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Abstract

A graph G is said to be p-locally dense if every induced subgraph of G with linearly many
vertices has edge density at least p. A famous conjecture of Kohayakawa, Nagle, Rödl, and
Schacht predicts that locally dense graphs have, asymptotically, at least as many copies of
any fixed graph H as are found in a random graph of edge density p.

In this paper, we prove several results around the KNRS conjecture. First, we prove that
certain natural gluing operations onH preserve this property, thus proving the conjecture for
many graphs H for which it was previously unknown. Secondly, we study a stability version
of this conjecture, and prove that for many graphs H, approximate equality is attained in
the KNRS conjecture if and only if the host graph G is quasirandom. Finally, we introduce
a weakening of the KNRS conjecture, which requires the host graph to be nearly degree-
regular, and prove this conjecture for a larger family of graphs. Our techniques reveal a
surprising connection between these questions, semidefinite optimization, and the study of
copositive matrices.

1 Introduction

1.1 Background

Many of the most basic questions in extremal graph theory ask to understand, for a fixed graph
H, how many copies of H can appear in a large graph G with certain constraints. For example,
Mantel’s theorem states that if H = K3, then G contains zero copies of H only if G has at most
⌊v(G)2/4⌋ edges.

A convenient way of capturing the asymptotic nature of such problems is via the ho-
momorphism density t(H,G), which is defined as the probability that a random function
f : V (H) → V (G) is a graph homomorphism, that is, that f maps every edge of H to an
edge of G. As v(G) → ∞, asymptotically almost all homomorphisms are injective, so knowing
t(H,G) is essentially the same as knowing how many copies ofH there are inG. In this language,
Mantel’s theorem can be stated as t(K3, G) = 0 only if t(K2, G) ≤ 1

2 . More generally, the Erdős–
Stone–Simonovits theorem [11, 13] states that t(H,G) = 0 only if t(K2, G) ≤ 1− 1

χ(H)−1 + o(1),

where the o(1) term tends to 0 as v(G) → ∞ (for fixed H).
Even more generally, one could ask, for a fixed value of p = t(K2, G), what is the asymptotic

minimum value of t(H,G)? In general, the answer to this question is extremely complicated
[20, 21, 24]. However, for certain bipartite graphs H, this problem has a very clean answer.
For example, two applications of the Cauchy–Schwarz inequality imply that t(C4, G) ≥ p4 for
any graph G satisfying t(K2, G) = p. Moreover, an elementary computation shows that this
bound is asymptotically tight if G is a random graph of edge density p. A famous conjecture of
Sidorenko [30] asserts that something similar should happen for all bipartite H, namely that

t(H,G) ≥ pe(H) (1)
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for all bipartite H, all p ∈ [0, 1], and all G satisfying t(K2, G) = p. Sidorenko’s conjecture has
been verified for many natural classes of bipartite graphs (see e.g. [5, 7, 8, 15, 16]), but remains
wide open in general. Note that again, Sidorenko’s conjecture is best possible if true, since a
random graph G of edge density p satisfies t(H,G) = pe(H) + o(1) a.a.s.

Moreover, there is a sort of converse to the last statement. Following Chung–Graham–Wilson
[4], let us say that a graph G is (p, δ)-quasirandom if every set S ⊆ V (G) contains p

2 |S|
2±δv(G)2

edges. As proved by Thomason [35] and Chung–Graham–Wilson [4], this condition is equivalent
(up to a polynomial change in δ) to many other natural notions of “random-like” behavior in
graphs. In particular, one famous result of Chung–Graham–Wilson is that if t(K2, G) = p and
t(C4, G) ≤ p4 + o(1), then G is (p, o(1))-quasirandom. The forcing conjecture (see [32]) states
that, again, such behavior should be more general: for any bipartite H that is not a forest, we
have that t(H,G) = pe(H) + o(1) only if G is (p, o(1))-quasirandom. It is known (see e.g. [5])
that the forcing conjecture implies Sidorenko’s conjecture.

Additionally, the assumption that H is bipartite is crucial for a statement like Sidorenko’s
conjecture to hold, since t(H,Kn,n) = 0 whenever H is non-bipartite, despite the fact that
t(K2,Kn,n) =

1
2 . Nonetheless, it is tempting to wonder if, by imposing some extra condition on

G, one can obtain a sensible statement, along the lines of (1), which holds for all H. Such a
statement was conjectured by Kohayakawa, Nagle, Rödl, and Schacht [17]. To state it we first
need the following definition.

Definition 1.1. A graph G is called (p, δ)-locally dense if, for every S ⊆ V (G) with |S| ≥
δ|V (G)|, we have e(S) ≥ p |S|2

2 .

One can think of this condition as a “one-sided” version of quasirandomness—it does not
assert that all large vertex sets have edge density roughly p (as in quasirandomness), but only
that all such sets have edge density at least p. Simple examples, such as the disjoint union
of two cliques, show that this is a strictly weaker condition than quasirandomness. Locally
dense graphs and hypergraphs have been extensively studied and used over the years, see e.g.
[3, 12, 14, 17, 18, 23, 25, 26, 27, 28, 29]. With this definition, we can state the conjecture of
Kohayakawa–Nagle–Rödl–Schacht [17].

Conjecture 1.2 (Kohayakawa–Nagle–Rödl–Schacht [17]). For every graph H and all p, ε ∈
(0, 1), there exists some δ > 0 such that the following holds. If G is a (p, δ)-locally dense graph,
then t(H,G) ≥ pe(H) − ε.

Informally1, this conjecture states that if G is a (p, o(1))-locally dense graph, then t(H,G) ≥
pe(H)− o(1) for any fixed H. For brevity, we will say that a graph H is KNRS if Conjecture 1.2
holds for H. Despite a great deal of interest, only a relatively restricted class of graphs are
known to be KNRS, which we now briefly summarize.

First, if H is a bipartite graph satisfying Sidorenko’s conjecture, then H is KNRS. Indeed,
Sidorenko’s conjecture is equivalent to Conjecture 1.2 in case ε = 0 and δ = 1. As observed
by Kohayakawa, Nagle, Rödl, and Schacht [17], a simple inductive argument shows that all
cliques (and, more generally, all complete multipartite graphs) are KNRS. They also noted that
the main result from [6] implies that all line graphs of hypercubes are KNRS. Next, answering
a question raised by Kohayakawa–Nagle–Rödl–Schacht, Reiher [23] proved that all odd cycles
are KNRS. Finally, Lee [18] showed that all unicyclic graphs and all graphs obtained from a
cycle by adding a chord are KNRS. Additionally, he showed that graphs obtained by certain
gluing operations are KNRS, and in particular settled Conjecture 1.2 for all graphs on at most
5 vertices.

1Shortly, we will turn to the language of graphons, where these informal asymptotic notions can be made
rigorous.
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1.2 Our results

In this paper, we prove a number of results around Conjecture 1.2. Our first main result shows
that certain “highly symmetric” graphs, which are obtained from smaller KNRS graphs by a
certain gluing operation, are themselves KNRS.

Definition 1.3. Let H1, H2 be two graphs, let I be an independent set in H1 and let a be a
vertex in V (H1) \ I. We define the graph H1 ⋉a

I H2 as follows. Let A1, . . . , Av(H2) be copies of
H1 with the set I identified and otherwise disjoint. Furthermore, place a copy of H2 on the set
of v(H2) vertices corresponding to a in each of A1, . . . , Av(H2).

x

y

z

w

Figure 1: Let D denote the first graph, which is a labelled diamond. The remaining graphs are,
from left to right: D ⋉x

∅ K3, D ⋉x
{z} K3 and D ⋉x

{y,w} K3.

Theorem 1.4. Suppose that H1, H2 are KNRS, I is an independent set in H1 and a ∈ V (H1)\I.
Then H1 ⋉a

I H2 is KNRS.

This theorem already captures many of the known partial results about Conjecture 1.2.
For example, if H1 is the star with t leaves2, I is the set of its leaves and a is the center, then
H1⋉a

I H2 is obtained from H2 by adding t vertices connected to all vertices in H2; thus repeated
applications of Theorem 1.4 imply that all complete multipartite graphs are KNRS. Similarly,
applying it with H1 = Pℓ and H2 = K2, where a and b are the two endpoints of the path3 and
I = {b}, we obtain that the odd cycle C2ℓ+1 is KNRS, recovering the result of Reiher [23]. By
adding an apex vertex (namely applying the theorem with H1 = K2), we find that all wheels
are KNRS. Theorem 1.4 also implies that more complex graphs, such as the ones depicted in
Figure 1, are KNRS.

The techniques used to prove Theorem 1.4 are based on those developed by Reiher [23] to
prove that odd cycles are KNRS. However, we recast the entire problem, including a key lemma
of Reiher’s, in the more analytic setting of graphons, which we believe makes the proofs simpler
and more transparent. Moreover, the true power of this perspective is even more pronounced in
our subsequent results, which demonstrate surprising connections between Conjecture 1.2 and
seemingly unrelated topics such as semidefinite optimization. To state our next main result, we
make the following definition.

Definition 1.5. A graph H is called KNRS-forcing if, for every p, α ∈ (0, 1), there exist
δ, ε > 0 such that the following holds. For every (p, δ)-locally dense graph G, it holds that
t(H,G) > pe(H) + ε, unless G is (p, α)-quasirandom.

2An application of Jensen’s inequality shows that all stars are Sidorenko, hence KNRS.
3Blakley and Roy [2] proved (in a different language) that all paths satisfy Sidorenko’s conjecture, and hence

are KNRS.
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Thus, a graph is KNRS-forcing if it is KNRS, and, moreover, the only locally dense graphs
which asymptotically minimize t(H,G) are themselves quasirandom. Just as Sidorenko’s con-
jecture is strengthened by the forcing conjecture, we pose the following strengthening of Con-
jecture 1.2.

Conjecture 1.6. If H is not a forest, then H is KNRS-forcing.

While we are not able to resolve Conjecture 1.6 in general, we are able to prove it for certain
natural graph families.

Theorem 1.7. All cliques, cycles, and wheels are KNRS-forcing. Also, if H1 is KNRS-forcing,
then so is H1⋉a

I H2 for all independent sets I ⊆ V (H1), all a ∈ V (H1)\I, and all KNRS graphs
H2.

In fact, we are able to prove that H1 ⋉a
I H2 is KNRS-forcing even in certain instances when

H1 is not; we defer the precise statement to Theorem 3.2. We remark that our proof that odd
cycles are KNRS-forcing is closely related to the fact that the Schatten norms are strictly convex
on the positive-semidefinite cone. In particular, the KNRS-forcing condition—which roughly
says that t(H, · ) has a unique global minimum—can be deduced in this instance from the fact
that a strictly convex function has a unique global minimum. We discuss this in greater detail
later, but we believe that such connections are an important feature of our techniques.

Finally, we also pose a weakening of Conjecture 1.2 which we can, perhaps surprisingly,
prove for a larger class of graphs. Let us say that an n-vertex graph G is (p, δ)-nearly regular if
all but at most δn vertices of G have degree in the interval [(p− δ)n, (p+ δ)n].

Conjecture 1.8. For every graph H and all p, ε ∈ (0, 1), there exists some δ > 0 such that the
following holds. If G is a (p, δ)-locally dense (p, δ)-nearly regular graph, then t(H,G) ≥ pe(H)−ε.

We say H is regular-KNRS if Conjecture 1.8 holds for H. In other words, to check that
H is regular-KNRS, it suffices to prove that t(H,G) ≥ pe(H) − o(1) over all nearly regular
locally dense graphs G. It is known that in the setting of Sidorenko’s conjecture, adding such
a restriction is immaterial: H is Sidorenko if and only if t(H,G) ≥ pe(H) for all (p, δ)-nearly
regular graphs G with t(K2, G) = p. A simple proof of a slightly weaker statement can be found
in [16, Lemma 3.3], and stronger statements are proved in [10, 34]. Because of this, it is natural
to expect that H is KNRS if and only if it is regular-KNRS, but we have been unable to prove
this. However, since being regular-KNRS is a weaker condition, we were able to verify it for
many more graphs.

Theorem 1.9. The following classes of graphs are regular-KNRS.

• The ℓ-subdivision of a regular-KNRS graph, for any ℓ ≥ 1. In particular, all balanced
subdivisions of cliques are regular-KNRS.

• Any graph obtained from a regular-KNRS graph by gluing forests to its vertices.

• Any generalized theta graph, consisting of an arbitrary number internally vertex-disjoint
paths, of arbitrary lengths, between two fixed vertices.

• The graph H = , obtained by gluing a triangle to two opposite edges of C4.

In particular, this result implies that all unicyclic graphs and all graphs obtained from a
cycle by adding a chord are regular-KNRS, so the examples above include the graphs which Lee
[18] proved are KNRS, as well as generalizations of them; however, in contrast to Lee, we are
only able to prove the weaker condition of regular-KNRS. Additionally, H0 was raised by Lee
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[18] as the smallest example of a graph which is not known to be KNRS; again our techniques
are not able to prove this, but are able to show the weaker condition of being regular-KNRS.

In the analytic perspective we take, the regular-KNRS problem turns out to be substantially
more well-behaved. At a high level, the reason is that locally dense graphs correspond to
copositive matrices, a class of matrices which is very poorly behaved. However, if one imposes
the almost regularity condition, one instead obtains a positive semidefinite matrix, and thus
we are able to use the rich theory of PSD matrices to prove results such as Theorem 1.9. In
particular, certain operations which preserve the PSD cone, such as tensor product, Hadamard
product, and matrix powers, correspond to useful operations on graphs. Because of this, we
believe that Conjecture 1.8 is a natural setting in which to work and to obtain partial results,
with the hopes of ultimately using similar techniques to resolve the full Conjecture 1.2.

The rest of this paper is organized as follows. In Section 2, we collect a number of general
lemmas that we will use in our proofs, mostly related to the translation of these problems to the
language of graphons. Proofs of many of these lemmas, as well as a more in-depth discussion
of graph limits, are deferred to Appendix A. The proofs of Theorems 1.4 and 1.7 are given in
Section 3. We prove results about regular-KNRS graphs, including Theorem 1.9, in Section 4.
Finally, in Section 5, we collect a few examples which rule out natural avenues towards proving
Conjecture 1.2.

2 Preliminaries

In this section, we collect a few preliminary definitions and results that we will need in the
proofs of our main theorems. We begin by introducing a weaker forcing notion, which will be
useful in certain of our proofs, and which is interesting in its own right.

Definition 2.1. A graphH is called density-forcing if, for every p, α ∈ (0, 1), there exist δ, ε > 0
such that the following holds. If G is a (p, δ)-locally dense graph with at least (p+ α)v(G)2/2
edges, then t(H,G) > pe(H) + ε.

It is not hard to show that if H is density-forcing, it is also KNRS. Thus, loosely speaking,
a graph H is density-forcing if it is KNRS and the asymptotic minimizers all have edge density
p; this is weaker than being KNRS-forcing, which says that the asymptotic minimizers are
p-quasirandom.

2.1 Graphons

For the rest of the paper, we will work in the setting of graphons, rather than of graphs, as this
makes a number of analytic arguments substantially simpler. In this section we simply recall
the basic definitions, and state Lemma 2.6, which restates all of the questions we are studying
in the language of graphons. All of the results we need about graphons are essentially standard,
but we provide detailed proofs in Appendix A. For a more thorough introduction to the theory
of graph limits, see [19] or [36, Chapter 4].

Definition 2.2. Let (Ω,Σ, µ) be an atomless standard probability space. A kernel on Ω is a
bounded symmetric measurable function W : Ω×Ω → R. A kernel W : Ω×Ω → [0, 1] is called
a graphon.

As is standard in functional analysis, we will view two kernels that agree almost everywhere
as the same object.
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Usually when working with graphons (or kernels), one just sets Ω to be the interval [0, 1]
endowed with Lebesgue measure, which is without loss of generality4 as every atomless standard
probability space is isomorphic to [0, 1]. However, in some places in this paper, it will be
convenient to work with more general probability spaces. When there is no confusion, we will
use |U | to denote the measure of a measurable subset U ⊆ Ω, and write

∫
Ω f dx rather than∫

Ω f dµ(x) for the integral of a function f : Ω → R with respect to µ.
We now define some quantities associated to graphons. The first is a graphon analogue of

the degree sequence of a graph.

Definition 2.3. If W is a graphon, its degree function is the function dW : Ω → [0, 1] defined
by

dW (x) :=

∫
Ω
W (x, y) dy.

W is called p-regular if dW = p a.e.

The second is the notion of homomorphism density, which extends naturally from graphs to
kernels.

Definition 2.4. Given a graph H, its homomorphism density in a kernel W is given by

tµ(H,W ) :=

∫
ΩV (H)

∏
uv∈E(H)

W (xu, xv) ·
∏

v∈V (H)

dµ(xv). (2)

When the measure µ is clear from the context, we will often omit the subscript. Additionally,
for distinct v1, . . . , vk ∈ V (H) and any x1, . . . , xk ∈ Ω, we write

t(H,W | xv1 = x1, . . . , xvk = xk) :=

∫
ΩV (H)\{v1,...,vk}

∏
uv∈E(H)

W (xu, xv) ·
∏

v∈V (H)\{v1,...,vk}

dxv,

where on the right-hand side we plug in xi for every instance of xvi .

To every graphG, one can associate a graphonWG (see Definition A.1) such that t(H,WG) =
t(H,G) for any graph H, hence this really is a generalization of the homomorphism density of
graphs (see e.g. [36, Section 4.3] for more details).

Similarly, the definition of a locally dense graph translates naturally to that of a locally
dense graphon. Because graphons already capture the asymptotic nature of the problem, the
parameter δ from Definition 1.1 does not appear in the following definition.

Definition 2.5. A graphon W on (Ω,Σ, µ) is called p-locally dense if, for every U ⊆ Ω we have
that ∫∫

U×U
W (x, y) dx dy ≥ p|U |2.

Locally dense graphons precisely capture the asymptotic theory of locally dense graphs (see
Lemma A.5 for a precise statement). In particular, the following result shows that all of the
properties we are studying are equivalently captured by the behavior of homomorphism counts
in locally dense graphons.

Lemma 2.6. Let H be a graph.

4In fact, a graphon on an arbitrary probability space can be converted into one on [0, 1] with essentially no
loss of generality; see [19, Chapter 13].
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(a) H is KNRS if and only if t(H,W ) ≥ pe(H) for every p and every p-locally dense graphon
W .

(b) H is KNRS-forcing if and only if t(H,W ) > pe(H) for every p and every p-locally dense
graphon W , unless W = p a.e.

(c) H is density-forcing if and only if t(H,W ) > pe(H) for every p and every p-locally dense
graphon W with

∫∫
Ω×ΩW > p.

2.2 An infinitary version of Reiher’s lemma

Reiher [23] proved a very important lemma, which has been used in many of the results on
locally dense graphs; we will also use it multiple times throughout this paper. Informally, it
states that a locally dense graph also satisfies a “fractional” version of the locally dense property
in Definition 1.1. Formally, it states the following.

Lemma 2.7. Let G be a (p, δ)-locally dense graph with n vertices. Let f : V (G) → [0, 1] be a
function satisfying

∑
v∈V (G) f(v) ≥ δn. Then

∑
xy∈E(G)

f(x)f(y) ≥ p

2

 ∑
x∈V (G)

f(x)

2

− n.

Note that if we let f be the indicator function of a subset S ⊆ V (G), then we precisely
recover the condition in Definition 1.1, apart from the lower-order error term. Naturally, there
is an infinitary analogue of Lemma 2.7. We use the standard notation ∥f∥1 to denote the L1

norm of f : Ω → R, that is, ∥f∥1 :=
∫
Ω|f(x)|dx.

Lemma 2.8. Let W be a graphon on Ω. W is p-locally dense if and only if for every bounded
measurable function f : Ω → [0,∞), we have∫∫

Ω×Ω
f(x)W (x, y)f(y) dx dy ≥ p∥f∥21. (3)

An immediate but important corollary of Lemma 2.8 is that the property of being locally
dense is invariant under changing the probability measure on Ω. To state this result properly,
we need to introduce a bit of extra notation. As we will now be dealing with different measures
on Ω, all of our integrals will be written with respect to a given measure, e.g. we will write∫∫

Ω×ΩW (x, y) dµ(x) dµ(y). Similarly, all Lp norms will be computed with respect to a given
measure, and we denote, for example, ∥f∥1,µ for

∫
Ω|f(x)| dµ(x). Let us also say that a graphon

W is p-locally dense with respect to µ if Definition 2.5 holds for the measure µ, that is, if∫∫
U×U W (x, y) dµ(x) dµ(y) ≥ pµ(U)2 for all measurable sets U ⊆ Ω.
Given a weight function w : Ω → [0,∞) with

∫
Ωw(x) dµ(x) = 1, we can obtain a new

probability measure νw on Ω by integrating w, namely the measure of a set U is defined as
νw(U) :=

∫
U w(x) dµ(x). Equivalently, νw can be defined by saying that for any bounded

function f : Ω → R, we have
∫
Ω f(x) dνw(x) =

∫
Ω f(x)w(x) dµ(x). With this setup, we can now

state the result that changing the measure preserves local density.

Lemma 2.9. Let (Ω,Σ, µ) be an atomless standard probability space, and let W be a graphon
on Ω. Let w : Ω → [0,∞) be a bounded weight function with

∫
Ωw(x) dµ(x) = 1, and let νw

be the associated probability measure on Ω. If W is p-locally dense with respect to µ, then it is
p-locally dense with respect to νw.

7



In our proofs, the following consequence of Lemma 2.9 will be particularly useful. Both
Lemmas 2.9 and 2.10 are proved in Appendix A.

Lemma 2.10. Let (Ω,Σ, µ) be an atomless standard probability space, and let W be a graphon
on Ω. Let w : Ω → [0,∞) be a bounded weight function. If H is a KNRS graph, then∫

ΩV (H)

∏
v∈V (H)

w(xv)
∏

uv∈E(H)

W (xu, xv)
∏

v∈V (H)

dµ(xv) ≥ ∥w∥v(H)
1 pe(H).

2.3 Kernels as linear and bilinear operators

A kernel can be thought of as an infinite-dimensional generalization of a matrix, and just as
matrices act as linear and bilinear operators, so do kernels. We collect here the important
properties and definitions that we will need about such actions; a detailed introduction can be
found in [19, Section 7.5], and the functional analysis background can be found in, for example,
[33, Chapter 4] or [22, Chapter VI].

Given a kernel W on Ω and a parameter 1 ≤ p ≤ ∞, we can define a linear operator
TW : Lp(Ω) → Lp(Ω) by

(TW f)(x) :=

∫
Ω
W (x, y)f(y) dy.

The fact that W is bounded and that Ω is a probability space implies that TW f ∈ Lp whenever
f ∈ Lp. A function f ∈ L2 is called an eigenfunction of TW with eigenvalue λ if TW f = λf a.e.
It follows from standard Hilbert–Schmidt theory that TW is a self-adjoint compact operator on
L2, hence the spectral theorem implies that there exist real numbers λ1, λ2, . . . and functions
f1, f2, · · · ∈ L2 such that each fi is an eigenfunction of TW with eigenvalue λi, and such that the
set {fi} forms an orthonormal basis of L2. In particular, this implies that there is a spectral
decomposition of W as

W (x, y) ∼
∞∑
i=1

λifi(x)fi(y).

Here, the symbol ∼ denotes that the series on the right-hand side may not converge for a.e.
x, y, but that the right-hand side converges to W (x, y) in L2. We note for future reference
that, although a priori the eigenfunctions fi are only in L2, one can show that eigenfunctions
associated to a non-zero eigenvalue are bounded; see [19, Proposition 7.17] for a proof. The
following result, an analogue of one of the basic results in spectral graph theory, shows that the
eigenvalues of a graphon can be used to compute the homomorphism count of any cycle.

Theorem 2.11 ([19, (7.22)]). Let W be a kernel and let λ1, λ2, . . . , be its sequence of eigenvalues
with |λ1| ≥ |λ2| ≥ . . . . Then, for any k ≥ 2,

t(Ck,W ) =

∞∑
i=1

λk
i .

Recall that a matrix M ∈ Rn×n is called copositive if vTMv ≥ 0 for all vectors v ∈ Rn all
of whose coordinates are non-negative. Extending the definition of copositivity from matrices,
let us say that a kernel W is copositive if, for every bounded f : Ω → [0,∞), we have∫∫

Ω×Ω
f(x)W (x, y)f(y) ≥ 0.

More restrictively, we say that W is positive semidefinite if the same condition holds for every
bounded f : Ω → R, rather than only for bounded non-negative functions.
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Recall that L2 is endowed with a natural inner product, given by ⟨f, g⟩ =
∫
Ω f(x)g(x) dx.

With this notation, we can more concisely say that W is copositive if ⟨f, TW f⟩ ≥ 0 for every
bounded non-negative f , and that it is positive semidefinite if ⟨f, TW f⟩ ≥ 0 for every bounded
real-valued f . We will need the following two basic lemmas; the first is a generalization of a
well-known fact about matrices, while the second connects locally dense graphons to copositive
kernels. Proofs of both are given in Appendix A.

Lemma 2.12. A kernel W is positive semidefinite if and only if all eigenvalues of TW are
non-negative.

Lemma 2.13. A graphon W is p-locally dense if and only if the kernel W − p is copositive.

In general, being positive semidefinite is a much stronger condition than being copositive,
and the space of positive semidefinite kernels is much more well-behaved than the space of
copositive kernels. Nonetheless, there is a simple condition which can be used to show that a
copositive kernel is positive semidefinite.

Lemma 2.14. Let W be a kernel. Suppose that there exists a bounded function g : Ω → R with
infΩ g > 0 and TW g = 0 a.e. If W is copositive, then it is positive semidefinite.

Proof. Let f : Ω → R be a bounded function. Since inf g > 0, for sufficiently large C ∈ R, we
have f + Cg ≥ 0. Moreover, f + Cg is bounded, so the copositivity of W implies that

0 ≤ ⟨f + Cg, TW (f + Cg)⟩ = ⟨f, TW f⟩+ 2C ⟨f, TW g⟩+ C2 ⟨TW g, TW g⟩ = ⟨f, TW f⟩ .

As f was arbitrary, W is positive semidefinite.

We will mostly use this lemma in the form of the following corollary.

Corollary 2.15. Let W be a p-locally dense, p-regular graphon. Then W−p is positive semidef-
inite.

Proof. If we let g denote the constant 1 function, then the p-regularity of W is equivalent to
saying that TW g = pg. Hence TW−pg = 0. As W − p is copositive by Lemma 2.13, Lemma 2.14
implies that W − p is positive semidefinite.

Corollary 2.15 is, essentially, the reason why we are able to prove substantially more about
regular-KNRS graphs than KNRS graphs. Indeed, since the space of PSD kernels is well-
behaved, many arguments work for proving that a given graph is regular-KNRS but fail for
proving that it is KNRS.

Given two kernels W1,W2, their operator product W1 ◦W2 is defined by

(W1 ◦W2)(x, y) :=

∫
Ω
W1(x, z)W2(z, y) dz.

Note that W1 ◦ W2 is another kernel, as the boundedness of W1,W2 implies that W1 ◦ W2

is bounded as well. This definition extends the standard definition of matrix multiplication,
and is chosen so that TW1◦W2 = TW1 ◦ TW2 , where ◦ on the right-hand side denotes function
composition. We denote the operator power, defined as the k-fold operator product of W with
itself, by W ◦k. The main result we will need about operator products is that W and W ◦k have
the same eigenfunctions, and that the eigenvalues of W ◦k are given by {λk

i }, where {λi} are the
eigenvalues of W .
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Another important operation is the tensor product. Given two kernels W1,W2 on Ω, their
tensor product W1 ⊗W2 is a kernel on Ω× Ω defined by

(W1 ⊗W2)((x1, x2), (y1, y2)) := W1(x1, y1)W2(x2, y2).

It is not hard to show, extending the well-known property of matrix tensor products, that the
eigenvalues of W1⊗W2 are given by {λiµj}∞i,j=1, where {λi}, {µj} are the eigenvalues of W1,W2,
respectively. The most useful property of the tensor product is that graph homomorphism
densities are multiplicative over it, that is, for every graph H and every pair of kernels W1,W2,
we have

t(H,W1 ⊗W2) = t(H,W1)t(H,W2). (4)

We denote the tensor power, defined as the k-fold tensor product of W with itself, by W⊗k.

Lemma 2.16. If W is a positive semidefinite kernel, then W ◦k,W⊗k are positive semidefinite
for all k ≥ 1.

Proof. This follows immediately from Lemma 2.12 and the characterization of the eigenvalues
of W ◦k and W⊗k.

In addition to matrix powers and tensor products, another matrix operation that preserves
positive-semidefiniteness is the Hadamard product. In the world of kernels, this corresponds to
the pointwise product, namely given kernels W1,W2, we define the Hadamard product W1⊙W2

by (W1 ⊙ W2)(x, y) := W1(x, y)W2(x, y). Since W1,W2 are measurable and bounded, so is
W1 ⊙ W2, hence it is also a kernel. As with matrices, the Hadamard product preserves the
positive semidefinite cone.

Lemma 2.17. If W1,W2 are positive semidefinite kernels, then so is W1 ⊙W2.

The analogous statement for matrices follows immediately from the fact that the tensor
product preserves positive-semidefiniteness, since the Hadamard product of two matrices is a
principal submatrix of their tensor product. It does not seem that one can make such an
argument for kernels, so our proof of Lemma 2.17 is rather long and is given in Appendix A.

3 Gluing operations

In this section, we prove that various graphs are KNRS and KNRS-forcing. We begin with a
strengthening of Reiher’s theorem [23], proving that all cycles are KNRS-forcing.

Theorem 3.1. For any k ≥ 3, the k-cycle is KNRS-forcing.

Proof. If k is even, the result was proved in the seminal paper of Chung, Graham and Wilson [4].
Hence, we will assume that k is odd and write k = 2ℓ + 1. By Lemma 2.6(b), it is enough to
prove that for any p-locally dense graphon W, it holds that t(H,W ) = pe(H) if and only if W = p
a.e. So let W be a p-locally dense graphon with t(H,W ) = pe(H).

First we show that W is p-regular. Indeed, if not, then by a result of Sidorenko [30], we
have ∥W ◦ℓ∥1 = t(Pℓ,W ) > pℓ, where Pℓ is the path with ℓ edges. In other words, if W is not
p-regular, we have strictly more ℓ-paths than expected. Note that we may count k-cycles by
counting pairs of ℓ-paths starting from the same vertex and whose endpoints are joined by an
edge. Formally,

t(Ck,W ) =

∫
Ω

(∫
Ω×Ω

W ◦ℓ(x, y)W ◦ℓ(x, z)W (y, z) dy dz

)
dx

≥
∫
Ω
(dW ◦ℓ(x))2p dx ≥ ∥W ◦ℓ∥21p ≥ p2ℓ+1 = pk,
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where in the first inequality we used Lemma 2.8 with the weight function w(y) = W ◦ℓ(x, y),
in the second inequality we used Cauchy-Schwarz and in the third inequality we used that the
ℓ-path is Sidorenko.

By assumption t(Ck,W ) = pk so each of the above inequalities must be tight. In particular,
t(Pℓ,W ) = pℓ, which by a result of Sidorenko [30], implies that W is p-regular.

Let us writeW = p+M. Note that ⟨M, 1⟩ = 0 so 1 is an eigenfunction ofW with eigenvalue p.
Let 1 = f1, f2, f3, . . . , be eigenfunctions of W with corresponding eigenvalues p = λ1, λ2, λ3, . . .
such that {fi}i∈N forms an orthornomal basis. Note that for i ≥ 2,

⟨W, fi⟩ = ⟨p, fi⟩+ ⟨M,fi⟩ = ⟨M,fi⟩ ,

since fi is orthogonal to the all one function. Hence, fi is also an eigenfunction of M with the
same eigenvalue. By Corollary 2.15, M is positive semidefinite, which implies λi ≥ 0, for all
i ≥ 1. Finally, by Theorem 2.11, we have

t(Ck,W ) =
∞∑
i=1

λk
i = pk +

∞∑
i=2

λk
i ≥ pk.

Equality implies that λi = 0 for all i ≥ 2, and thus W = p a.e. as claimed.

We remark that there is an alternative way of viewing the proof of Theorem 3.1. For a
kernel W and an integer k ≥ 3, let fk(W ) =

∑∞
i=1 λ

k
i , where {λi}∞i=1 are the eigenvalues of W .

From Theorem 2.11, we know that fk(W ) = t(Ck,W ). The function fk, when k is odd, is not a
convex function on the space of all kernels, but it is strictly convex when restricted to the cone
of PSD kernels; this is closely related to the statement that the Schatten p-norm, for p > 1,
is strictly convex. A basic fact of convex optimization is that strictly convex functions have a
unique local minimum (which is also the global minimum). This implies that t(Ck, · ) has a
unique local and global minimum in the cone of PSD kernels, hence that a stability result holds
for the count of Ck. As it is not hard to identify this minimum, this stability result in turn
implies that Ck is KNRS-forcing.

While this connection may appear somewhat superficial—and we found it easiest to prove
Theorem 3.1 without speaking about strictly convex functions at all—we are hopeful that further
such connections will be uncovered. In particular, it seems possible that techniques from convex
and semidefinite optimization could be used to prove results around Conjecture 1.2.

We now recall the key definition of our gluing operation (see Figure 1 for an illustration).

Definition 1.3. Let H1, H2 be two graphs, let I be an independent set in H1 and let a be a
vertex in V (H1) \ I. We define the graph H1 ⋉a

I H2 as follows. Let A1, . . . , Av(H2) be copies of
H1 with the set I identified and otherwise disjoint. Furthermore, place a copy of H2 on the set
of v(H2) vertices corresponding to a in each of A1, . . . , Av(H2).

Theorem 3.2. Suppose that H1, H2 are KNRS, I is and independent set in H1 and a ∈ V (H1)\
I. Then H1 ⋉a

I H2 is KNRS. Moreover, if H1 is KNRS-forcing or H2 is density-forcing and
H1 ⋉a

I K2 is KNRS-forcing, then H1 ⋉a
I H2 is KNRS-forcing.

Proof. We first prove that H1⋉a
IH2 is KNRS and the forcing statement will follow by examining

the equality case. Note that e(H2 ⋉a
I H2) = v(H2)e(H1) + e(H2). Let W be a p-locally dense

graphon. Let k = |I| and let us label the vertices of I by 1, . . . , k. For z1, . . . , zk, y ∈ Ω, let
wz1,...,zk(y) = t(H1,W | x1 = z1, . . . , xk = zk, xa = y), that is, wx1,...,xk

(y) counts the number of
copies of H1 with vertex i embedded into xi for i ∈ [k] and vertex a embedded into y. Observe

11



that

t(H1 ⋉a
I H2,W | x1 = z1, . . . , xk = zk)

=

∫
ΩV (H2)

∏
v∈V (H2)

wz1,...,zk(xv)
∏

uv∈E(H2)

W (xu, xv)
∏

v∈V (H2)

dxv

≥ ∥wz1,...,zk∥
v(H2)
1 pe(H2),

where in the inequality we used Lemma 2.10 and the assumption that H2 is KNRS. Since H1

is KNRS,

t(H1,W ) =

∫
Ωk

∥wz1,...,zk∥1
k∏

i=1

dzi ≥ pe(H1).

Integrating over the choice of z1, . . . , zk, applying Lemma 2.10 and Jensen’s inequality for the
function xv(H2) on [0,∞), we have

t(H1 ⋉a
I H2,W ) =

∫
Ωk

t(H1 ⋉a
I H2,W | x1 = z1, . . . , xk = zk)

k∏
i=1

dzi

≥
∫
Ωk

∥wz1,...,zk∥
v(H2)
1 pe(H2)

k∏
i=1

dzi ≥ t(H1,W )v(H2)pe(H2) ≥ pv(H2)e(H1)+e(H2),

showing that H1 ⋉a
I H2 is KNRS.

Finally, to show the forcing statements, suppose that t(H1 ⋉a
I H2,W ) = pv(H2)e(H1)+e(H2).

Then, in the above chain of inequalities, equality holds throughout. In particular, t(H1,W ) =
pe(H1). Since H1 is KNRS-forcing, we obtain that W = p a.e. Hence H1 ⋉a

I H2 is also KNRS-
forcing.

Finally, let us show that ifH2 is density-forcing andH1⋉a
IK2 is KNRS-forcing, thenH1⋉a

IH2

is KNRS-forcing. In this case, we have

t(H1 ⋉a
I H2,W | x1 = z1, . . . , xk = zk) = ∥wz1,...,zk∥

v(H2)
1 pe(H2),

for almost all z1, . . . , zk such that ∥wz1,...,zk∥1 > 0. (5)

Using (5) and the equality case of Jensen’s inequality, it follows that

∥wz1,...,zk∥1 = pe(H1), for almost all z1, . . . , zk. (6)

Consider z1, . . . , zk for which ∥wz1,...,zk∥1 = pe(H1) and t(H1 ⋉a
I H2,W | x1 = z1, . . . , xk =

zk) = pv(H2)e(H1)+e(H2). Let νz1,...,zk(y) := wz1,...,zk(y)/∥wz1,...,zk∥1 and note that νz1,...,zk(y) is a
probability measure on W . Observe that

t(H1 ⋉a
I H2,W, | x1 = z1, . . . , xk = zk)

=

∫
ΩV (H2)

∏
v∈V (H2)

wz1,...,zk(xv)
∏

uv∈E(H2)

W (xu, xv)
∏

v∈v(H2)

dµ(xv)

= ∥wz1,...,zk∥
v(H2)
1 · tνz1,...,zk (H2,W ),

implying that tνz1,...,zk (H2,W ) = pe(H2). By Lemma 2.9, the graphon W is p-locally dense with
respect to the measure νz1,...,zk . Since H2 is density-forcing, we have

12



p =

∫
Ω×Ω

W (y, y′) dνz1,...,zk(y) dνz1,...,zk(y
′)

=
1

∥wz1,...,zk∥21

∫
Ω×Ω

wz1,...,zk(y)wz1,...,zk(y
′)W (y, y′) dµ(y) dµ(y′)

=
1

∥wz1,...,zk∥21
t(H1 ⋉a

I K2,W | x1 = z1, . . . , xk = zk)

= p−2e(H1)t(H1 ⋉a
I K2,W | x1 = z1, . . . , xk = zk).

In other words, for almost all z1, . . . , zk, we have t(H1 ⋉a
I K2,W | x1 = z1, . . . , xk = zk) =

p2e(H1)+1, so

t(H1 ⋉a
I K2,W ) =

∫
Ωk

t(H1 ⋉a
I K2,W | x1 = z1, . . . , xk = zk)

k∏
i=1

dzi = p2e(H1)+1 = pe(H1⋉a
IK2).

Because H1 ⋉a
I K2 is KNRS-forcing, we obtain that W = p a.e., so H1 ⋉a

I H2 is KNRS-forcing
as well.

As a special case of Theorem 3.2, if H1 is KNRS-forcing, then H1⋉a
I K2 is KNRS-forcing as

well. The converse, however, need not hold, e.g. K2 is clearly not KNRS-forcing, but denoting
by x, y the endpoints of K2, the graph K2 ⋉y

{x} K2
∼= K3 is KNRS-forcing.

Corollary 3.3. For any k ≥ 3, the k-clique and the k-wheel are KNRS and KNRS-forcing.

Proof. The proof of the first statement is by induction on k. By Theorem 3.1, K3 is KNRS
and KNRS-forcing and assume, by induction, that Kk−1 is KNRS and KNRS-forcing. Let x, y
be the two endpoints of K2. We have that Kk

∼= K2 ⋉y
{x} Kk−1 for all k, showing by the

previous theorem that Kk is KNRS. Moreover, as K2 ⋉y
{x} K2

∼= K3 is KNRS-forcing and Kk−1

is KNRS-forcing by induction, we have that Kk is KNRS-forcing.
Similarly, the wheel Wk can be constructed as K2 ⋉y

{x} Ck. Since Ck is KNRS and KNRS-

forcing by Theorem 3.1, and since K2 ⋉y
{x} K2

∼= K3 is KNRS-forcing, we conclude that Wk is
KNRS and KNRS-forcing.

4 On the regular-KNRS conjecture

In this section we prove Conjecture 1.8 for a family of graphs which includes many graphs for
which Conjecture 1.2 is not known. Note that if W is a p-regular p-locally dense graphon,
then by Corollary 2.15, W − p is a 0-regular, positive semidefinite kernel. For any graph H, by
expanding (2), we obtain

t(H,W ) = t(H, p+ (W − p)) =
∑

H′⊆H

pe(H)−e(H′)t(H ′,W − p), (7)

where H ′ runs over all spanning subgraphs of H. This motivates the following definition.

Definition 4.1. We say that a graph H is PSD-nonnegative if for any positive semidefinite
0-regular kernel W, it holds that t(H,W ) ≥ 0. We say that H is hereditarily PSD-nonnegative
if every spanning subgraph of H is PSD-nonnegative.
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We remark that a stronger notion has been studied in the literature. Namely, a graph H is
said to be positive if t(H,W ) ≥ 0 for all kernels W . Clearly, every positive graph is in particular
PSD-nonnegative. The positive graph conjecture of Antoĺın Camarena–Csóka–Hubai–Lippner–
Lovász [1] predicts a precise characterization of positive graphs (see [9, 31] for recent progress on
this conjecture). However, for our purposes we need the notion of hereditary PSD-nonnegativity,
which does not seem to have a direct connection to the theory of positive graphs.

Equation (7) immediately implies the following.

Proposition 4.2. Every hereditarily PSD-nonnegative graph satisfies Conjecture 1.8.

Proof. Suppose that H is a hereditarily PSD-nonnegative graph. Let W be a p-regular p-locally
dense graphon and let W0 := W − p. Note that by Corollary 2.15, W0 is 0-regular and positive
semidefinite. By (7), we have

t(H,W ) =
∑

H′⊆H

pe(H)−e(H′)t(H ′,W0) = pe(H) +
∑

H′⊆H,E(H′ )̸=∅

pe(H)−e(H′)t(H ′,W0) ≥ pe(H),

where in the inequality we used the assumption that all spanning subgraphs of H ′ are PSD-
nonnegative.

Lemma 4.3. If W is a positive semidefinite kernel and W ′ is an arbitrary kernel on the same
probability space (Ω,Σ, µ), then the kernel W ′ ◦W ◦W ′ is positive semidefinite.

Proof. Let f : Ω → [0,∞) be an arbitrary bounded measurable function. Setting Φ(x′) =∫
Ω f(x)W (x, x′) dx, we have∫
Ω×Ω

f(x)(W ′◦W ◦W ′)(x, y)f(y) dx dy =

∫
Ω4

f(x)W ′(x, x′)W (x′, y′)W ′(y′, y)f(y) dx dx′ dy′ dy

=

∫
Ω×Ω

Φ(x′)W (x′, y′)Φ(y′) dx′ dy′ ≥ 0,

where in the last inequality we used that W is positive semidefinite. As f was arbitrary, the
statement follows.

Given a kernel W and a graph H with two distinct vertices labelled a and b, we define a
new kernel ta,b(H,W ) by setting

ta,b(H,W )(x, y) = t(H,W | xa = x, xb = y).

For s1, . . . , st with s1 ≥ 0 and s2, . . . , st ≥ 1, let Θ(s1, . . . , st) be the graph consisting of
two distinct vertices a and b and t internally vertex disjoint paths between a and b, with the
ith path having si internal vertices, where if s1 = 0, there is an edge between a and b. We call
Θ(s1, . . . , st) a generalized Θ-graph.

Lemma 4.4. Let s1 ≥ 0, s2 . . . , st ≥ 1, be arbitrary, denote Θ = Θ(s1, . . . , st) and let a, b be
the two distinguished vertices of Θ. Then, for any positive semidefinite kernel W, the kernel
ta,b(Θ,W ) is positive semidefinite.

Proof. Indeed, observe that

ta,b(Θ,W )(x, y) =

t∏
i=1

W ◦si+1(x, y),

14



so we can write

ta,b(Θ,W ) =
t
⊙
i=1

W ◦si+1.

By Lemma 2.16, W ◦si+1 is positive semidefinite for all i ∈ [t] and by Lemma 2.17, the Hadamard
product of two positive semidefinite kernels is positive semidefinite, implying that ta,b(Θ,W ) is
positive semidefinite.

Lemma 4.5. If H has a vertex of degree one, then H is PSD-nonnegative.

Proof. In fact we prove that for any 0-regular kernel W, it holds that t(H,W ) = 0. Let v be
a vertex of degree one in H, let u be its unique neighbour and let H ′ = H \ {v}. Then for a
0-regular kernel W, we have

t(H,W ) =

∫
Ω
t(H ′,W | xu = x)

∫
Ω
W (x, y) dy dx = 0,

since
∫
ΩW (x, y) dy = 0 for almost all x.

Theorem 4.6. Any generalized Θ-graph is hereditarily PSD-nonnegative and, in particular, it
satisfies Conjecture 1.8.

Proof. Let H ′ be a subgraph of a generalized Θ-graph. We need to show that H ′ is PSD-
nonnegative. Indeed, note that every spanning subgraph of a generalized Θ-graph is itself a
generalized Θ-graph (potentially plus isolated vertices) or has a vertex of degree one. In the
latter case, we are done by Lemma 4.5, so assume that H ′ is a generalized Θ-graph plus isolated
vertices. Homomorphism densities are multiplicative over disjoint unions, so we may remove the
isolated vertices without changing t(H ′,W ). By Lemma 4.4, ta,b(H

′,W ) is positive semidefinite,
so in particular,

t(H ′,W ) =

∫
Ω×Ω

ta,b(H
′,W )(x, y) dx dy ≥ 0,

as needed.

Theorem 4.7. Let H be the graph with 6 vertices and 8 edges, where V (H) = Z6 and E(H) =
{{i, i + 1} : 1 ≤ i ≤ 6} ∪ {{1, 5}{2, 4}}. H is hereditarily PSD-nonngetive and thus it satisfies
Conjecture 1.8.

Proof. See Figure 2 for an illustration of H and its labelling. We need to show that every
spanning subgraph of H is PSD-nonnegative. Let H ′ be a spanning subgraph of H. It is easy
to verify that H ′ satisfies at least one of the following cases which we handle in order.

• H ′ has a vertex of degree one. Then H ′ is PSD-nonnegative by Lemma 4.5.

• H ′ is a generalized Θ-graph. Then H ′ is PSD-nonnegative by Theorem 4.6.

• H ′ is a disjoint union of two triangles. For any kernel W , t(H ′,W ) = t(K3,W )2 ≥ 0.

• H ′ is two vertex disjoint triangles connected by a single edge. Let x, y denote the two
vertices of degree 3 in H ′. Let f(x) = t(K3,W | x1 = x), i.e. f(x) counts triangles
containing x. Then t(H ′,W ) =

∫∫
f(x)W (x, y)f(y) ≥ 0, since W is positive semidefinite.

• H ′ ∼= H. Denote F = H[{1, 2, 3, 4, 5}] \ {{1, 5}}. Let W3 = ta,b(K3,W ) where a, b are
two distinct vertices of a triangle. Note that a triangle is a generalized Θ-graph so by
Lemma 4.4, W3 is a positive semidefinite kernel. Additionally, observe that t1,5(F,W ) =
W ⊙ W3 ⊙ W, so t1,5(F,W ) is positive semidefinite by Lemma 4.3. Finally, note that
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t1,5(H
′,W ) = W ⊙ W ◦2 ⊙ t1,5(F,W ) which is positive semidefinite by Lemma 2.16 and

Lemma 2.17. In particular this implies that t(H ′,W ) =
∫
Ω×Ω t1,5(H

′,W )(x, y) dx dy ≥ 0,
as required.

1 2

3

45

6

Figure 2: The graph H from Theorem 4.7.

The above proof strategy can be used to prove Conjecture 1.8 for a slightly larger family of
graphs, we have not included the most general statement for the sake of clarity of presentation.

Recall that the ℓ-subdivision of a graph H is obtained by replacing each edge by a path of
length ℓ+ 1.

Proposition 4.8. If a graph H is regular-KNRS then for every ℓ ≥ 1, the ℓ-subdivision of H
is regular-KNRS.

Proof. Let H be regular-KNRS and let W be a p-regular p-locally dense graphon. Let H◦ℓ

denote the ℓ-subdivision of H. Crucially, note that t(H◦ℓ,W ) = t(H,W ◦ℓ+1). By Corollary 2.15,
W0 := W − p is a 0-regular positive semidefinite kernel. Observe that since W0 is 0-regular,
p ◦W0 = W0 ◦ p = 0 a.e. Hence,

W ◦ℓ+1 = (p+W0)
◦ℓ+1 = p◦ℓ+1 +W ◦ℓ+1

0 = pℓ+1 +W ◦ℓ+1
0 .

Since W0 is positive semidefinite, by Lemma 2.16, W ◦ℓ+1
0 is positive semidefinite and in partic-

ular, it is copositive. Furthermore, W ◦ℓ+1
0 is 0-regular. Indeed, for any x ∈ Ω, we have

∫
Ω
W ◦ℓ+1

0 (x, y) dy =

∫
Ωℓ

W0(x, z1)

ℓ−1∏
i=1

W0(zi, zi+1)

∫
Ω
W0(zℓ, y)

ℓ∏
i=1

dzi dy.

Since W0 is 0-regular, for almost every choice of zℓ, we have
∫
ΩW0(zℓ, y) dy = 0 and so∫

ΩW ◦ℓ+1
0 (x, y) dy = 0 for all x, implying that W ◦ℓ+1

0 is 0-regular. We conclude that W ◦ℓ+1

is a pℓ+1-locally dense, pℓ+1-regular graphon. By the assumption, it follows that

t(H◦ℓ,W ) = t(H,W ◦ℓ+1) ≥ (pℓ+1)e(H) = pe(H
◦ℓ),

which completes the proof.

We remark that in the setting of Sidorenko’s conjecture, Conlon, Kim, Lee, and Lee [7]
proved a similar result, namely that the 1-subdivision of any KNRS graph is Sidorenko.

Finally, we show that in the setting of Conjecture 1.8, we can use the so-called tensor power
trick. We start with a lemma.

Lemma 4.9. Let W be a p-regular, p-locally dense graphon. Then W ⊗ W is a p2-regular,
p2-locally dense graphon.
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Proof. Let W0 := W − p. We can write W ⊗W as follows:

W ⊗W = (W0 + p)⊗ (W0 + p) = W0 ⊗W0 +W0 ⊗ p+ p⊗W0 + p2,

where p2 is the all-p2 kernel on Ω×Ω. By Corollary 2.15, W0 is 0-regular and positive semidef-
inite. Clearly, the all-p graphon is positive semidefinite. Recall that the tensor product of
two positive semidefinite kernels is itself positive semidefinite and that the sum of two positive
semidefinite kernels is positive semidefinite. Hence, W ⊗W − p2 = W0 ⊗W0 +W0 ⊗ p+ p⊗W0

is positive semidefinite and, in particular, it is copositive. By Lemma 2.13, W ⊗W is p2-locally
dense. It remains to verify that W ⊗W is p2-regular. Indeed, for almost all (x, y) ∈ Ω×Ω, we
have ∫

Ω×Ω
(W ⊗W )((x, y), (x′, y′)) dx′ dy′ =

∫
Ω×Ω

W (x, x′)W (y, y′) dx′ dy′ = p2.

Proposition 4.10. Let H be a graph and suppose there is an absolute constant c > 0 such
that t(H,W ) ≥ cpe(H) for every p-locally dense p-regular graphon W. Then the same holds with
c = 1, that is, H is regular-KNRS.

Proof. Let H, c be as in the statement and let W be an arbitrary p-locally dense p-regular
graphon. Inductively applying Lemma 4.9, we obtain that for any k ≥ 0, the graphon W⊗2k is
p2

k
-locally dense and p2

k
-regular. By (4) and the assumption, we have

t(H,W ) =
(
t(H,W⊗2k)

)1/2k

≥
(
cp2

k·e(H)
)1/2k

= c1/2
k
pe(H).

Taking k → ∞, we obtain t(H,W ) ≥ pe(H), as claimed.

5 Negative results

In this section we collect counterexamples to several natural avenues of proving Conjecture 1.2.

Proposition 5.1. For all p ∈ (0, 1/3), there is a p-locally dense graphon W satisfying the
followng:

1. t(K2,W ) = 9p
8 .

2. For any graphon W ′ which is not 0 a.e., W −W ′ is not p-locally dense.

3. W ⊗W is not p2-locally dense.

4. For any ℓ ≥ 5, W ◦ℓ is not pℓ-locally dense.

Let us briefly comment on the statement of Proposition 5.1. The first two points imply
the existence of a (p, o(1))-locally dense n-vertex graph with at least (9p8 − o(1))

(
n
2

)
edges such

that if we remove any set of Ω(n2) edges, the graph is no longer (p, o(1))-locally dense. In
particular, this presents a difficulty in establishing that a KNRS graph H is density forcing.
Indeed, suppose such an example did not exist, so for any (p, o(1)) locally-dense graph G with
(p+ ε)

(
n
2

)
edges, there is a set F of Ω(n2) edges such that G \ F is (p, o(1))-locally dense. It is

easy to show that there are at least Ω(nv(H)) copies of H using edges of F , and thus we would
have t(H,G) ≥ Ω(nv(H)) + t(H,G \ F ) ≥ (1 + δ)nv(H)pe(H) for some δ > 0, which would imply
that H is density forcing.

The third point gives a counterexample to the direct way of trying to apply the tensor power
trick to the setting of Conjecture 1.2. We remark that in the setting of Sidorenko’s conjecture,
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the tensor power trick allows one to reduce to the case when G is nearly regular; thus the third
point also shows the difficulty of proving that Conjecture 1.8 implies Conjecture 1.2. Finally,
the fourth point illustrates why we cannot prove an analogue of Proposition 4.8 without the
assumption of p-regularity.

Proof of Proposition 5.1. Let W be the graphon arising from the matrix A = (aij)i,j defined as

A =


3p 0 0 0
0 p 2p 2p
0 2p p 2p
0 2p 2p p


In other words, let Ω = [0, 1) endowed with the Lebesgue measure and for i ∈ [4], denote
Ii = [(i− 1)/4, i/4). Then W (x, y) is given by aij where x ∈ Ii, y ∈ Ij . It is simple to verify that
W is p-locally dense and that t(K2,W ) = 9p

8 .
To see Property 2, note that for 2 ≤ j ≤ 4, the set [0, 1] \ Ij has density exactly p in W, and

every pair (x, y) ∈ [0, 1]2 is contained in one of these sets.
To prove Property 3, consider the set (I1 × I2) ∪ (I2 × I1) ∪ (I2 × I2) ∪ (I2 × I3) ⊆ [0, 1]2.

This set has density 3
4p

2 in W ⊗W .
Finally, for Property 4, note that for x ∈ I1, we have dW ◦ℓ(x) = (3p/4)ℓ. Indeed, dW ◦ℓ(x)

counts the number of walks from x and if x ∈ I1, any such walk stays in I1. Hence,∫
I1×I1

W ◦ℓ(x, y) dx dy ≤
∫
I1

dW ◦ℓ(x) dx =
3ℓ

4ℓ+1
pℓ.

For ℓ ≥ 5, we have 3ℓ

4ℓ+1 p
ℓ < 1

16p
ℓ = |I1|2pℓ, so for ℓ ≥ 5, W ◦ℓ is not pℓ-locally dense.

Finally, it might be tempting to conjecture that every graph is PSD-nonnegative, which
would provide a direction for proving Conjecture 1.8. This however is not the case.

Proposition 5.2. There exists a graph H and a positive-semidefinite 0-regular kernel W such
that t(H,W ) < 0.

Proof. Let H be the 6-vertex graph in Figure 3 and let W be the kernel defined by the matrix
18 −12 12 −12 −6
−12 35 28 −19 −32
12 28 56 −44 −52
−12 −19 −44 35 40
−6 −32 −52 40 50


as in the proof of Proposition 5.1. This example was found by computer search. It is straight-
forward to check that W is a positive semidefinite 0-regular kernel and that t(H,W ) < 0.

1 2 3

4 6 5

Figure 3: The graph H in Proposition 5.2 which is not PSD-nonnegative.

18



References
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[12] P. Erdős and V. T. Sós, On Ramsey-Turán type theorems for hypergraphs, Combinatorica
2 (1982), 289–295.

[13] P. Erdös and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52
(1946), 1087–1091.

[14] R. Glebov, D. Král’, and J. Volec, A problem of Erdős and Sós on 3-graphs, Israel J. Math.
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[26] C. Reiher, V. Rödl, and M. Schacht, On a generalisation of Mantel’s theorem to uniformly
dense hypergraphs, Int. Math. Res. Not. IMRN (2018), 4899–4941.
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A More on graphons

A.1 Graph limits

As usual, given a function f : Ω → R and a real number p ≥ 1, we define the Lp norm of f as

∥f∥p :=
(∫

Ω
|f(x)|p dx

)1/p

,

assuming this integral is finite. We also define ∥f∥∞ to be the essential supremum of |f |. These
definitions naturally extend to kernels, viewed as functions on the probability space Ω × Ω;
concretely, we define

∥W∥p :=
(∫∫

Ω×Ω
|W (x, y)|p dx dy

)1/p

,

and similarly ∥W∥∞ is the essential supremum of |W |. Note that since kernels are defined to
be bounded, ∥W∥p is finite for all 1 ≤ p ≤ ∞.

More important in the study of graphons is the cut norm, which is defined for an arbitrary
kernel as

∥W∥□ := sup
S,T⊆Ω

∣∣∣∣∫∫
S×T

W (x, y) dx dy

∣∣∣∣ ,
where the supremum runs over all pairs of measurable subsets S, T ⊆ Ω. It is well-known [19,
Lemma 8.10] that we can equivalently define the cut norm as

∥W∥□ = sup
f,g:Ω→[0,1]

∣∣∣∣∫∫
Ω×Ω

f(x)W (x, y)g(y) dx dy

∣∣∣∣ , (8)

where the supremum runs over all pairs of measurable functions f, g : Ω → [0, 1].
The cut norm, like any norm, defines a natural metric on the space of kernels, but for

the study of graphons it is more useful to define an “unlabeled” version of this metric. If
φ : Ω → Ω is an invertible measure-preserving map, then we denote by Wφ the kernel given by
Wφ(x, y) := W (φ(x), φ(y)). The cut distance between two kernels W1,W2 is then defined as

δ□(W1,W2) := inf
φ
∥W1 −Wφ

2 ∥□,

where the infimum runs over all measure-preserving invertible maps φ : Ω → Ω.
As it turns out, every graph can naturally be viewed as a graphon, as we now define.

Definition A.1. Let G be a graph on vertex set [n], and let Ω be an atomless standard
probability space. Arbitrarily partition Ω into measurable sets I1, . . . , In, with |Ii| = 1/n for all
i (this is possible as Ω is atomless). For x ∈ Ω, define ι(x) to be the unique index i such that
x ∈ Ii. We then define a graphon WG : Ω× Ω → [0, 1] by

WG(x, y) :=

{
1 if (ι(x), ι(y)) ∈ E(G),

0 otherwise.

Note that this definition depends both on the identification between V (G) and [n] and on the
choice of partition of Ω, but these differences turn out to be immaterial, and we denote by WG

any graphon that arises in this way.

We now turn to the notion of graph limits.
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Definition A.2. Let G1, G2, . . . be a sequence of graphs. We say that this sequence converges
to a graphon W if δ□(WGn ,W ) → 0 as n → ∞, and we write Gn → W .

The most important basic result about graphons is that they are the limit objects for
sequences of graphs.

Theorem A.3 (see [19, Theorem 11.21, Lemma 10.18, Proposition 11.32, and Corollary 11.34]).
If W is a graphon, then there exist graphs G1, G2, . . . such that Gn → W .

Conversely, if G1, G2, . . . is an arbitrary sequence of graphs with v(Gn) → ∞, then there is
a subsequence Gn1 , Gn2 , . . . converging to some graphon W .

A crucial property about homomorphism densities is that they characterize convergence of
graph sequences.

Theorem A.4 (see e.g. [36, Theorem 4.3.7]). A sequence of graphs G1, G2, . . . converges to a
graphon W if and only if t(H,Gn) → t(H,W ) for every graph H.

A.2 Locally dense graphons

In this section, we prove various basic results about locally dense graphons, and ultimately
prove Lemma 2.6.

Note that, given a (p, δ)-locally dense graph G, its associated graphon WG is not p-locally
dense for any p > 0 as, for example, the sets corresponding to a single vertex have measure
1/v(G) but the density of WG inside them is zero. Hence, to make a meaningful connection, we
must look at the limit of a sequence of locally dense graphs.

Lemma A.5. Let W be a graphon on Ω. W is p-locally dense if and only if there exists
a sequence of graphs G1, G2, . . . with Gn → W such that Gn is (pn, δn)-locally dense, where
pn → p and δn → 0 as n → ∞.

Proof. Suppose first that W is p-locally dense. By Theorem A.3, there exists a sequence of
graphs (Gn) with Gn → W . So it suffices to prove that Gn is (pn, δn)-locally dense, where
pn = p+ o(1) and δn = o(1), and all o(1) terms tend to 0 as n → ∞.

Recall that by the definition of convergence, we have that δ□(WGn ,W ) → 0. From the
definitions of δ□ and WG, we see that we may select a partition of Ω into sets I1, . . . , Iv(Gn),
each of measure 1/v(Gn), so that the resulting graphon WGn satisfies ∥WGn −W∥□ → 0. Let

δn = ∥WGn −W∥1/3□ . We claim that Gn is (p− δn, δn)-locally dense, which suffices since δn → 0
as n → ∞. Suppose for contradiction that Gn is not (p− δn, δn)-locally dense; this means that
there exists S ⊆ V (Gn) with |S| ≥ δnv(Gn), such that eGn(S) < (p− δn)|S|2/2.

Let U =
⋃

i∈S Ii. Then from the definition of WGn , we see that∫∫
U×U

WGn(x, y) dx dy =
2eGn(S)

v(Gn)
2 < (p− δn)

|S|2

v(Gn)
2 = (p− δn)|U |2.

On the other hand, as W is p-locally dense, we have that
∫∫

U×U W (x, y) dx dy ≥ p|U |2. Com-
bining these inequalities with the definition of the cut norm, we find that

∥WGn −W∥□ ≥
∫∫

U×U
(W −WGn)(x, y) dx dy > δn|U |2 ≥ δ3n,

which is a contradiction since our choice of δn implies that δ3n = ∥WGn −W∥□.
It remains to prove the converse, so suppose that Gn is a sequence of (pn, δn)-locally dense

graphs, such that pn → p, δn → 0, and Gn → W as n → ∞. As above, we may pick graphons
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WGn such that ∥WGn − W∥□ → 0 as n → ∞. We may assume that p > 0, otherwise the
statement is trivial as any graphon is 0-locally dense. Note that since δn → 0, we have that
v(Gn) → ∞. Suppose for contradiction that W is not p-locally dense, and let U ⊆ Ω be a
measurable set such that

∫∫
U×U W < p|U |2. Let δ = |U |, and let ε > 0 such that

∫∫
U×U W ≤

(p−ε)|U |2. We now define functions fn : V (Gn) → [0, 1] as follows. Recall that WGn is obtained
by partitioning Ω into sets I1, . . . , Iv(Gn), each of measure 1/v(Gn). For 1 ≤ i ≤ v(Gn), we define
fn(i) := |U∩Ii|/|Ii| to be the fraction of Ii contained in U . Note that this definition immediately
implies that

1

v(Gn)
2

∑
(i,j)∈E(Gn)

fn(i)fn(j) = 2

∫∫
U×U

WGn(x, y) dx dy. (9)

Since δn → 0, we may pick N1 such that δn ≤ δ for all n ≥ N1. If δn ≤ δ = |U |, then∑
v∈V (Gn)

fn(v) = δv(Gn) ≥ δnv(Gn). Hence, for n ≥ N1, Lemma 2.7 and (9) imply that∫∫
U×U

WGn(x, y) dx dy ≥ pn|U |2 − 1

v(Gn)
.

However, as pn → p and v(Gn) → ∞, we may pick N2 such that for all n ≥ N2, we have
pn|U |2 − 1

v(Gn)
≥ (p− ε

2)|U |2. Thus, for all n ≥ max{N1, N2}, we find that

∥WGn −W∥□ ≥
∫∫

U×U
(WGn −W )(x, y) dx dy ≥

(
p− ε

2
− (p− ε)

)
|U |2 = ε

2
|U |2.

However, the left-hand side tends to 0 as n → ∞, a contradiction.

Given Lemma A.5, it is not hard to prove Lemma 2.6.

Proof of Lemma 2.6. All three parts are proved in essentially the same way, by combining
Theorems A.3 and A.4 and Lemma A.5. As such, we omit some details that are repeated.

(a) Suppose first thatH is KNRS. IfW is a p-locally dense graphon, then by Lemma A.5 there
exists a sequence of graphs Gn → W which are (p+o(1), o(1))-locally dense. But then the
fact that H is KNRS implies that t(H,Gn) ≥ pe(H)−o(1). Since t(H,W ) = limn t(H,Gn)
by Theorem A.4, we find that t(H,W ) ≥ pe(H). For the converse, suppose that H is not
KNRS. Then the definition of KNRS fails for some fixed p, ε ∈ (0, 1). Thus, we may pick a
sequence Gn of (p, o(1))-locally dense graphs with t(H,Gn) ≤ pe(H)−ε. By Theorem A.3,
there is a convergent subsequence, which necessarily converges to a p-locally dense graphon
W by Lemma A.5. Hence t(H,W ) ≤ lim supn t(H,Gn) ≤ pe(H) − ε, a contradiction.

(b) This is proved in exactly the same way, with the added ingredient that a graphon W is
equal to p a.e. if and only if it is the limit of a sequence of (p + o(1), o(1))-quasirandom
graphs [19, Example 11.37].

(c) This is proved in exactly the same way, except now using the fact that if Gn → W , then
t(K2, Gn) → t(K2,W ) and thus the edge density of W equals the asymptotic edge density
of Gn.

A.3 Reiher’s lemma and new measures

We begin by proving Lemma 2.8.
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Proof of Lemma 2.8. The “if” direction is immediate, for if we set f to be the indicator function
of a set U , the condition (3) is precisely the statement that

∫∫
U×U W ≥ p|U |2. So it remains

only to prove the “only if” direction.
Let W be a p-locally dense graphon, and fix a bounded measurable function f : Ω → [0,∞).

Note that (3) is invariant under rescaling of f , so we may assume that f has codomain [0, 1].
There is nothing to prove if f = 0 a.e., so we may assume that

∫
Ω f(x) dx = δ > 0. By

Lemma A.5, we may pick a sequence of graphs G1, G2, . . . such that Gn is (pn, δn)-locally
dense, where pn → p and δn → 0, such that ∥WGn −W∥□ → 0 as n → ∞.

Recall that WGn is defined by a partition of Ω into sets I1, . . . , Iv(Gn), each of measure
1/v(Gn). We define a function fn : V (Gn) → [0, 1] by setting fn(i) to be the average value of f
on the set Ii. Note that ∑

i∈V (Gn)

fn(i) = v(Gn)

∫
Ω
f(x) dx = δv(Gn)

and that ∑
ij∈E(G)

fn(i)fn(j) =
1

2
v(Gn)

2
∫∫

Ω×Ω
f(x)WGn(x, y)f(y) dx dy.

Let N1 be chosen so that δn ≤ δ for all n ≥ N1. Applying Lemma 2.7 to Gn for n ≥ N1, we
find that

pn∥f∥21 =
pn

v(Gn)
2

 ∑
i∈V (Gn)

fn(i)

2

≤ 2

v(Gn)2

∑
ij∈E(G)

fn(i)fn(j) +
2

v(Gn)

=
2

v(Gn)
+

∫∫
Ω×Ω

f(x)WGn(x, y)f(y) dx dy.

On the other hand, by (8), we have that∣∣∣∣∫∫
Ω×Ω

f(x)(WGn −W )(x, y)f(y) dx dy

∣∣∣∣ ≤ ∥WGn −W∥□
n→∞−→ 0.

Combining these two estimates, plus the facts that pn → p and v(Gn) → ∞ as n → ∞, gives
the claimed result.

We remark that we were unable to find a “direct” proof of Lemma 2.8, that is, a proof
that does not use Lemma 2.7. The difficulty is that Reiher’s proof of Lemma 2.7 uses the
compactness of the unit ball in Rn, whereas the unit ball in L2(Ω) is not compact. There are
standard ways of overcoming such difficulties (e.g. working in the weak topology, where the unit
ball is compact by the Banach–Alaoglu theorem), but we were unable to make such techniques
work in this context. It would be interesting to find a direct proof of Lemma 2.8.

As mentioned before, Lemma 2.9 is a direct consequence of Lemma 2.8.

Proof of Lemma 2.9. It suffices to prove that for every bounded f : Ω → [0,∞), we have∫∫
Ω×Ω

f(x)W (x, y)f(y) dνw(x) dνw(y) ≥ p∥f∥21,νw .

By the definition of νw, the left-hand side equals∫∫
Ω×Ω

w(x)f(x)W (x, y)w(y)f(y) dµ(x) dµ(y),
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and the right-hand side equals p
(∫

Ωw(x)f(x) dµ(x)
)2

. However, if we define g = wf , then g is
a bounded function (as both f and w are bounded), so Lemma 2.8 implies that∫∫

Ω×Ω
w(x)f(x)W (x, y)w(y)f(y) dµ(x) dµ(y) =

∫∫
Ω×Ω

g(x)W (x, y)g(y) dµ(x) dµ(y)

≥ p∥g∥21,µ = p

(∫
Ω
g(x) dµ(x)

)2

= p

(∫
Ω
w(x)f(x) dµ(x)

)2

.

This is precisely the claimed inequality.

As a consequence of Lemma 2.9, we can prove Lemma 2.10.

Proof of Lemma 2.10. If ∥w∥1 = 0, the inequality holds trivially, so we may assume ∥w∥1 > 0.
Define w′(x) = w(x)/∥w∥1 and let ν denote the probability measure associated to w′. By
Lemma 2.9, W is p-locally dense with respect to ν. Since H is KNRS, we have∫

ΩV (H)

∏
uv∈E(H)

W (xu, xv)
∏

v∈V (H)

w(xv)
∏

v∈V (H)

dµ(xv) =

= ∥w∥v(H)
1

∫
ΩV (H)

∏
uv∈E(H)

W (xu, xv)
∏

v∈V (H)

dν(xv) ≥ ∥w∥v(H)
1 pe(H).

A.4 Kernels as linear and bilinear operators

In this section we prove the remaining lemmas from Section 2.3. We begin with Lemma 2.12.

Proof of Lemma 2.12. First suppose that λ < 0 for some eigenvalue λ of TW , and let f be the
corresponding eigenfunction with ∥f∥2 = 1. As stated above, f is bounded, and we have that
⟨f, TW f⟩ = λ∥f∥22 < 0, showing that W is not positive semidefinite.

Conversely, suppose that all eigenvalues of TW are non-negative, and fix a bounded function
f : Ω → R; note that this implies f ∈ L2. Since the eigenfunctions of TW form an orthonormal
basis of L2, we have that ⟨f, TW f⟩ =

∑∞
i=1 λi ⟨f, fi⟩2 ≥ 0, hence W is positive semidefinite.

Next, we prove Lemma 2.13.

Proof of Lemma 2.13. For any bounded non-negative function f , we have that∫∫
Ω×Ω

f(x)(W − p)(x, y)f(y) dx dy =

∫∫
Ω×Ω

f(x)W (x, y)f(y)− p∥f∥21,

since by Fubini’s theorem
∫∫

Ω×Ω f(x)f(y) dx dy = (
∫
Ω f(x) dx)2. But by Lemma 2.8, W is

p-locally dense if and only if
∫∫

Ω×Ω f(x)W (x, y)f(y) dx dy ≥ p∥f∥21 for all such functions, which
by the above is equivalent to the statement that W − p is copositive.

Finally, we prove Lemma 2.17. We remark that this result is fairly easy and well-known
in case the kernels W1,W2 are assumed to be continuous functions [0, 1]2 → [0, 1] (in this case
it follows from Mercer’s theorem, or from an appropriate infinitary analogue of the argument
that the Hadamard product of two matrices is a principal submatrix of their tensor product).
However, as we do not assume any continuity, the proof becomes somewhat lengthier.
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Proof of Lemma 2.17. We write the spectral decompositions of W1,W2 as

W1(x, y) ∼
∞∑
i=1

λifi(x)fi(y), W2(x, y) ∼
∞∑
j=1

µjgj(x)gj(y)

where ∼ denotes convergence in L2(Ω× Ω). In these spectral decompositions, we may assume
that λi, µj ̸= 0 for all i, j (by simply ommitting the terms corresponding to zero eigenvalues),
and hence we may assume that fi, gj are bounded for all i, j. Note that, by omitting the zero
eigenvalues, we may no longer assume that {fi} forms an orthonormal basis of L2(Ω) (as the
eigenfunctions corresponding to zero eigenvalues are not spanned), but luckily we will not need
them to form an orthonormal basis. Note that, by Lemma 2.12, we have that λi, µj > 0 for all
i, j.

Define W = W1 ⊙W2. For positive integers K,M , let

WK
1 (x, y) :=

K∑
i=1

λifi(x)fi(y) and WM
2 :=

M∑
j=1

µjgj(x)gj(y).

Let WKM := WK
1 ⊙WM

2 , and note that we may write

WKM (x, y) =
K∑
i=1

M∑
j=1

λiµjhij(x)hij(y),

where hij(x) := fi(x)gj(x) is a bounded measurable function Ω → R. In particular, this
decomposition shows that WKM is positive-semidefinite for all K,M , since for any bounded
a : Ω → R, we have∫∫

Ω×Ω
a(x)WKM (x, y)a(y) dx dy =

K∑
i=1

M∑
j=1

λiµj

∫∫
Ω×Ω

a(x)hij(x)a(y)hij(y) dx dy

=
K∑
i=1

M∑
j=1

λiµj

(∫
Ω
a(x)hij(x) dx

)2

≥ 0,

where the final inequality holds since every summand is non-negative. We also note here for
future reference that the L2-limit of positive semidefinite kernels is positive semidefinite. Indeed,
suppose that X1, X2, . . . , X are kernels with ∥X −Xk∥L2(Ω×Ω) → 0, and suppose that each Xk

is positive semidefinite. It is well-known (e.g. [33, Proposition 5.5(ii)]) that the L2 → L2

operator norm of TX is upper-bounded by ∥X∥L2(Ω×Ω). Applying this to X − Xk, as well as
Cauchy–Schwarz, implies that for any bounded a : Ω → R, we have

|⟨a, TXa⟩ − ⟨a, TXk
a⟩| = |⟨a, TX−Xk

a⟩| ≤ ∥a∥2∥TX−Xk
a∥2 ≤ ∥a∥22∥TX−Xk

∥L2→L2

≤ ∥a∥22∥X −Xk∥L2(Ω×Ω)
k→∞−→ 0.

In other words, ⟨a, TXk
a⟩ → ⟨a, TXa⟩ as k → ∞, implying that ⟨a, TXa⟩ ≥ 0, and hence that X

is positive semidefinite. This shows, as claimed, that the limit of positive semidefinite kernels
is positive semidefinite; we will shortly use this observation twice.

For a fixed K, we now claim that WKM → WK
1 ⊙W2 as M → ∞, where the convergence

is in L2(Ω× Ω). Indeed, we have that

∥WKM −WK
1 ⊙W2∥2 = ∥WK

1 (WM
2 −W2)∥2 ≤ ∥WK

1 ∥∞∥WM
2 −W2∥2.
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Since WK
1 is a finite sum of bounded functions, it is bounded, so ∥WK

1 ∥∞ is some finite number
depending only on K. However, as M → ∞, we have that ∥WM

2 −W2∥2 → 0, by the definition
of WM

2 . This shows that, for any fixed K, we have WKM → WK
1 ⊙ W2 in L2. In particular,

as we showed that each WKM is positive semidefinite, we conclude that WK
1 ⊙W2 is positive

semidefinite for all K.
We now argue in almost the same way that WK

1 ⊙W2 → W in L2; as above, this implies
that W is positive semidefinite, which is what we wanted to prove. So it remains to prove the
convergence, which holds since

∥WK
1 ⊙W2 −W∥2 = ∥W2(W

K
1 −W1)∥2 ≤ ∥W2∥∞∥WK

1 −W1∥2,

and we know that ∥W2∥∞ is finite as W2 is a kernel, and that WK
1 → W1 in L2 by the definition

of WK
1 .
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