example, however, you might come up with the idea of using an equilateral triangle with
height 1 (and thus side length 2

√
3/3), which has area

√
3/3 ≈ .577, beating our previous bounds. It was

proved by Pál that in fact this equilateral triangle construction is the best we can do if we restrict ourselves
to convex rooms. However, Kakeya himself found a better construction, the three-pointed deltoid:

When chosen so that each altitude has length 1, this shape has area π/8 ≈ .393, and Kakeya conjectured
that this was the best. We can state this conjecture more formally after making the following definition:

Definition. A Kakeya set is a subset K ⊂ R2 with the property that a line segment of length 1 can be
continuously rotated within K so that it returns to its original position after a rotation of 180◦.

With this definition, we can state the Kakeya Conjecture:

Conjecture (Kakeya, Version 1). Every Kakeya set has area ≥ π/8, and the deltoid is the only Kakeya set
with area exactly π/8.

2 Besicovitch’s surprise

As it turns out, the Kakeya Conjecture is false, in a very strong sense. First off, the conjectured lower bound
of π/8 is false; there are Kakeya sets with smaller area. Moreover, it turns out that the entire premise of the
conjecture is false: there is no minimal area of a Kakeya set, and we can’t hope to find some optimal shape
like the deltoid!

1Strictly speaking, this backstory is totally false.
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Theorem (Besicovitch, 1928). For every ε > 0, there is a Kakeya set Kε ⊂ R2 with area(Kε) ≤ ε.

We will present a construction due to Perron, which is simpler than Besicovitch’s original construction
(though most of the ideas are the same). We will do this in several steps.

First of all, let’s forget about rotating a full 180◦, and start by rotating 60◦. If we can do this in an
arbitrarily small area, then by taking three rotated copies of area ≤ ε/3, we will be able to do the full 180◦

rotation. The basic idea of the construction is to start with an equilateral triangle of height 1, where we can
definitely do a 60◦ rotation. We cut this triangle in two vertically, then translate the pieces so that they
overlap:

This new shape has a smaller area than the original triangle, and the goal is now to iterate this construction.
However, there is one glaring problem with this trick: even though the new shape contains lines in all the
directions that the original shape did, we can no longer continuously rotate from one to the other! It almost
works, but it requires us to teleport from one vertical segment to the other (these are the two copies of the
segment that we cut along; cutting and shifting does not preserve continuity).

To do this teleportation, we use a trick known as the Pál join:

Lemma (Pál). Let ε > 0. Let L1, L2 be two parallel lines, and let S be a unit segment on L1. Then we can
continuously move S onto L2 using an area ≤ ε.

Proof. The first thing we might try is to just translate S diagonally:

L1

L2

S

However, no matter how slanted we make this shift, we will always be tracing out a parallelogram whose
base is S and whose height is the distance between L1 and L2, and this its area will always be the same.

So we need to be a bit more clever, and Pál’s trick was to observe that we use up no area when we
translate S in the direction it’s pointing. So we will rotate S a tiny amount, then translate it until it hits L2,
and finally undo the rotation. We do this in such a way that the area of the sector it sweeps out is ≤ ε/2,
and thus the total area used is ≤ ε:

L1

L2

S

≤ ε/2

≤ ε/2

So to return to the construction of a small Kakeya set, by paying a very small amount for a bit of extra
area (as small as we want, in fact), we can solve this teleportation problem: by possibly extending the
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vertical lines and adding such a Pál join, we can indeed rotate a segment 60◦ within our smaller chopped-up
triangle.

With this difficulty out of the way, let’s think about how to iterate the chopped-up triangle construction
in order to minimize the area we use. As an illustration, suppose chop up our equilateral triangle into 8
subtriangles:

For each adjacent pair, we translate them to overlap, as before:

Now, we overlap pairs of these:

And finally, we overlap these two to get a single figure (with internal lines removed so that we can see what’s
going on):

In this case, since we made seven cuts, we’ll also need to add seven Pál joins to allow us to teleport between
parallel segments. The general idea is that rather than cutting our triangle into 8 subtriangles, we will cut
it into 2k subtriangles for some large k, and shift them so that we can get the area arbitrarily small. For
this, we need the following technical lemma:
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Lemma. Suppose T is a triangle, and we drop a median from the apex so that we end up with two subtriangles
T1, T2, each of base b. Fix some parameter 1

2 < α < 1, and suppose we translate T2 to the left by a distance
of 2b(1− α), so that the resulting figure has a base of length

2b− 2b(1− α) = 2bα

Then the resulting figure has area (α2 + 2(1− α)2) area(T ).

Proof. We cut the new figure into shapes as follows:

b b

T

T1 T2
T ′

2bα

A1

A2

A3

A4

Then T ′ is similar to T , and the ratio of the side lengths is α, so area(T ′) = α2 area(T ). Moreover, since the
dashed line above is parallel to the base of T , we deduce that A1 and A4 are similar to T2, while A2, A3 are
similar to T1. In all cases, the ratio of side lengths is 1− α, since the total length of the dashed segment is
2(1− α)b, the amount we translated T2 by. Therefore,

area(A2) = area(A3) = (1− α)2 area(T1) =
1

2
(1− α)2 area(T )

area(A1) = area(A4) = (1− α)2 area(T2) =
1

2
(1− α)2 area(T )

Putting this all together, we see that the area of the new figure is

α2 area(T ) + 4

(
1

2
(1− α)2 area(T )

)
= (α2 + 2(1− α)2) area(T )

With this lemma, we can prove Besicovitch’s Theorem.

Proof. Fix some parameters 1
2 < α < 1 and k ∈ N, which we will pick later. Let T be an equilateral triangle,

and divide it into 2k subtriangles, T1, . . . , T2k . We split these into pairs T2i−1, T2i for 1 ≤ i ≤ 2k−1, and
translate each T2i towards T2i−1 by a fraction 1 − α, as in the previous lemma. This yields a new shape,

which we call S
(1)
i , consisting of a “heart” triangle T

(1)
i that is similar to T2i−1 ∪ T2i, and two additional

“ear” triangles E
(1)
2i−1, E

(1)
2i . By the previous lemma, we know that

area(S
(1)
i ) = (α2 + 2(1− α)2) area(T2i−1 ∪ T2i)

Now, we iterate this. For 1 ≤ j ≤ 2k−2, we translate S
(1)
2j towards S

(1)
2j−1, and we apply the lemma to the

hearts of S
(1)
2j−1, S

(1)
2j , which are triangles. Then the new figure we get, S

(2)
j , consists of the old ears, which

had total area 2(1− α)2 area(T4j−3 ∪ T4j−2 ∪ T4j−1 ∪ T4j), plus a new heart and new ears, whose total area
is

(α2 + 2(1− α)2) area(♥(S
(1)
2j )) = (α4 + 2α2(1− α)2) area(T4j−3 ∪ T4j−2 ∪ T4j−1 ∪ T4j)
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since ♥(S
(1)
2j ) = α2 area(T4j−3 ∪ T4j−2 ∪ T4j−1 ∪ T4j). Putting this together and summing over all j, we find

that
2k−2∑
j=1

area(S
(2)
j ) ≤ (α4 + 2α2(1− α)2 + 2(1− α)2) area(T )

where the ≤ comes from the fact that there might be some additional overlap between the old and the new
ears that we’re not taking into account.

After we’ve done this r times, then we need to apply the lemma to the heart of the (r−1)st iteration, whose
area is α2r−2 area(Tj2r+1 ∪ · · · ∪T(j+1)2r ). Thus, we get a new heart of area α2r area(Tj2r+1 ∪ · · · ∪T(j+1)2r ),
and new ears of total area 2α2r−2(1− α)2 area(Tj2r+1 ∪ · · · ∪ T(j+1)2r ), and therefore

2k−r∑
j=1

area(S
(r)
j ) ≤

(
α2r + 2(1− α)2

r−1∑
m=0

α2m

)
area(T )

Thus, at the end of the day, after we do this a total of k times, we find that the final figure S satisfies

area(S) ≤

(
α2k + 2(1− α)2

k−1∑
m=0

α2m

)
area(T )

≤

(
α2k + 2(1− α)2

∞∑
m=0

α2m

)
area(T )

=

(
α2k +

2(1− α)2

1− α2

)
area(T )

=

(
α2k +

2(1− α)

1 + α

)
area(T )

≤ (α2k + 2(1− α)) area(T )

Now, we first choose α sufficiently close to 1 so that 2(1− α) area(T ) ≤ ε/16. Then, we pick k large enough
that α2k area(T ) ≤ ε/16. So we get that area(S) ≤ ε/8. By adding 2k − 1 Pál joins, each of area ≤ ε/2k+3,
we can turn S into a set S′ of area ≤ ε/4 where we can rotate a segment 60◦. Finally, we form two more
rotated copies of S′ and add three new Pál joins each of area ≤ ε/12 to connect these rotated copies, and
we end up with a Kakeya set Kε of area ≤ ε.

3 Can we do better?

We found that there are Kakeya sets of arbitrarily small area. But can we do better?
First of all, we should understand what it means to do “better” than a set of arbitrarily small area.

Definition. A set Z ⊂ R2 is said to have zero area if for every ε > 0, there is an open set Uε with Z ⊂ Uε

and area(Uε) ≤ ε.
(Recall that U is an open set if for every x ∈ U and any y sufficiently close to x, y is also in U .)

So we can rephrase the question above as follows: do there exist Kakeya sets with zero area?
The answer, perhaps disappointingly, is no. A fully formal proof is actually a bit tricky to produce, but

the intuition is as follows: when we rotate the needle by some infinitesimal amount inside the set K, some
tiny sector of a circle is swept out, so K contains a tiny sector. Since this sector has positive (though tiny)
area, K must have positive area as well.

However, we can do better if we slightly weaken our notion of a Kakeya set.

Definition. A subset B ⊂ R2 is called a Besicovitch set if B contains a unit line segment in every direction
(with no assumption about being able to continuously rotate).
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Since every Kakeya set is a Besicovitch set, we already know that there exist Besicovitch sets of arbitrarily
small area. In fact, the proof is even simpler: if you think back to what we did above, you’ll realize that we
were just constructing a Besicovitch set of arbitrarily small area, and then adding to it a bunch of Pál joins
of small area to turn it into a Kakeya set. Moreover, with this new notion, we can do better:

Theorem (Besicovitch, 1919). There is a Besicovitch set B ⊂ R2 with zero area.

To prove this, we first need a simple lemma.

Lemma. If T is a triangle and U ⊃ T is an open set, then we can cut T into subtriangles and translate
them to form a set S of arbitrarily small area so that S ⊂ U .

Proof. This lemma simply says that the above Perron tree construction allows us to stay pretty close to the
original triangle T . To prove this, let T have base b. Divide T into subtriangles and fix T1 so that it never
moves during the whole process. Then every other triangle will move a distance at most b.

Now, pick some ε > 0 so that every point at distance ≤ ε from T is contained in U ; such an ε exists
since U is open. Then divide T into d1/εe subtriangles, each of base ≤ ε. Now, perform the Perron tree
construction independently for each of these subtriangles. By the previous paragraph, in doing so, no point
will move more than ε away from T . Thus, in the end, we get a set S all of whose points are distance ≤ ε
from T , so S ⊂ U .

With this lemma, we can prove Besicovitch’s Theorem:

Proof. Fix an equilateral triangle T , and an open set U1 ⊃ T with area(U1) ≤ 2 area(T ). By chopping up
and translating T , we form a new set S1 of area ≤ 1

2 , and by the lemma we can ensure that S1 ⊂ U1. Now
pick a new open set U2 ⊃ S1 such that area(U2) ≤ 2 area(S1). Since S1 is a union of triangles, we can apply
the previous lemma to each such triangle and get a new set S2 of area ≤ 1

4 , such that S2 ⊂ U2. Again, we
pick a new open set U3 ⊃ S2 with area(U3) ≤ 2 area(S2), and iterate this.

Notice that when we do this, we get a sequence of sets Si with area(Si) ≤ 2−i, and a nested sequence of
set U1 ⊃ U2 ⊃ U3 ⊃ · · · , with

area(Ui) ≤ 2 area(Si−1) ≤ 2−i

Therefore, if we set B =
⋂∞

i=1 Ui, then B will automatically have measure zero, since it is covered by open sets
of arbitrarily small area. Moreover, since each Ui contains Si, which contains a segment in every direction,
one can prove that B will also contain a line segment in every direction (proving this fully formally is a
bit subtle and requires some notions like compactness that I don’t want to get into, though hopefully the
intuition is clear).

Finally, let’s end this section with a more general notion of Besicovitch set:

Definition. Let n ∈ N. A set B ⊂ Rn is called a Besicovitch set if it contains a line segment in every
direction.

4 Can we do even better?

We now know that there is a Besicovitch set of zero area in R2. But can we do even better?
Again, we need to make clear what we mean by this question. We certainly can’t do any better when it

comes to area—zero is the smallest it can get. However, it turns out that not all zero-area sets are created
equal. As an illustrative example, think about the difference between a point and a line segment. They both
have zero area, but we still want to think of the segment as “bigger” than the point. If we now work inside
R3, then a point, a line segment, and a flat square all have zero volume, but again, there is a sense in which
the square is the “biggest” of the three.

As you may have guessed, the difference characterizing the above examples is dimension, which is the
most important way of differentiating sets of zero area (or volume).
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The notion of dimension that we will be considering is called Minkowski dimension. It is not the “best”
notion of dimension (that honor goes to the so-called Hausdorff dimension), but it is the easiest to define.

Let S be a bounded set in Rn, and let N(S, ε) be the minimal number of balls of radius ε needed to cover
S. For instance, if S is a line segment of length L, then N(S, ε) ≈ L/2ε, whereas if T is a square of area A,
then N(S, ε) ≈ A/πε2. Moreover, both of these calculations continue to hold even if S is a curve or T is a
curved surface, so long as ε is small enough. These examples suggest that

N(S, ε) ≈ C

εd

where C is some constant and d is the dimension of S. Taking logarithms gives that logN(S, ε) ≈ logC −
d log ε, and rearranging shows that

d ≈ logC

log ε
− logN(S, ε)

log ε

We expect this approximation to get better and better as ε gets smaller. Moreover, as ε becomes small, the
first term above tends to zero, since C is a constant. All of this motivates the following definition:

Definition. For a bounded set S ⊂ Rn, its Minkowski dimension is defined by

dimM S = lim
ε→0

logN(S, ε)

− log ε

assuming this limit exists.

Example. The Sierpinski gasket is a fractal gotten by starting with an equilateral triangle, removing its
middle triangle, and then iterating this on every smaller subtriangle.

For each n, we can cover the nth stage of the construction with 3n balls (or triangles), each of radius 2−n/
√

3,
since each triangle in the nth stage has side length 2−n. So we find that

N(S, 2−n/
√

3) = 3n

and thus, assuming that the limit exists (which it does, though it’s not so easy to prove), we find that

dimM S = lim
n→∞

log(3n)

− log(2−n/
√

3)
= lim

n→∞

n log 3

n log 2 + log
√

3
=

log 3

log 2
= log2 3

In particular, the Sierpinski gasket, like many fractals, has a non-integer dimension.

With this in hand, we can state the modern version of the Kakeya Conjecture:

Conjecture (Kakeya, Version 2). Any Besicovitch set B ⊂ Rn has dimM B = n.
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An equivalent definition of Minkowski dimension is as follows. Suppose we partition Rn into cubes of
side length ε by drawing a very fine lattice; let N ′(S, ε) be the number of these cubes that intersect S.

Proposition.

dimM S = lim
ε→0

logN ′(S, ε)

− log ε

In fact, many similar things you could think of will also give the same notion of dimension. You proved
this proposition on the homework.

Why might we expect the Kakeya Conjecture to be true? My intuition for it is that the prototypical
example of a set that does not have dimension n is a hyperplane, which does not contain lines in a large
number of directions; so since a Besicovitch set can’t “look” like a hyperplane, it must have full dimension.
Of course, this intuition is at the very least sketchy, and at worst might be actively misleading: there are
many other low-dimensional sets that look really weird, and in particular look nothing like a hyperplane. For
instance, on the homework you saw the Cantor dust, a subset of R2 with dimension 1 that is very dissimilar
from a line.

The Kakeya Conjecture is considered the most important open problem in the field of Geometric Measure
Theory, and is one of the biggest open problems in all of analysis. Relatively few partial results are known.
The conjecture is proven in the case n = 1 (which is simple, since a Besicovitch set in R1 must contain a
line segment, and thus automatically has dimension 1) and in the case n = 2, due to Davies in 1971. For
all n ≥ 3, it is unknown; Bourgain proved that every Besicovitch set has dimension at least (n+ 1)/2, Wolff
improved this to (n + 2)/2, and Katz-Tao improved this to (2 −

√
2)(n − 4) + 3, which is a better bound

when n ≥ 5. Apart from a few other special cases, this is basically the state of the art.

5 Finite Fields

Recall that in the integers mod n, we can add, subtract, and multiply, and many of the properties we expect
these operations to have indeed occur. However, when n is not prime, some strange things can occur; for
instance, we can have two non-zero elements that multiply to give zero. But if p is a prime, then the integers
mod p form a field, which is an algebraic structure where we can add, subtract, multiply, and divide, and
everything works the way we expect. Fields you are more familiar with include Q,R, and C; as it turns out,
there are also other finite fields in addition to the integers mod p. If you want to learn more about what
these fields are, take Aaron’s class next week, but for now, we will simply denote by Fq a finite field of order
q; you’re welcome to think of q as a prime and Fq simply being the integers mod q.

Because Fq is a field, we can do geometry over it. Specifically, let Fn
q denote the collection of n-tuples of

elements of Fq. Then, for instance, a line in Fn
q , in the direction of some m ∈ Fn

q and going through some
b ∈ Fn

q , is simply the set
`m,b = {b+ t ·m : t ∈ Fq} ⊆ Fn

q

where the multiplication t ·m means that we multiply each coordinate of m by the scalar t, and the addition
b + t ·m is also done componentwise. Because Fq is a field, lines in Fn

q work basically like lines in Rn; for
instance, any two points define a line, and any two lines intersect in at most one point. We can also make
the following definition:

Definition. A set B ⊆ Fn
q is called a Besicovitch set if it contains a full line in every direction. In other

words, B is a Besicovitch set if for all m ∈ Fn
q , there is some b ∈ Fn

q so that `m,b ⊆ B.

There are (at least) two important things to note about this definition. First, we can’t hope to define a
Kakeya set in Fn

q , since there is no notion of “continuously rotating” when we are working with a discrete
space like Fn

q . Second, observe that we require a full line in every direction, rather than a unit segment; this
too follows from the fact that there is no good notion of “length” or “scaling” over Fq.

Suppose we partition the interval [0, 1] into q subintervals of equal length, and use this to define a partition
of [0, 1]n into qn boxes. If we put a point in the center of each box, then we can pretend that Fn

q is a discrete
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approximation to [0, 1]n, and we can guess that this approximation gets better and better as q gets larger. In
particular, we might hope that as q gets larger, a Besicovitch set in Fn

q looks more and more like a Besicovitch
set in Rn. Recall that N ′(S, ε) denotes the number of boxes of side-length ε that intersect a set S, and that
the Minkowski dimension of S is given by

dimM S = lim
ε→0

logN ′(S, ε)

log(1/ε)

If we think of S as coming from a subset of Fn
q , again imagined as living inside [0, 1]n, then we have that

N ′(S, 1/q) = |S|, since the number of boxes intersecting S is precisely the number of elements of Fn
q in S.

Therefore, if we believe the Kakeya conjecture, that dimM B = n for any Besicovitch set B ⊆ Rn, we might
hope that something like the following holds:

n = dimM B = lim
q→∞

log |Bq|
log q

where Bq ⊆ Fn
q is a Besicovitch set in Fn

q . Rearranging this gives us the following guess:

Conjecture (Finite Field Kakeya Conjecture). For every n, there is some constant Cn so that for any q
and any Besicovitch set Bq ⊆ Fn

q , we have
|Bq| ≥ Cnq

n

Note that if this conjecture is true, then we indeed have that

lim
q→∞

log |Bq|
log q

≥ lim
q→∞

(
logCn

log q
+
n log q

log q

)
= n

as our heuristic argument above suggested. This Finite Field Kakeya Conjecture was first conjectured by
Wolff in 1999, and his idea was that it might serve as another regime where ideas for the real Kakeya
conjecture could be tested. There is no formal reduction from one conjecture to the other (all our arguments
above were purely heuristic, and cannot be turned into proofs), but the hope was that understanding one
problem would help us understand the other.

Indeed, for many years this worked. Wolff himself extended Davies’ ideas to prove the Finite Field Kakeya
Conjecture in dimension n = 2, along with several partial results for higher dimensions. For about a decade,
any time someone made an advance towards solving either the Kakeya Conjecture or the Finite Field Kakeya
Conjecture, some work very quickly followed that got the same result for the other conjecture. Moreover,
the relationship between these two conjectures allowed new ideas to come into play.

However, this all changed in 2008, when Zeev Dvir shocked everyone and proved the full Finite Field
Kakeya Conjecture. More precisely, he showed

Theorem (Dvir). For every n, q, and every Besicovitch set B ⊆ Fn
q , we have

|B| ≥
(
q + n− 1

n

)
≥ 1

n!
qn

Thus, the Finite Field Kakeya Conjecture is true with Cn = 1/n!.

This result was later improved by Dvir, Kopparty, Saraf, and Sudan, who showed that in fact we can
take Cn ≈ 2−n.

6 A digression on polynomials

Dvir’s remarkably simple proof uses the so-called “polynomial method,” which is not really even a method;
it is simply the observation that polynomials are weirdly useful for proving lots of difficult-seeming results.
The basic idea that went into Dvir’s proof is the following heuristic: “a set is small if and only if there is a
polynomial of low degree that is identically zero on it.”

One way that this heuristic plays out is in the following well-known theorem:
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Theorem (Factor Theorem). Let F be any field, and let P (x) be a non-zero polynomial over F with degree
d. Then P has at most d roots, i.e. there are at most d values of a ∈ F so that P (a) = 0.

Proof. We prove this by induction on d. The base case is when d = 0, which means that P must be a
constant polynomial. Since we assumed that P was a non-zero polynomial, this constant value cannot be 0,
so P has no roots, and the base case is true.

For the inductive step, suppose that any polynomial of degree d − 1 has at most d − 1 roots, and let P
be a non-zero polynomial of degree d. If P has no roots, then we are done. If not, then there is some a ∈ F
with P (a) = 0. By polynomial long division, we may write

P (x) = (x− a)Q(x) +R(x)

where degR ≤ deg(x − a) = 1. This means that R is a degree-zero polynomial, so it’s just a constant. On
the other hand, plugging in x = a to both sides shows us that

0 = P (a) = (a− a)Q(a) +R(a) = R(a)

So R(a) = 0, so in fact R must be identically zero. Thus, we’ve written P (x) = (x − a)Q(x), where
degQ = d− 1. So by the inductive hypothesis, Q has at most d− 1 roots; adding back to this the root a of
P , we find that P has at most d roots, as desired.

We also have a sort of converse to the factor theorem:

Theorem. Let F be any field, and let S ⊆ F have |S| = d. Then there is a non-zero polynomial of degree d
that vanishes identically on S.

Proof. We can simply define the polynomial to be

P (x) =
∏
a∈S

(x− a)

Then since |S| = d, we find that P is a product of d linear factors, so degP = d. Moreover, P is a non-zero
polynomial, since it has a non-zero leading coefficient (namely, its first term is just xd). Finally, P indeed
vanishes on S, since if we plug in some a ∈ S, then the right-hand side will be zero, so P (a) = 0.

Thus, we find that the heuristic mentioned above is quite precise when we are dealing with subsets of
a field F: a set has size at most d if and only if there is a non-zero degree-d polynomial that vanishes on
it. However, we are going to be working with subsets of Fn

q , so we first need to generalize these results
to work in this higher-dimensional setting. This presents some difficulties—for instance, we can’t hope
that a polynomial in many variables will have some bounded number of roots, since e.g. the polynomial
P (x, y) = x+ y has infinitely many roots in R2, despite having degree 1.

Theorem (Schwartz-Zippel). Let F be any feild, let P (x1, . . . , xn) be a non-zero polynomial in n variables
and total degree d, and let S ⊆ F be a set with |S| > d. Then there are some a1, . . . , an ∈ S so that
P (a1, . . . , an) 6= 0. In other words, even though P can have many roots, it can’t have too many in any
product set S × · · · × S ⊆ Fn.

10
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Proof. We proceed by induction on n. The base case is n = 1, where we need to show that P has some
non-root in S. But since |S| > degP , the Factor Theorem we proved above guarantees exactly that. For
the inductive case, we expand P as a polynomial in xn, writing

P (x1, . . . , xn) =

d∑
j=0

xjnPj(x1, . . . , xn−1)

where each Pj is some polynomial in the variables x1, . . . , xn−1. We can always write down such a decom-
position, by simply writing down all the monomials of P , arranging them by the exponent of xn in each
monomial, and then factoring out that power of xn. Since P is a non-zero polynomial, then there is some i
for which Pi is a non-zero polynomial. Since degPi ≤ degP = d, the inductive hypothesis guarantees that
there are some a1, . . . , an−1 ∈ S so that Pi(a1, . . . , an) 6= 0. Now, let Q(x) be the single-variate polynomial
given by plugging a1, . . . , an−1 into P , namely

Q(x) = P (a1, . . . , an−1, x)

If we write bj = Pj(a1, . . . , an−1), then we have that

Q(x) =

d∑
j=0

bjx
j

Since we know that bi 6= 0, we find that Q is a non-zero polynomial. So by the Factor Theorem, we know that
there is some an ∈ S so that Q(an) 6= 0. But that precisely means that P (a1, . . . , an) 6= 0, as desired.

The next subtlety in passing to more variables is in producing the lower bound, namely proving that
every “small” set has a low-degree polynomial that vanishes on it. The precise statement is as follows.

Proposition. Let F be any field and d, n ∈ N, and let T ⊆ Fn be any set so that |T | <
(
d+n
n

)
. Then there is a

non-zero polynomial P (x1, . . . , xn) of degree at most d such that P vanishes on T , namely P (a1, . . . , an) = 0
for any (a1, . . . , an) ∈ T .

Proof. First, note that we may write any polynomial P of degree at most d as a sum of monomials, namely

P (x1, . . . , xn) =
∑

e1,...,en≥0
e1+···+en≤d

ce1,...,enx
e1
1 · · ·xenn

How many such monomials are there? That is the same as asking for the number of n-tuples (e1, . . . , en)
with ei ≥ 0 and

∑
ei ≤ d. The standard technique for counting such things is the “balls and bins”

method: imagine we have n bins, corresponding to e1, . . . , en, and we are tossing into them at most d balls,
corresponding to the value of ei. For convenience, we add one more bin, which will be the trash can: we are
now throwing in exactly d balls, and all the ones that land in the trash can will not be assigned to any ei.

To count how many ways we can throw d balls into n+ 1 bins, we draw a picture like this (for five balls
and four bins):

# | # | # # # |

The vertical bars denote the dividers between the bins, and the circles are the balls. In this case, the first
two bins each have one ball, the third has three, and the fourth has zero. As this example shows, the number
of ways of putting d balls into n+ 1 bins is the same as the number of ways of ordering d circles and n bars,
which is precisely

(
d+n
n

)
.

So what we find is that there are
(
d+n
n

)
possible monomials in a polynomial of degree at most d. We will

find a polynomial P that vanishes on T as follows. For each point (a1, . . . , an) ∈ T , we want P (a1, . . . , an) =
0, which gives us ∑

e1,...,en

ce1,...,ena
e1
1 · · · aenn = 0

11
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For each fixed (a1, . . . , an), this is a linear equation in the unknown quantities ce1,...,en . We get such a

linear equation for each point of T , thus giving us a homogeneous system of |T | linear equations in
(
d+n
n

)
unknowns. Since we assumed that |T | <

(
d+n
n

)
, this system is underdetermined, so it has a non-zero solution.

This solution precisely defines the coefficients of a polynomial that vanishes on T .

So as we see, the situation in higher dimensions is a bit more complicated than the one-dimensional case,
but the basic heuristic is indeed true (when interpreted correctly): a set in Fn is “small” if and only if there
is a low-degree polynomial that vanishes on it.

7 Back to Kakeya

With these technical tools out of the way, we are able to prove the Finite Field Kakeya Conjecture. Recall
the statement we want to prove:

Theorem (Dvir). For every n, q, and every Besicovitch set B ⊆ Fn
q , we have

|B| ≥
(
q + n− 1

n

)
Proof. Suppose for contradiction that we had a Besicovitch set B ⊆ Fn

q with

|B| <
(
q + n− 1

n

)
By the last proposition we proved, this implies that there is some non-zero polynomial P (x1, . . . , xn) with
coefficients in Fq and degree at most q−1 with the property that P vanishes on B. Suppose degP = d ≤ q−1,
and write

P =

d∑
i=0

Pi

where each Pi is a homogeneous polynomial of degree i; in other words, we simply group together the
monomials of P by their degree. Since degP = d, we know that Pd is not the zero polynomial (for otherwise
the degree would be strictly smaller).

For any 0 6= m ∈ Fn
q , we know that B contains a line in the direction of m, namely there is some b ∈ Fn

q

so that `m,b ⊆ B, where
`m,b = {b+ t ·m : t ∈ Fq}

Define a new single-variate polynomial Qm(t) by

Qm(t) = P (b+ t ·m)

Since we are just plugging in values to P , we find that degQm ≤ degP ≤ q − 1. On the other hand, for
any value of t, we have that b + t ·m ∈ B, so P (b + t ·m) = 0. Thus, Qm(t) = 0 for every t ∈ Fq, so Qm

has at least q roots (this is where we use that m 6= 0, so that distinct values of t give us distinct values of
b+ t ·m). Since degQm ≤ q− 1, by the Factor Theorem, this implies that Qm is the zero polynomial. Thus,
in particular, the coefficient of td in Qm(t) is zero. However, the coefficient of td in Qm(t) is precisely the
value of Pd(m). So we find that Pd(m) = 0 for every 0 6= m ∈ Fn

q . Moreover, since Pd is homogeneous of
degree d, this implies that in fact, Pd vanishes on all of Fn

q . Finally, since d < q = |Fq|, Schwartz-Zippel
implies that Pd must in fact be the zero polynomial. This is a contradiction.

12
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8 Kakeya in dimension 2

Today, we will prove the Kakeya Conjecture in dimension 2. This was originally proved by Davies in 1971;
his proof is not really the one we will do today, though the ideas are more or less the same. This proof is
basically due to Bourgain.

First, we need yet another definition of Minkowski dimension.

Definition. Let S ⊂ Rn be a bounded subset, and let ε > 0. By Nε(S) we denote the ε-neighborhood of S,
namely all points that are at distance ≤ ε away from S. Formally,

Nε(S) = {x ∈ Rn : ∃y ∈ S such that d(x, y) ≤ ε}

where d(x, y) is the Euclidean distance between x and y. Finally, let

V (S, ε) = vol(Nε(S))

Proposition. The Minkowski dimension of S is given by

dimM S = lim
ε→0

(
n+

log V (S, ε)

log 1
ε

)
Proof-ish. If we cover S by balls of radius ε, then we can also cover the ε-neighborhood by balls of radius
2ε, centered at the same points. This implies that

V (S, ε) ≈ vol(B2ε) ·N(S, ε)

where B2ε is a ball of radius 2ε. This implies that

dimM S = lim
ε→0

logN(S, ε)

− log ε

≈ lim
ε→0

log V (S, ε)− log vol(B2ε)

− log ε

= lim
ε→0

(
log(ν2nεn)

log ε
− log V (S, ε)

log ε

)
= lim

ε→0

(
log(ν2n)

log ε
+
n log ε

log ε
− log V (S, ε)

log ε

)
= lim

ε→0

(
n+

log V (S, ε)

log 1
ε

)
where ν is the volume of a ball of radius 1 in Rn, which is just some constant (depending on n).

What this proposition implies is that in order to prove that every Besicovitch set in R2 has dimension
2, it suffices to prove that V (B, ε) is big for each Besicovitch set B. In fact, we will prove the following
theorem:

Theorem (Davies, basically).

V (B, ε) ≥ s

log 1
ε

for some constant s.

Indeed, this suffices. For if this happens, then

dimM B = lim
ε→0

(
2 +

log V (B, ε)

log 1
ε

)
≥ lim

ε→0

(
2 +

log s

log 1
ε

−
log log 1

ε

log 1
ε

)
= 2

13
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In order to do this, we will actually prove that a subset of Nε(B) has such a large area; this large subset will
consist of rectangles around lines in various directions. Assume for convenience that 1/ε = 2` is a power of
two, and set

Ω =
{

0,
πε

2
, πε, . . . ,

π

2
− ε, π

2

}
For ω ∈ Ω, let Lω be a unit line segment with angle ω contained in B. Also, let Rω be a 1 × ε rectangle
whose central axis is Lω. Then since Lω ⊆ B, we find that

T :=
⋃
ω∈Ω

Rω ⊆ Nε(B)

So it suffices to prove that T has a big area. The basic intuition here is that each Rω has a pretty big area
(namely ε), and we have a bunch of them (namely 1/ε). Moreover, since they go in different directions, they
have a pretty small intersection (they don’t overlap a lot), so their union should have a pretty big area. The
precise lemma we need is as follows:

Lemma. Let A1, . . . , An be subsets of R2, and let A =
⋃n

i=1Ai. Then(
n∑

i=1

area(Ai)

)2

≤ area(A)

n∑
i=1

n∑
i′=1

area(Ai ∩Ai′)

Proof. Overlay all of the Ais, and consider all subsets of the plane that are formed in this way, namely all
possible intersections of various Ais. Call these regions B1, . . . , Bm. For each 1 ≤ j ≤ m, let w(j) denote
the number of Ais that contain the region Bj , namely the number of Ais that overlap on this Bj . Then we
have that

n∑
i=1

area(Ai) =

m∑
j=1

area(Bj)w(j)

This follows immediately from the definition of w(j), when we split up the sum as a sum over all the Bjs.
Similarly, observe that

m∑
j=1

area(Bj)w(j)2 =

n∑
i=1

n∑
i′=1

area(Ai ∩Ai′)

This is because the area of each Bj is counted on the right-hand side multiple times, where the number of
times is precisely the number of pairs i, i′ with Bj ⊆ Ai ∩Ai′ , which is precisely w(j)2.

Now, recall the Cauchy-Schwarz inequality, which says that for any two sequences c1, . . . , cm, d1, . . . , dm,
we have that  m∑

j=1

cjdj

2

≤

 m∑
j=1

c2j

 m∑
j=1

d2
j


We apply this with cj =

√
area(Bj) and dj = w(j)

√
area(Bj). Then it tells us that m∑

j=1

area(Bj)w(j)

2

≤

 m∑
j=1

area(Bj)

 m∑
j=1

area(Bj)w(j)2

 = area(A)

n∑
i=1

n∑
i′=1

area(Ai ∩Ai′)

With this lemma, we can now prove Davies’ theorem.
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Proof. We apply this lemma where our Ais our just the sets {Rω}ω∈Ω, and A =
⋃
Ai = T . Notice that since

each Rω is a 1× ε rectangle, it has area ε. Since there are 1/ε of them total, we have that∑
ω∈Ω

area(Rω) = 1

and thus this inequality can be rearranged to

area(T ) ≥ 1∑
ω1∈Ω

∑
ω2∈Ω area(Rω1 ∩Rω2)

So, in order to prove that area(T ) ≥ s/ log 1
ε , it suffices to prove that∑

ω1∈Ω

∑
ω2∈Ω

area(Rω1
∩Rω2

) ≤ S log
1

ε

for some new constant S. For this, we use a fact you proved on the homework, namely that when two 1× ε
rectangles meet at an angle θ, then we have that the area of their intersection is at most Cε2/θ, for some
constant C (in fact C = π/2 suffices).

Recall that ` = log2
1
ε . For some fixed ω1 ∈ Ω, and some 1 ≤ k ≤ `, let

Dk(ω1) = {ω2 ∈ Ω : ε2k ≤ |ω2 − ω1| < ε2k+1}

Then for each ω2 ∈ Dk(ω1), we have that

area(Rω1 ∩Rω2) ≤ Cε2

|ω1 − ω2|
≤ Cε2

ε2k
=
Cε

2k

Additionally, |Dk(ω1)| ≤ 2k. Therefore, for each fixed ω1,

∑
ω2∈Ω

area(Rω1
∩Rω2

) =
∑̀
k=1

∑
ω2∈Dk(ω1)

area(Rω1
∩Rω2

)

≤
∑̀
k=1

2k · Cε
2k

= Cε
∑̀
k=1

1

= Cε`

= Sε log
1

ε

for a new constant S = C log 2. Finally, we sum over all ω1, and find that∑
ω1∈Ω

∑
ω2∈Ω

area(Rω1
∩Rω2

) ≤
∑
ω1∈Ω

Sε log
1

ε
= S log

1

ε

since |Ω| = 1
ε .
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