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Suppose that a frog is standing on a lily pad, which is in the middle of a long line of
lily pads. a lily pads to her right is her house, which she is trying to get to; however, it’s
dark and she’s lost, so she decides to try to get home by randomly jumping left or right at
each step, where each direction of jump is equally likely. However, b steps to the left of her
initial position is a missing lily pad, so if she tries to jump to that space, she will fall into
the water. A natural question to ask is what is her probability of getting home safely.

In order to approach this problem, let’s reframe it completely. In this scenario, there is a
casino where the only game is the coin-flipping game: every turn you choose to play, a fair
coin is tossed, and if it comes up heads, you gain $1, whereas if it comes up tails, you lose
$1. Since this is a fair game, our intuition tells us that no strategy you pick can make it so
you win, on average, a positive amount of money; if such a strategy existed, real-life casinos
couldn’t operate, since everyone would come in every day and make a positive amount of
money, on average.

That said, let’s consider some strategies you could invoke. For instance, one strategy
might be to play for exactly one round, and for this strategy we can see directly that your
average payoff is $0. A more complex strategy is to keep playing until you’ve either gained
$a or lost $b. Let pW be the probability that, when you use this strategy, you end up winning
$a, and pL = 1− pW be the probability of losing $b. Again, our intuition tells us that your
average winnings should be $0, which is the same as saying that

0 = pW · a+ pL · (−b).

Plugging in pL = 1− pW gives

0 = pW · a+ (1− pW )(−b) = pW (a+ b)− b.

and rearranging gives us

pW =
b

a+ b
, pL =

a

a+ b
.

Now, how is this related to our poor lost frog? Well, we can think of each random choice she
makes as a fair coin toss, where she advances one lily pad to the right if it comes up heads, and
one to the left if not. In this case, her total winnings are exactly the same as the amount
she has progressed towards home, so in other words these two problems are completely
equivalent, and we find that her probability of getting home is exactly pW = b/(a+ b).

However, there’s something problematic about this argument, which is that we haven’t
proved our intuitive idea that no strategy can win a fair game. And this is a big problem:
the blurb for this class describes a different strategy for essentially the same fair game, where
the average amount won is positive! So in order to make the above computation rigorous
(along with many other related computations, for instance the average time it’ll take the
frog to either get home or fall in the water), we will develop the theory of martingales and
understand the conditions that make fair games actually unbeatable.
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1 Random Variables

Before we can define martingales, we first need to get comfortable with random variables
and their properties.

Definition 1.1. A random variable X is a variable which can take on one of several values,
each with some probability. We will sometimes denote the set of values that X can take by
X, which is just some non-empty subset of R. X is often called the state space of X.

As always, when dealing with random events, the probability that something happens is
a real number between 0 and 1, and if we add up the probabilities over all possible outcomes,
we need to get 1.

Example 1.2.

1. Suppose we roll a fair die, and let X be the outcome. Then X = {1, 2, 3, 4, 5, 6}, and

Pr(X = 1) = Pr(X = 2) = Pr(X = 3) = Pr(X = 4) = Pr(X = 5) = Pr(X = 6) =
1

6
.

2. Suppose we flip three fair coins, and let H be the number of heads that come up. Then
H = {0, 1, 2, 3}, and we can calculate the probability that H takes each of these values.
First, Pr(H = 0) is the probability that none of the coins come up heads, namely that
they all come up tails. Since there is a 1/2 chance of this happening for each coin, we
see that

Pr(H = 0) =

(
1

2

)3

=
1

8
.

Similarly, Pr(H = 3) = 1/8, since this is the probability that all three coins come up
heads. For Pr(H = 1), observe that we need one coin to come up heads and two to
come up tails; there are three choices for the heads coin, and once we’ve made that
choice, the probability of the configuration is again 1/8. In other words,

Pr(H = 1) =
3

8
.

We can use a similar argument to determine that Pr(H = 2) = 3/8 as well, though we
can also find this out by recalling that the sum of the probabilities must be 1, so

Pr(H = 2) = 1− Pr(H = 0)− Pr(H = 1)− Pr(H = 3) = 1− 1

8
− 3

8
− 1

8
=

3

8
.

3. Let X again be the outcome of a roll of a fair die. We define two new random variables:

Y =

{
1 if X is prime,

0 otherwise.
Z =

{
1 if X is even,

0 otherwise.
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Such random variables are often called indicator variables, since their value indicates
whether an event has taken place (their value is 1 if it has, 0 if it has not). Then we
have that Y = Z = {0, 1}, and we can calculate that

Pr(Y = 1) = Pr(X is prime) = Pr(X = 2) + Pr(X = 3) + Pr(X = 5) =
1

2
,

Pr(Z = 1) = Pr(X is even) = Pr(X = 2) + Pr(X = 4) + Pr(X = 6) =
1

2
.

This shows that both Y and Z behave like the number of heads when we toss a fair
coin, namely they both take the values 0 and 1, each with probability 1/2. In the
previous example, we implicitly used the idea that when we toss two fair coins, the
probability that they both come up heads is (1/2)2 = 1/4; however, this is no longer
the case for Y and Z:

Pr(Y = 1 and Z = 1) = Pr(X is prime and even) = Pr(X = 2) =
1

6
6= 1

4
.

1.1 Dependence, independence, and conditional probability

The phenomenon exhibited in the last example is dependence, which basically is just the
fact that different random variables can interact with one another. It is not sufficient to
just know the distribution of each random variable (i.e. which values it takes and with what
probabilities); we need to also know how these distributions can affect one another.

Definition 1.3. Two random variables Y and Z are called independent if, for all y ∈ Y and
z ∈ Z, we have

Pr(Y = y and Z = z) = Pr(Y = y) Pr(Z = z).

They are called dependent if they are not independent.

The way we understand dependence is with conditional probability, which measures the
probability that Y takes the value y, given that we know that some other variable Z takes
on the value z. To get an intuition for what this quantity should be, suppose we write
the following table: the rows are labeled by elements of Y, the columns are labeled by
elements of Z, and in the entry corresponding to yi ∈ Y, zj ∈ Z, we put the probability
Pr(Y = yi and Z = zj):

Z

z1 z2 · · · zm
y1 Pr(Y = y1, Z = z1) Pr(Y = y1, Z = z2) · · · Pr(Y = y1, Z = zm)

Y y2 Pr(Y = y2, Z = z1) Pr(Y = y2, Z = z2) · · · Pr(Y = y2, Z = zm)
...

...
...

. . .
...

yn Pr(Y = yn, Z = z1) Pr(Y = yn, Z = z2) · · · Pr(Y = yn, Z = zm)
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This table has some nice properties; for instance, the sum of the entries in the ith row is
exactly Pr(Y = yi), and the sum of the entries in the jth column is Pr(Z = zj). Indeed,
by summing across the row or column, we are taking into account all possible values of the
other variable, leaving us only the probability of one of the two variables.

Now, suppose we are told that Z = zj for some zj ∈ Z. This means that to calculate the
conditional probabilities of Y , we should restrict ourselves the column labeled by zj. Suppose
that in this column, one entry is twice as large as another; that means that conditioned on
Z = zj, we want the probability that Y takes the first value to be twice as large as Y
taking the second value. By this reasoning, we see that the conditional probability of Y = yi
conditioned on Z = zj should be proportional to Pr(Y = yi, Z = zj). And to figure out
what this proportion should be, recall that all our probabilities should add up to 1. In other
words, we want to divide by

∑n
i=1 Pr(Y = yi, Z = zj), which is just the sum of the numbers

in this column. But notice that if we add up all the numbers in this column, we are just
computing Pr(Z = zj), by the above observation. All this leads to the following definition:

Definition 1.4. For two random variables Y, Z and two values y ∈ Y, z ∈ Z, the conditional
probability of Y = y given Z = z is

Pr(Y = y | Z = z) =
Pr(Y = y and Z = z)

Pr(Z = z)
.

Example 1.5. As before, let X be the outcome of a fair die roll, and Y and Z be the
indicator variables for the events that X is prime and X is even, respectively. Let’s compute
Pr(Y = 1 | Z = 0). By the definition,

Pr(Y = 1 | Z = 0) =
Pr(Y = 1, Z = 0)

Pr(Z = 0)

=
Pr(X is prime and not even)

1/2

=
Pr(X = 3 or X = 5)

1/2

=
2/6

1/2
=

2

3
.

We should also check that this matches our intuition: conditioning on Z = 0 is the same as
conditioning on X being odd, which means that X ∈ {1, 3, 5}. Two of these three numbers
are prime, so we indeed expect the conditional probability of Y = 1 to be 2/3.

Observe that if Y and Z are two independent random variables, then we have that for
any y ∈ Y, z ∈ Z,

Pr(Y = y | Z = z) =
Pr(Y = y, Z = z)

Pr(Z = z)
=

Pr(Y = y) Pr(Z = z)

Pr(Z = z)
= Pr(Y = y).

This is the behavior we expect from independent random variables, for if Y is independent
of Z, then conditioning on the value of Z should not affect the value of Y .
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1.2 Operations on random variables

We can treat random variables like we do other variables: we can add them, multiply them,
and so on. To do any of these operations, just imagine that we use whatever randomness we
have to obtain a value for each of our random variables, and then we can apply the desired
operation to these values. Since the outcome depended on the outcome of the random choices
that were made, the outcome is a random variable.

Example 1.6. As above, let X be the outcome of a fair die roll, and let Y be the indicator
variable for the event that X is prime. Let’s compute X + Y and XY .

First, to compute X + Y , we can simply split into cases depending on what the outcome
of the die roll is. If the die comes up 1, then X = 1 and Y = 0, so X+Y = 1. If it comes up
2, then X = 2, Y = 1, so X + Y = 3. If it comes up 3, then X = 3, Y = 1, so X + Y = 4. If
it comes up 4, then X = 4, Y = 0, so X +Y = 4 again. If it comes up 5, then X = 5, Y = 1,
so X + Y = 6. Finally, if it comes up 6, then X = 6, Y = 0, so X + Y = 6 again. Putting
this all together, we see that

Pr(X + Y = m) =


1
6

for m = 1,
1
6

for m = 3,
1
3

for m = 4,
1
3

for m = 6.

For computing XY , let’s try a slightly different approach. Since X can take on any value in
{1, . . . , 6}, and since Y can take on the values 0 or 1, we see that XY could in principle take
on any value between 0 and 6. For each such value, we’ll think of all the ways this value can
arise as an outcome of XY , and use this to compute its probability. First, for the outcome
0, this will only arise if Y = 0 (since X is always positive, and the only way to multiply
a positive number by something and get 0 is if the second thing is 0). As we saw above,
Pr(Y = 0) = 1

2
, so Pr(XY = 0) = 1

2
as well. By similar reasoning, we see that each of the

potential outcomes 1, 4, 6 actually have probability 0: these can never arise as an outcome
of XY , since Y must be 0 if X takes on a value in {1, 4, 6}. On the other hand, each of
the outcomes 2, 3, 5 arises with probability 1/6, since that is the probability that X takes on
such a value, in which case Y = 1. In all,

Pr(XY = m) =


1
2

for m = 0,
1
6

for m = 2,
1
6

for m = 3,
1
6

for m = 5.
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2 Expectation

Definition 2.1. The expectation (also called mean, expected value, or average) of a random
variable X is

E[X] =
∑
x∈X

xPr(X = x).

This is a weighted average of the elements of X, where the weights are given by the distri-
bution of X.

Example 2.2. For X the outcome of a fair die roll, we have that

E[X] =
1

6
· 1 +

1

6
· 2 +

1

6
· 3 +

1

6
· 4 +

1

6
· 5 +

1

6
· 6 =

7

2
= 3.5.

This suggests that the name “expected value” is somewhat misleading, since when we roll a
fair die, we never expect to see the outcome 3.5. However, a deep and important theorem
(the so-called law of large numbers) says that if we roll a fair die many times and take the
average of the outcomes, it will be close to the expectation.

One of the most important properties of the expectation is its linearity.

Proposition 2.3. For any two random variables X, Y , and for any number α ∈ R, we have

E[αX] = αE[X] and E[X + Y ] = E[X] + E[Y ].

Proof. For the first equation, we have

E[αX] =
∑
x∈X

(αx) Pr(X = x) = α
∑
x∈X

Pr(X = x) = αE[X].

For the second, we have

E[X + Y ] =
∑
x∈X

∑
y∈Y

(x+ y) Pr(X = x, Y = y)

=
∑
x∈X

∑
y∈Y

xPr(X = x, Y = y) + y Pr(X = x, Y = y)

=
∑
x∈X

x
∑
y∈Y

Pr(X = x, Y = y) +
∑
y∈Y

y
∑
x∈X

Pr(X = x, Y = y)

=
∑
x∈X

xPr(X = x) +
∑
y∈Y

y Pr(Y = y)

= E[X] + E[Y ].

In the penultimate equality, we used the property of the table we discussed above: when we
add up Pr(X = x, Y = y) over all possible values of y, we simply recover Pr(X = x), and
similarly the sum of Pr(X = x, Y = y) over all possible values of x is simply Pr(Y = y).
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One very important thing to note about this proof is that we did not assume that X and
Y were independent, and indeed, the proof works regardless of the dependency between X
and Y . I find this pretty counter-intuitive; for instance, suppose X represents the amount of
rain on Sunday, and Y represents the amount of rain on Monday. Then these two random
variables are dependent (e.g. if a storm is approaching, then we expect them both to be
large), but nevertheless the expected total amount of rain over the weekend is just the sum
of the expected amount on Sunday and on Monday.

Example 2.4. As above, let X be the outcome of a fair die roll and Y be the indicator
variable that X is prime. We computed above that E[X] = 3.5, and we can see that

E[Y ] = 0 · Pr(Y = 0) + 1 · Pr(Y = 1) = 0 · 1

2
+ 1 · 1

2
=

1

2
.

Therefore, E[X + Y ] = E[X] + E[Y ] = 4. We can also compute E[X + Y ] directly from the
definition, using our computations in Example 1.6. Namely,

E[X + Y ] = 1 · 1

6
+ 3 · 1

6
+ 4 · 1

3
+ 6 · 1

3
= 4.

We can also compute E[XY ] from the definition and Example 1.6, as

E[XY ] = 0 · 1

2
+ 2 · 1

6
+ 3 · 1

6
+ 5 · 1

6
=

5

3
.

Note that E[X]E[Y ] = 7
2
· 1
2

= 7
4
6= 5

3
, so we conclude that in general, the expectation of a

product is not the product of the expectations. However, the following result shows that for
independent random variables, this is true.

Proposition 2.5. If X and Y are independent random variables, then E[XY ] = E[X]E[Y ].

Proof. We can compute directly from the definition that

E[XY ] =
∑
x∈X

∑
y∈Y

(xy) Pr(X = x and Y = y)

=
∑
x∈X

∑
y∈Y

xy Pr(X = x) Pr(Y = y)

=
∑
x∈X

xPr(X = x)
∑
y∈Y

y Pr(Y = y)

=
∑
x∈X

xPr(X = x)E[Y ]

= E[Y ]
∑
x∈X

xPr(X = x)

= E[Y ]E[X].
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Another important notion for us will be that of conditional expectation. We need to
define it in two stages. First, we define E[X | Y = y]:

Definition 2.6. For two random variables X, Y , and some value y ∈ Y, we define

E[X | Y = y] =
∑
x∈X

xPr(X = x | Y = y)

Equivalently, observe that we can think of (X | Y = y) as a random variable: it takes on
the value x ∈ X with probability Pr(X = x | Y = y). In this case, E[X | Y = y] is just the
ordinary expectation of this random variable.

Definition 2.7. For two random variables X, Y , their conditional expectation E[X | Y ]
is defined as the random variable that takes on the value E[X | Y = y] with probability
Pr(Y = y), for all y ∈ Y.

Note that up to now, all our expectations have been real numbers, whereas this new
quantity E[X | Y ] is itself another random variable. One way to think about it is to imagine
randomly determining a value y for Y , and then having the new random variable take the
value E[X | Y = y].

How should we think about this random variable? One way is as follows. Note that
E[X | Y = y] means something fairly intuitive: it is the average we expect for X, given that
we know that Y took on the value y. We can think of this as our “best guess” for X, once
we know the information Y = y. Now, E[X | Y ] is a random variable that records what our
best guess for X would be, if someone told us the value of Y . But of course, no one has told
us the value of Y , so this is a random quantity: there is some probability that Y takes on
the value y, and in this case our best guess would be E[X | Y = y].

Example 2.8. As before, let X be the outcome of a fair die roll, let Y be the indicator
random variable that X is prime, and let Z be the indicator random variable that X is
even. For x ∈ {1, . . . , 6}, note that Pr(X = x | Y = 0) is equal to 0 if x is prime, and 1/3
otherwise. Therefore,

E[X | Y = 0] =
∑
x∈X

xPr(X = x | Y = 0) = 1 · 1

3
+ 4 · 1

3
+ 6 · 1

3
=

11

3
.

Similarly, we can compute that E[X | Y = 1] = 2 · 1
3

+ 3 · 1
3

+ 5 · 1
3

= 10
3

. Therefore, E[X | Y ]
is a random variable that takes on the value 11/3 with probability 1

2
, and the value 10/3

with probability 1
2
.

With a similar computation, we can see that E[X | Z] takes on the value 3 with proba-
bility 1

2
and the value 4 with probability 1

2
. Additionally, E[Y | Z] takes on the values 1/3

and 2/3, each with probability 1
2
.

Finally, we can calculate that E[Y | X] takes on the values 0 and 1, each with probability
1
2
. Indeed, the reason for this is that if we condition on the event that X = x, then the value

of Y is completely determined—it’s 1 if x is prime, and 0 if not. So conditioning on X does
nothing, and we have that E[Y | X] = Y . For the same reason, E[Z | X] = Z.
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The last example shows that if some random variable Y is determined by a random
variable X (i.e. if knowing the value of X completely eliminates any randomness from the
value of Y ), then E[Y | X] = Y . In the opposite extreme, if X and Y are independent, then
E[Y | X] = E[Y ]. Note that while E[Y | X] is in general a random variable, in this case, it is
simply a (non-random) number, namely the number E[Y ]. The following theorem includes
these two facts, as well as a few other important properties we will need of conditional
expectation.

Theorem 2.9. Let X, Y, Z be random variables.

(i) Conditional expectation is linear: E[X + Y | Z] = E[X | Z] + E[Y | Z] and E[αX |
Z] = αE[X | Z] for any real number α.

(ii) If X is determined by Z, then E[X | Z] = X.

(iii) If X and Z are independent, then E[X | Z] = E[X].

(iv) Tower property: E[X] = E[E[X | Z]].

(v) Taking out what is known: if Y is determined by Z, then E[XY | Z] = Y E[X | Z].

Note that Theorem 2.9(ii) is a special case of Theorem 2.9(v). Perhaps the trickiest
property to internally absorb is the tower property. Recall that E[X | Z] is a random
variable; then Theorem 2.9(iv) says that X and E[X | Z] are both random variables with
the same expected value.

Proof. Parts (i)–(iii) are left as exercises, and we only prove the final two parts.

(iv) Recall that E[X | Z] takes on the value E[X | Z = z] with probability Pr(Z = z), for
all z ∈ Z. Therefore,

E[E[X | Z]] =
∑
z∈Z

E[X | Z = z] Pr(Z = z)

=
∑
z∈Z

(∑
x∈X

xPr(X = x | Z = z)

)
Pr(Z = z)

=
∑
x∈X

x
∑
z∈Z

Pr(Z = z) Pr(X = x | Z = z)

=
∑
x∈X

x
∑
z∈Z

Pr(X = x and Z = z)

=
∑
x∈X

xPr(X = x)

= E[X],

where we use the definition of conditional probability in the fourth line, and the column-
sum property we observed earlier in the fifth line.
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(v) By definition, the random variable E[XY | Z] takes on the value E[XY | Z = z] with
probability Pr(Z = z), for all z ∈ Z. Fix some z ∈ Z. Then by definition,

E[XY | Z = z] =
∑
x∈X

∑
y∈Y

xy Pr(X = x and Y = y | Z = z).

Since Y is determined by Z, if we know that Z = z, then there is no randomness left
in deciding whether Y = y or Y 6= y. In other words, Pr(Y = y | Z = z) equals either
zero or one. As such, we observe that

Pr(X = x and Y = y | Z = z) = Pr(X = x | Z = z) Pr(Y = y | Z = z). (∗)

Indeed, if Pr(Y = y | Z = z) = 0 (i.e. if Y = y definitely does not happen given
Z = z), then both sides of (∗) are 0, so this is certainly true. On the other hand, if
Pr(Y = y | Z = z) = 1 (i.e. if Y = y definitely does happen given Z = z), then both
sides of (∗) equal Pr(X = x | Z = z), so it’s again true.

Plugging in (∗) into the definition of E[XY | Z = z], we find that

E[XY | Z = z] =
∑
x∈X

∑
y∈Y

xy Pr(X = x | Z = z) Pr(Y = y | Z = z)

=

(∑
y∈Y

y Pr(Y = y | Z = z)

)(∑
x∈X

xPr(X = x | Z = z)

)
= E[Y | Z = z]E[X | Z = z].

So in other words, the random variable E[XY | Z] takes on the value E[Y | Z = z]E[X |
Z = z] with probability Pr(Z = z). The final observation is that by Theorem 2.9(ii),
the random variable which equals E[Y | Z = z] with probability Pr(Z = z) is simply
Y , so we can conclude that E[XY | Z] = Y E[X | Z].

3 Martingales

With all this setup, we are finally ready to define and study martingales.

Definition 3.1. Let X0, X1, X2, . . . and Y0, Y1, Y2, . . . be two (finite or infinite) sequences
of random variables. We say that X0, X1, . . . is a martingale with respect to Y0, Y1, . . . if the
following two properties hold. First, for all i ≥ 0, the random variable Xi is determined by
Y0, . . . , Yi, and second, for all i ≥ 1,

E[Xi | Y0, Y1, . . . , Yi−1] = Xi−1.

How should we think about a martingale? Intuitively, it is supposed to model a fair
game. In this model, the random variables Y0, Y1, . . . are the outcomes of the randomness in
the game (e.g. the spins of a roulette wheel, or the outcomes of coin flips, or the draws from
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a shuffled deck of cards). Additionally, Xi represents your total earnings (or losses) after the
ith round of the game. Then the martingale condition says that the ith round is fair: on
average, you will neither make nor lose money in the ith round, so that your average total
winnings after the ith round, conditioned on everything that happened before, equal your
current total winnings.

Example 3.2. Let (Yi)i≥0 be a sequence of independent random variables, with

Pr(Yi = 1) = Pr(Yi = −1) =
1

2
.

Then Yi models the game in which at every turn we flip a fair coin, and you win $1 if it comes
up heads and lose $1 if it comes up tails. Let Xi = Y0 + Y1 + · · · + Yi, which denotes your
total winnings after the ith round of the game. Then we claim that (Xi)i≥0 is a martingale
with respect to (Yi)i≥0. The first condition is immediate, since Xi is defined in terms of
Y0, . . . , Yi, so it is certainly determined by them. Additionally, by Theorems 2.9(i), 2.9(iii)
and 2.9(v), we have that

E[Xi | Y0, . . . , Yi−1] = E[Y0 + · · ·+ Yi | Y0, . . . , Yi−1]
= E[Y0 | Y0, . . . , Yi−1] + E[Y1 | Y0, . . . , Yi−1] + · · ·+ E[Yi | Y0, . . . , Yi−1]
= Y0 + Y1 + · · ·+ Yi−1 + E[Yi]

= Y0 + Y1 + · · ·+ Yi−1

= Xi−1,

using the fact that Y0, . . . , Yi−1 are determined by themselves, that Yi is independent of
Y0, . . . , Yi−1, and that E[Yi] = 0.

Note that in this example, we never actually used that each Yi takes on the values ±1 with
probability 1/2: the only properties we used were independence and the fact that E[Yi] = 0.
So the same thing works in general: if Y0, Y1, . . . are independent random variables each
of which has expectation zero, then their partial sums form a martingale. This should be
thought of as modeling any fair game.

11
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Example 3.3. Let (Yi)i≥0 be independent random variables, with E[Yi] = 1 for all i. Let
Xi = Y0Y1 · · ·Yi. Then we claim that (Xi)i≥0 is a martingale with respect to (Yi)i≥0. The
determinedness condition is again immediate. To check the martingale condition, we note
that

E[Xi | Y0, . . . , Yi−1] = E[Y0Y1 · · ·Yi−1Yi | Y0, . . . , Yi−1]
= Y0Y1 · · ·Yi−1E[Yi | Y0, . . . , Yi−1]
= Y0Y1 · · ·Yi−1E[Yi]

= Y0Y1 · · ·Yi−1
= Xi−1,

where the second line uses Theorem 2.9(v), the third uses the independence of Yi from
Y0, . . . , Yi−1, and the fourth uses our assumption that E[Yi] = 1.

This example can be thought of as a “multiplicative” version of the previous fair game ex-
ample. In this case, your total earnings get multiplied by some random quantity at every step
(e.g. the stock market might go up or down by some percentage, and thus your investments
get multiplied by some factor), and our assumption is that these steps are independent, and
that the average multiplier is 1. Then we again have the martingale condition.

Most of the results we will prove about martingales concern our intuition that “you can’t
beat the system”. If you are playing a fair game, then there is no strategy that gets you net
winnings on average. We will prove increasingly robust versions of this idea, culminating
in Doob’s optional stopping theorem. But we begin with the following simple observation,
which says that your average worth after n steps of a fair game is equal to your worth when
you started.

Theorem 3.4. Let X0, X1, . . . be a martingale with respect to some sequence Y0, Y1, . . . .
Then for any n,

E[Xn] = E[X0].

Proof. We prove this by induction on n, with the base case n = 0 being immediate since
it just says E[X0] = E[X0]. Now suppose we have proved that E[Xn−1] = E[X0], and we
wish to prove the same for E[Xn]. Using the tower property of conditional expectation
(Theorem 2.9(iv)), we have that

E[Xn] = E[E[Xn | Y0, . . . , Yn−1]] = E[Xn−1] = E[X0],

where the second equality is the martingale condition, and the third is our inductive hypoth-
esis.

4 The martingale transform

In this section, we discuss one of the most important operations one can do on martingales,
called the martingale transform. For intuition, recall the basic coin-flipping game we started
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with: at every step, we flip a fair coin, and we gain $1 if it comes up heads and lose $1 if it
comes up tails. In a real casino, we’d have the option to choose how much we wager: maybe
we want to bet $1000 on a certain coin toss, but we want to sit the next one out (and thus
wager $0 on it).

Suppose that Y0, Y1, . . . are the outcomes of the independent coin tosses, i.e.

Pr(Yi = 1) = Pr(Yi = −1) =
1

2
.

If we wager wi dollars on the ith coin toss, then our winnings after the nth step are w0Y0 +
w1Y1 + · · ·+wnYn. It is not hard to check that the sequence of random variables defined by
Xn = w0Y0 + · · ·+ wnYn forms a martingale, for any real numbers w0, w1, . . . .

However, in real life, we don’t actually commit to the wagers before the game starts.
Instead, we probably want to choose our bets based on what’s already happened in the
game. For example, many people who bet on roulette watch to see a long streak of red
outcomes (for example), and then bet on black, using the assumption that “black is due for
a win”. So we should allow the wagers themselves to be random variables, which are allowed
to depend on the randomness in the sequence Y0, Y1, . . . .

However, we don’t want to allow the wagers to depend arbitrarily on the sequence of
outcomes. For example, it’d be great to have a betting strategy of the form “bet $1000 on
a flip if it’ll come up heads, and otherwise bet $0 on it”. This betting strategy does depend
on the outcomes of the coin flips, but it requires looking into the future! So the wager at
the nth step should only be allowed to depend on the past, i.e. on the outcomes of the coin
tosses that happened before time n. This motivates the following definition.

Definition 4.1. A sequence W1,W2, . . . is called prophecy-free with respect to another
sequence Y0, Y1, . . . if for all n ≥ 1, the random variable Wn is determined by the random
variables Y0, . . . , Yn−1.

We call these sequences prophecy-free because they don’t require looking into the future.

Definition 4.2. Let (Yi)i≥0 be a sequence of random variables. Let (Xi)i≥0 be a martingale
with respect to (Yi)i≥0, and let (Wi)i≥1 be a prophecy-free with respect to (Yi)i≥0. Then the
martingale transform of X by W is the sequence ((W •X)i)i≥0 = (W •X)0, (W •X)1, . . .
defined inductively by

(W •X)0 = X0; (W •X)i = (W •X)i−1 +Wi(Xi −Xi−1).

Unwrapping this definition, it says that for i ≥ 1,

(W •X)i = X0 +
i∑

k=1

Wk(Xk −Xk−1).

The definition of the martingale transform can be a bit overwhelming at first, but it really
is the same definition we had above. On the ith round of a game, your total money changes

13
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by Xi − Xi−1. If you had wagered Wi dollars on the ith round, then your winnings would
instead change by Wi(Xi −Xi−1). Adding this up over all rounds, we see that (W •X)i is
exactly your total money after the ith round of the game, where your wagering is given by
the sequence W1,W2, . . . .

Our main theorem in this section is that as long as your wagering sequence is prophecy-
free, you still can’t beat the system: no matter how you wager (without cheating by looking
into the future) your average net winnings will still be zero.

Theorem 4.3. Let (Xi)i≥0 be a martingale and (Wi)i≥1 be a prophecy-free sequence, both
respect to (Yi)i≥0. Then the transformed sequence ((W •X)i)i≥0 also a martingale with respect
to (Yi)i≥0.

Proof. We begin by checking that (W •X)i is determined by Y0, . . . , Yi, for all i ≥ 0. Indeed,
this is clear for i = 0, since (W •X)0 = X0 and X0 is determined by Y0 from our assumption
that (Xi)i≥0 is a martingale. For i ≥ 1, we have that

(W •X)i = X0 +
i∑

k=1

Wk(Xk −Xk−1).

Every variable appearing in this expression is either of the form Wk for k ≤ i or Xk for k ≤ i.
By assumption, each of these is determined by Y0, . . . , Yi, which proves the first condition.

For the martingale condition, we can compute that for i ≥ 1,

E[(W •X)i | Y0, . . . , Yi−1] = E[(W •X)i−1 +Wi(Xi −Xi−1) | Y0, . . . , Yi−1]
= E[(W •X)i−1 | Y0, . . . , Yi−1] + E[Wi(Xi −Xi−1) | Y0, . . . , Yi−1].

By our argument above, we know that (W • X)i−1 is determined by Y0, . . . , Yi−1. So by
Theorem 2.9(ii), we have that the first term in the sum above is simply (W •X)i−1. For the
second term, we recall that Wi is determined by Y0, . . . , Yi−1, by the definition of prophecy-
free. So by Theorem 2.9(v),

E[Wi(Xi −Xi−1) | Y0, . . . , Yi−1] = WiE[(Xi −Xi−1) | Y0, . . . , Yi−1].

Additionally, we see that

E[(Xi−Xi−1) | Y0, . . . , Yi−1] = E[Xi | Y0, . . . , Yi−1]−E[Xi−1 | Y0, . . . , Yi−1] = Xi−1−Xi−1 = 0.

Putting this all together, we find that

E[(W •X)i | Y0, . . . , Yi−1] = (W •X)i−1,

proving the martingale property.

As a simple corollary, we can see that no prophecy-free betting system can win you money
on average.
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Corollary 4.4 (No prophet, no profit). Let (Xi)i≥0 be a martingale and (Wi)i≥1 be a
prophecy-free sequence, both respect to (Yi)i≥0. Then for any n ≥ 0,

E[(W •X)n] = E[X0].

Proof. We know that ((W •X)i)i≥0 is a martingale, and that (W •X)0 = X0 by definition.
So by Theorem 3.4,

E[(W •X)n] = E[(W •X)0] = E[X0].

5 Stopping times

We saw in the last section that using a betting strategy that varies your wagers can never
let you beat the system in a fair game. However, there is another type of strategy you
can use, which is to simply leave the game at a good time, in the hopes that we pick this
time appropriately in order to maximize our earnings. Stopping strategies we might use
include “the first time we have $100” or “after winning 5 rounds in a row” or “after the
third loss”. However, just as before, we shouldn’t be allowed to predict the future, so we
can’t use stopping rules like “when our winnings are as large as they will ever be” or “the
last time we have at least $1000”—such stopping rules require knowing the outcomes of
future rounds, and of course we can’t use that in deciding when to quit. This motivates the
following definition, similarly to our earlier definition of prophecy-free sequences.

Definition 5.1. Let (Yi)i≥0 be a sequence of random variables. A stopping time with respect
to (Yi)i≥0 is a random variable T taking values in {0, 1, 2, . . . } ∪ {∞}, with the following
property. For every n ≥ 0, the variables Y0, . . . , Yn determine whether T ≤ n or T > n.

In other words, the decision of whether we leave the casino before round n+ 1—namely
the event that T ≤ n—depends only on the outcomes of the first n rounds, and not on the
future. Note that we allow T to take on the value ∞, which simply corresponds to never
leaving the casino.

Definition 5.2. Let (Xi)i≥0 be a martingale and let T be a stopping time, both with respect
to some sequence (Yi)i≥0. The stopped process (XT

i )i≥0 is defined by

XT
i = Xmin(i,T ) =

{
Xi if i ≤ T,

XT if i > T.

In other words, the stopped process follows the original process until the stopping time
happens. At that point, we leave the casino, and the value of our sequence no longer changes.
As a simple example, suppose that T is the constant random variable which always takes on
the value 4; in other words, we play through the fourth round of the game, and then leave
the casino. Then the stopped process is simply X0, X1, X2, X3, X4, X4, X4, . . . : our winnings
after the fourth round remain our winnings forever.
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The next result says that the stopped process is another martingale. It almost says that
a stopping strategy can’t let you beat a fair game, but not quite; we’ll soon see what this
“almost” entails.

Theorem 5.3. Let (Xi)i≥0 be a martingale and let T be a stopping time, both with respect
to some sequence (Yi)i≥0. The stopped process (XT

i )i≥0 is also a martingale with respect to
(Yi)i≥0.

Proof. For i ≥ 1, let’s define Wi to be the indicator random variable of whether T ≥ i: if
T ≥ i then Wi = 1, and otherwise Wi = 0. The value of Wi is determined by whether
T ≥ i, or equivalently it’s determined by whether T ≤ i − 1. This is in turn determined
by Y0, . . . , Yi−1, by the definition of a stopping time. This shows that Wi is determined
by Y0, . . . , Yi−1, so (Wi)i≥1 is a prophecy-free sequence. Therefore, by Theorem 4.3, the
sequence ((W •X)i)i≥0 is a martingale. By definition of the martingale transform, we have
that (W •X)0 = X0 = XT

0 , and that for i ≥ 1,

(W •X)i = X0+
i∑

k=1

Wk(Xk−Xk−1) = X0+W1(X1−X0)+W2(X2−X1)+· · ·+Wi(Xi−Xi−1).

Wk equals 1 as long as k ≤ T , and afterwards Wk = 0. If i ≤ T , then all the Wk above equal
1, so the right-hand side simplifies to

X0 + (X1 −X0) + (X2 −X1) + · · ·+ (Xi −Xi−1) = Xi.

On the other hand, if i > T , then the right-hand side simplifies to

X0 + (X1 −X0) + (X2 −X1) + · · ·+ (XT −XT−1) = XT .

In either case, we see that (W • X)i = XT
i , i.e. the stopped process simply equals the

martingale transform by the prophecy-free sequence (Wi)i≥1. By Theorem 4.3, we conclude
that the stopped process (XT

i )i≥0 is a martingale.

Corollary 5.4. Let (Xi)i≥0 be a martingale and let T be a stopping time, both with respect
to some sequence (Yi)i≥0. For any n ≥ 0, we have that

E[XT
n ] = E[Xmin(n,T )] = E[X0].

Proof. The first equality is simply the definition of XT
n . For the second, we have that (XT

i )i≥0
is a martingale, and that XT

0 = X0. So we get the second equality by Theorem 3.4.

This seems to say that you can’t win, on average, by stopping your play at some point.
And indeed it does roughly say that: the value XT

n represents your winnings at time n,
assuming you leave the casino whenever the stopping rule T takes effect. However, this isn’t
the actual quantity we care about. What we care about is the random variable XT : this
represents your winnings when you leave the casino. The following three examples show that
this subtle distinction is actually very important.
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Example 5.5. Let Y0 = 0, and let (Yi)i≥1 be a sequence of independent random variables,
each taking the value ±1 with probability 1/2. Note that we artifically make Y0 = 0, so that
Yi represents the ith round of the game.

1. Let Xi = Y0 + · · · + Yi be our winnings if we play the usual game, either winning or
losing $1 at every round. Let T be the first time i for which |Xi| = 2. In other words,
T is the first time where our net earnings or losses are $2. It is easy to see that T is
a stopping time, so the stopped process (XT

i )i≥1 is a martingale. Then Corollary 5.4
shows that E[XT

n ] = E[X0] = 0, meaning that after the ith round, our average winnings
are zero, regardless of whether or not we left the casino by that point.

Additionally, by symmetry, it is certainly believable that when we leave the casino, we
are equally likely to have gained $2 as to have lost $2. This means that XT takes on
the values ±2 with equal probability, implying that E[XT ] = 0. Thus, in this case, we
really haven’t beat the system: on average we win nothing when we leave the casino.

2. Let (Xi)i≥0 be as in the last example, but in this case let S be the first time i that
Xi = 2. In other words, S represents the stopping strategy where we keep betting
until our total earnings equal $2, and then we leave. This is again a stopping time, so
we have that E[XS

n ] = E[X0] = 0 by Corollary 5.4. However, it is also clear that XS

equals 2 with probability 1: under this stopping rule, when we leave the casino, we
definitely do so with $2 in hand (of course, it’s possible that we never leave). So in
this case, E[XS] = 2, and thus we have made money!

3. Finally, let
Zi = 2Y1 + 4Y2 + · · ·+ 2iYi.

In other words, this represents our winnings in the doubling game, where at every step
we bet twice as much money. Let R denote the first time i for which Yi = 1, i.e. the
first time that a heads comes up. R is again a stopping time, and this time there are
no weird shenanigans where R might never happen: it is intuitively clear (and not too
hard to rigorously prove) that the probability of flipping infinitely many tails in a row
is zero. However, we claim that ZR is again the constant 2. Indeed, if i is the first time
that a heads comes up (i.e. if R = i), then

ZR = Zi = 2(−1) + 4(−1) + · · ·+ 2i−1(−1) + 2i(1) = −(2i − 2) + 2i = 2.

So we again have that E[ZR] = 2, i.e. that we make money in expectation when we
leave the casino, despite Corollary 5.4.

What’s going on in these examples? Well, one can prove that in all three cases, the
stopping condition will eventually happen with probability 1 (this is very believable for every
example but the second, and you’ll rigorously prove it for the second on the homework).
Therefore, as i tends to infinity, the random variable XT

i converges to XT . Indeed, the
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sequence (XT
i )i≥0 looks like X0, X1, X2, . . . , Xk−1, Xk, Xk, Xk, . . . for some k depending on

the random outcomes, and T = k given these random outcomes. So we have that

lim
i→∞

XT
i = XT .

It would be great if we could apply expectations to both sides and conclude that

lim
i→∞

E[XT
i ] = E[XT ].

Unfortunately, this is simply not true in general! Instead, actually applying expectations to
both sides above gives

E
[

lim
i→∞

XT
i

]
= E[XT ],

and in general, one can’t interchange a limit with an expectation. This is an extremely
annoying issue, and while it might sound like a stupid technicality, it’s actually crucial:
Examples 5.5(2) and 5.5(3) above show that such an interchange is simply false in general.

There are several deep and important theorems that give useful conditions for when one
can perform such an interchange, the most important of which are called the Monotone
convergence theorem and the Dominated convergence theorem. We won’t state or prove
them in this class—doing so requires developing a lot more theory. However, we will state
Doob’s optional stopping theorem, which is a direct corollary of these. It gives simple,
easy-to-check conditions which imply that such an interchange is allowed, and thus that the
random variable XT has the same expectation as X0.

6 Doob’s optional stopping theorem, and applications

Theorem 6.1 (Optional stopping theorem). Let (Xi)i≥0 be a martingale and let T be a
stopping time, both with respect to some sequence (Yi)i≥0. Suppose that (at least) one of the
following three conditions holds.

(a) (T is bounded.) There exists some integer N so that Pr(T < N) = 1.

(b) (T is finite and X is bounded.) There exists some integer K so that |Xi| ≤ K for all
i, and Pr(T =∞) = 0.

(c) (T has finite expectation and X has bounded differences.) There exists some integer K
so that |Xi −Xi−1| ≤ K for all i, and E[T ] <∞.

Then E[XT ] = E[X0].

Not really proof. In all three cases, we must have that Pr(T = ∞) = 0, so as discussed
above, we know that limi→∞X

T
i = XT , and thus that E[XT ] = E[limi→∞X

T
i ]. We would

like to interchange the limit and the expectation, but in general we cannot. In the first case,
if T is bounded by some integer N , then we actually already know that XT

N = XT , so we
automatically get that E[XT ] = E[XT

N ] = E[X0] by Corollary 5.4.
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In each of the remaining two cases, the Dominated convergence theorem guarantees that

E
[

lim
i→∞

XT
i

]
= lim

i→∞
E[XT

i ]

(i.e. that interchanging the limit and the expectation is OK), which yields the desired result
since limi→∞X

T
i = XT .

We will now see a number of examples of the optional stopping theorem in action. It is
a remarkable result: in a lot of examples, it turns what looks like a hopelessly complicated
problem into a two-line computation. Additionally, it is even informative when it doesn’t
hold; we will see some cases where E[XT ] 6= E[X0], from which we can conclude that the none
of the assumptions of the optional stopping theorem hold, which in turn tells us something
about the process in question.

Example 6.2.

0. Revisiting Example 5.5 In Example 5.5, we had two examples where the value when
we leave the casino does not have expectation equal to E[X0], so those two examples had
better not satisfy the assumptions of the optional stopping theorem. We’ll return to
example 2 shortly, but let’s quickly dispense with example 3, where we keep doubling
our wagers until we get a heads. The stopping time is certainly not bounded, so
condition (a) doesn’t hold. The stopping time is finite with probability 1, but it’s
certainly not the case that the process is bounded—we might have to go into a great
deal of debt before we get heads, so condition (b) also doesn’t hold. Finally, while the
stopping time has finite expectation (you should check this yourself!), it’s also not the
case that the differences are bounded: we keep doubling our wager every time, so the
differences grow to infinity, and thus condition (c) also fails to hold.

In a certain sense, this explains what goes wrong with with the “always double” betting
strategy. Because the optional stopping theorem fails to hold, it must really be the
case that the failure modes will come into play. In this case, you’d need to violate
either condition (b) or (c). All casinos have a cap on how much you can bet on any
game, and thus they enforce the bounded differences condition in (c): you can’t make
arbitrarily large wagers. Additionally, there is only finitely much money in the world
(and you have an even smaller finite amount), so you can’t go into arbitrarily much
debt, which enforces the boundedness of X in condition (b).
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1. The lost frog As in Example 5.5, let Y0 = 0 and Yi be independent random variables
taking on the values ±1 with probability 1/2 for all i ≥ 1, and let Xi = Y0 + · · ·+ Yi.
Given two positive integers a, b, let T denote the first time that Xi ∈ {a,−b}. This
represents the first time where you’ve either won $a in total, or lost $b in total. It is
perhaps not too surprising, and you’ll prove it on the homework, that E[T ] <∞. This
implies that E[XT ] = 0. But XT takes on either the value a or the value −b, with some
probabilities pW and pL, respectively. So we have that

0 = E[XT ] = pW · a+ pL · (−b).

Plugging in pL = 1− pW and solving as we did at the very beginning of the class, we
find what we already found there: the probability of winning $a before you lose $b is
exactly b/(a+ b).

2. Recurrence Let (Yi)i≥0, (Xi)i≥0 be as in the last example. Note that for any positive
integers a, b,

Pr((Xi)i≥0 eventually reaches a) ≥ Pr((Xi)i≥0 reaches a before reaching −b) =
b

a+ b
.

But this holds for any b. Letting b tend to infinity, we conclude that

Pr((Xi)i≥0 eventually reaches a) ≥ lim
b→∞

b

a+ b
= 1.

In other words, with probability 1, every integer is eventually hit by the sequence (Xi).
In particular, if we let T be the first time that we reach $2 (as in Example 5.5(2)),
then we see that Pr(T = ∞) = 0. However, we cannot apply condition (b), because
the sequence (Xi) is unbounded; we might have to go into a lot of debt before we ever
gain $2.

On the other hand, the sequence (Xi) does have bounded differences, so it seems like
we might be able to apply condition (c), which would be a contradiction to the fact that
E[XT ] = 2. Thus, we can’t apply it, and we conclude that we must have E[T ] = ∞.
In other words, we have the following very weird situation: we will definitely reach $2
at some point, but on average, we have to wait infinitely long for this to happen!

Note that we can actually iterate the above argument. With probability 1, we get to
any fixed value a at some point. But once we get to a, our process looks as though we’d
just started at a, so by the same logic, we’ll get back to 0 eventually with probability 1.
But then once we get back to 0, we’ll eventually get back to a with probability 1. We
can continue in this way forever, and we conclude that the process (Xi)i≥0 visits every
integer infinitely often with probability 1. This property is known as the recurrence of
the one-dimensional simple random walk.

3. How long until we stop? Let (Yi)i≥0, (Xi)i≥0 be as in the last example, and again let
T be the first time we reach a or −b. Let’s compute E[T ], that is, the expected amount
of time until we gain $a or lose $b.
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To do this, consider the sequence (Vi)i≥0 defined by

Vi = X2
i − i.

We claim that (Vi)i≥0 is a martingale with respect to (Yi)i≥0. The fact that Vi is
determined by Y0, . . . , Yi is clear, but we need to check the martingale condition. For
this, we first observe that for i ≥ 1,

X2
i = (Y1 + · · ·+ Yi)

2 =
i∑

k=1

Y 2
k + 2

∑
1≤j<k≤i

YjYk,

and therefore

E[X2
i | Y0, . . . , Yi−1] =

i∑
k=1

E[Y 2
k | Y0, . . . , Yi−1] + 2

∑
1≤j<k≤i

E[YjYk | Y0, . . . , Yi−1].

Note that Y 2
k is simply the constant 1, so every term in the first sum is just 1. For the

second sum, note that if j and k are both less than i, then E[YjYk | Y0, . . . , Yi−1] = YjYk,
by Theorem 2.9(ii). On the other hand, if k = i, then j < i and

E[YjYi | Y0, . . . , Yi−1] = YjE[Yi | Y0, . . . , Yi−1] = YjE[Yi] = 0,

using Theorems 2.9(iii) and 2.9(v) and the fact that E[Yi] = 0. Putting this together,
we conclude that

E[X2
i | Y0, . . . , Yi−1] = i+ 2

∑
1≤j<k≤i−1

YjYk.

However, similar reasoning shows us that

X2
i−1 = (i− 1) + 2

∑
1≤j<k≤i−1

YjYk

and thus that
E[Vi | Y0, . . . , Yi−1] = 2

∑
1≤j<k≤i−1

YjYk = Vi−1,

which proves the martingale property.

Recall that T is the first time for which Xi ∈ {a,−b}. As in the previous example, let’s
believe that E[T ] <∞, which is not too hard to prove. We would like to apply condition
(c) to the martingale (Vi)i≥0, but unfortunately, this martingale does not have bounded
differences. However, there is a neat trick to get around this. Consider the stopped
sequence (V T

i )i≥0. By Theorem 5.3, this process is also a martingale. Moreover, we
claim that this sequence has bounded differences. Indeed, consider |V T

i − V T
i−1|. If

i > T , then V T
i = V T

i−1, so this difference is 0. If i ≤ T , then |Xi| ≤ max{a, b}, and so

|V T
i − V T

i−1| = |(X2
i − i)− (X2

i−1 − (i− 1))| ≤ 1 + |X2
i −X2

i−1| ≤ 1 + 2 max{a2, b2}.
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This is a bound independent of i, so the sequence (V T
i )i≥0 does have bounded differ-

ences, and E[T ] < ∞, so condition (c) holds. We conclude that E[VT ] = E[V0] = 0,
implying that

0 = E[VT ] = E[X2
T − T ] = E[X2

T ]− E[T ],

and thus that E[T ] = E[X2
T ]. But we already know that

Pr(XT = a) =
b

a+ b
and Pr(XT = −b) =

a

a+ b

implying that

E[XT ] =
b

a+ b
· a2 +

a

a+ b
· (−b)2 =

a2b+ ab2

a+ b
= ab.

Therefore, E[T ] = ab. Try proving this without appealing to martingale theory—it’s
not so easy!

4. Unbalanced coin tosses Let’s go back to our frog, standing on a lily pad labeled 0,
wanting to reach her home at lily pad a, and not wanting to fall into the hole at lily
pad −b. She’s pretty sure that her home is to the right of her current position, so she
doesn’t want to just jump left or right with equal probability. Instead, she jumps right
with probability p and left with probability 1 − q, for some 1

2
< p < 1 (we assume

p > 1
2

because she’s pretty sure her house is to the right, but the analysis works in
essentially the same way for any p 6= 1

2
). This is equivalent to a lucky gambler, who

finds a casino where the coin lands heads more frequently than tails, and thus the
gambler can actually make money!

At first glance, it looks like the techniques we’ve developed can’t say anything about
what happens in this scenario. Everything we’ve done with martingales has been about
fair games, and here’s a patently unfair game. In particular, the intuition that “you
can’t beat the system” is obviously wrong for this game: the game itself is an instance
of beating the system!

Nonetheless, the techniques we’ve developed are actually quite robust. Formally, let
Y0 = 0 and let Y1, Y2, . . . be independent random variables with

Pr(Yi = 1) = p, Pr(Yi = −1) = q = 1− p.

Also, let Xi = Y1 + · · ·+Yi, representing the frog’s position (or the gambler’s winnings)
after i rounds. Clearly, (Xi)i≥0 is not a martingale, since this is not a fair game.
However, let’s define

Zi =

(
q

p

)Xi

=

(
q

p

)Y1+···+Yi
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We claim that (Zi)i≥0 is a martingale with respect to (Yi)i≥0. The fact that Zi is
determined by Y0, . . . , Yi is clear, and the martingale property follows because

E[Zi | Y0, . . . , Yi−1] = E

[(
q

p

)Y1

· · ·
(
q

p

)Yi

∣∣∣∣∣ Y0, . . . , Yi−1
]

=

(
q

p

)Y1

· · ·
(
q

p

)Yi−1

E

[(
q

p

)Yi

]

= Zi−1

(
p ·
(
q

p

)1

+ q ·
(
q

p

)−1)
= Zi−1(q + p)

= Zi−1.

Now, let T be the first time that Xi ∈ {a,−b}. We again have that E[T ] < ∞, via
a skipped computation. We would like to apply condition (c) from Theorem 6.1, but
for this we would need that (Zi)i≥0 has bounded differences. Unfortunately, it does
not: the ratio between Zi and Zi−1 is bounded, but if Zi−1 is already huge, then the
difference between Zi and Zi−1 would be huge as well. Nonetheless, we can do the
same trick we did before: consider the stopped process (ZT

i )i≥0, which we know is a
martingale by Theorem 5.3. When i ≥ T this clearly has bounded differences, as in
that case ZT

i − ZT
i−1 = 0. When i < T , we know that (q/p)a ≤ ZT

i ≤ (q/p)−b, and
similarly for ZT

i−1, which implies that their difference is bounded by (p/q)b.

Therefore, the optional stopping theorem applies, and we conclude that

E[ZT ] = E[Z0] = 1.

On the other hand, we can compute that

E[ZT ] = Pr(XT = a)

(
q

p

)a

+ Pr(XT = b)

(
q

p

)−b
.

Letting x = Pr(XT = a), so that 1− x = Pr(XT = b), we have that

1 = E[ZT ] = x

(
q

p

)a

+ (1− x)

(
q

p

)−b
=

(
q

p

)−b
+ x

((
q

p

)a

−
(
q

p

)−b)
.

Solving for x shows that

Pr(XT = a) = x =
(p/q)b − 1

(p/q)b − (q/p)a
=

(p/q)a+b − (p/q)a

(p/q)a+b − 1

Note that this formula doesn’t make any sense if p = q (or equivalently p = 1
2
), since

in that case both numerator and denominator equal 0. The reason this fails is that if
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p = q, then the random variable Zi simply equals 1 for all i! In this case (and only
this case) we do not have E[T ] < ∞, and hence we can’t apply the optional stopping
theorem.

We can also compute E[T ], as follows. Let’s let Ai = Xi − i(p − q). Then (Ai)i≥0 is
again a martingale: it’s clear that Ai is determined by Y0, . . . , Yi, and

E[Ai | Y0, . . . , Yi−1] = E[Y0 + · · ·+ Yi − i(p− q) | Y0, . . . , Yi−1]
= Y0 + · · ·+ Yi−1 + E[Yi]− i(p− q)
= Xi−1 + (p− q)− i(p− q)
= Xi−1 − (i− 1)(p− q) = Ai−1.

Since this is a martingale and it has bounded increments, the optional stopping theorem
applies, and we have that E[AT ] = E[A0] = 0. Thus,

0 = E[AT ] = E[XT ]− E[T ] =

(
(p/q)a+b − (p/q)a

(p/q)a+b − 1
· a+

(p/q)a − 1

(p/q)a+b − 1
· b
)
− E[XT ].

Rearranging, we see that

E[XT ] =
a(p/q)a+b + (b− a)(p/q)a − b

(p/q)a+b − 1

5. Guessing in a deck of cards We play the following game. I shuffle a deck of cards,
then start dealing them face-up on the table, one by one. Your goal is to guess one
time when I will deal out a red card. Namely, at any point, you can say STOP, and
your goal is to pick when to STOP to maximize the probability that the next card
is red. For example, you could say STOP even before I begin dealing, in which case
your win probability is 1/2. Alternately, you could hope that I’ll deal a bunch of black
cards early on, and then say STOP; if I really do deal a bunch of black cards that’ll
be helpful for you, but what if I don’t?

It turns out that no matter your strategy, your odds of winning are exactly 1/2. To
see this, let Xi be the proportion of the unrevealed cards (the final 52− i cards) that
are red. On the homework, you proved that (Xi)i≥0 is a martingale. Moreover, we see
that Xi is exactly the odds that the next card is red if you say STOP right before I
deal the ith card; indeed, among the remaining 52− i cards, exactly an Xi fraction of
them are red, so your odds of succeeding are Xi.

Now, your stopping strategy is simply a stopping time! So we care about E[XT ].
Moreover, T is certainly bounded (by 52), so condition (a) from Theorem 6.1 holds.
So E[XT ] = E[X0], and we just argued that X0 is simply 1/2. So your odds of winning
are 1/2 regardless of strategy.

6. Runs of dice Suppose we keep rolling fair dice. Let D0 = 0, and D1, D2, D3, . . . be the
outcome of the die rolls, so that these are independent random variables which take
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on the values {1, . . . , 6} each with probability 1/6. We would like to understand the
average amount of time until we see three sixes in a row. Let T be the time when we
first see three sixes in a row, and note that T is a stopping time with respect to the
sequence (Di)i≥0.

In this example, the difficulty is cleverly coming up with a martingale that we can use.
Let’s define Rn to equal 1 + 6 + 62 + · · ·+ 6k, if the nth die roll is the kth consecutive
6. So Rn = 1 if Dn 6= 6, whereas if Dn = 6 then Rn is equal to 6Rn−1 + 1. Finally,
let’s define Xn = Rn − n. Then we claim that (Xi)i≥0 is a martingale with respect to
(Di)i≥0. Indeed, it is clear that Xi is determined by D0, . . . , Di. For the martingale
property, note that

Rn =

{
6Rn−1 + 1 with probability 1

6

1 with probability 5
6

and thus

E[Rn | D0, . . . , Dn−1] =
1

6
· (6Rn−1 + 1) +

5

6
· 1 = Rn−1 +

1

6
+ 56 = Rn−1 + 1.

Therefore,

E[Xn | D0, . . . , Dn−1] = E[Rn | D0, . . . Dn−1]− n = (Rn−1 + 1)− n = Xn−1.

Now, we again have that E[T ] <∞, using another simple computation that I’ll omit.
As before, we don’t actually have that (Xi)i≥0 has bounded increments, but the same
simple trick as before gets around this: the sequence (XT

i )i≥0 does have bounded
increments, since |XT

i −XT
i−1| ≤ 63. So we can apply the optional stopping theorem,

and we conclude that E[XT ] = E[X0] = 1, since X0 = R0 − 0 = 1− 0 = 1. Thus,

1 = E[XT ] = E[RT ]− E[T ] = 1 + 6 + 62 + 63 − E[T ]

which yields
E[T ] = 6 + 62 + 63 = 258.
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Addendum: the generalized tower property

I forgot to tell you about a very useful property of conditional expectation, which generalizes
Theorem 2.9(iv). It’s also called the tower property.

Theorem. Let X, Y, Z be random variables. Then

E[X | Y ] = E[E[X | Y, Z] | Y ]. (∗)
Note that this recovers the earlier tower property in case Y is just a constant random

variable (i.e. it doesn’t matter).

Proof. First, let’s think about what this equality is supposed to mean. Both sides are random
variables, which depend on the value of Y . Namely, for each y ∈ Y, the left-hand side of
(∗) equals E[X | Y = y] with probability Pr(Y = y), and the right-hand side of (∗) equals
E[E[X | Y, Z] | Y = y] with probability Pr(Y = y). So proving that these two random
variables are equal means proving that for each y0 ∈ Y,

E[X | Y = y0] = E[E[X | Y, Z] | Y = y0]. (∗∗)
Indeed, in case we reveal the random outcome of Y and we find that Y = y0, then the two
sides of (∗) simply become the two sides of (∗∗). So the equality of random variables in (∗)
simply means that (∗∗) holds for all y0 ∈ Y.

So let’s prove (∗∗). We fix y0 ∈ Y. We begin with the right-hand side, and manipulate
it. Recall that E[X | Y, Z] is a random variable that takes on the value E[X | Y = y, Z = z]
with probability Pr(Y = y, Z = z) for all y ∈ Y, z ∈ Z. Therefore,

E[E[X | Y, Z] | Y = y0] =
∑
y∈Y

∑
z∈Z

E[X | Y = y, Z = z] Pr(Y = y, Z = z | Y = y0).

Now, what is Pr(Y = y, Z = z | Y = y0)? Well, if we know that Y = y0, then certainly Y
cannot take any value other than y0. So in other words, we see that

Pr(Y = y, Z = z | Y = y0) =

{
Pr(Z = z | Y = y0) if y = y0

0 otherwise.

Plugging this in, we see that

E[E[X | Y, Z] | Y = y0] =
∑
y∈Y

∑
z∈Z

E[X | Y = y, Z = z] Pr(Y = y, Z = z | Y = y0)

=
∑
z∈Z

E[X | Y = y0, Z = z] Pr(Z = z | Y = y0)

=
∑
z∈Z

(∑
x∈X

xPr(X = x | Y = y0, Z = z)

)
Pr(Z = z | Y = y0)

=
∑
x∈X

x
∑
z∈Z

Pr(X = x | Y = y0, Z = z) Pr(Z = z | Y = y0)

=
∑
x∈X

x
∑
z∈Z

Pr(X = x, Z = z | Y = y0),
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where the final step uses the definition of conditional expectation, namely that

Pr(X = x | Y = y0, Z = z) =
Pr(X = x, Z = z | Y = y0)

Pr(Z = z | Y = y0)
.

Continuing our computation, we see that

E[E[X | Y, Z] | Y = y0] =
∑
x∈X

x
∑
z∈Z

Pr(X = x, Z = z | Y = y0)

=
∑
x∈X

xPr(X = x | Y = y0)

= E[X | Y = y0],

which proves (∗∗).

Let me remark that there is another proof besides this long and technical one, which is
much more conceptual. Namely, there is an alternative definition of the conditional expecta-
tion E[X | Y ], which defines it as the unique random variable satisfying certain properties. It
is then quite straightforward to verify that E[E[X | Y, Z] | Y ] is a random variable satisfying
those same properties, which immediately implies that E[X | Y ] = E[E[X | Y, Z] | Y ].

Unfortunately, while this step becomes very simple in this more conceptual proof, there
is some amount of “preservation of difficulty”. Indeed, if one takes this alternative definition
of conditional expectation, then one has to prove that there always exists a random variable
satisfying the desired properties, and that it is always unique. Those proofs essentially boil
down to roughly the same kind of manipulations that we did above. Said differently, even
in math, you can’t beat a fair game! Sometimes proofs are just hard, and there’s no way
around it.
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