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linear combination M = ¢{M; + - - - + cgMy that is invertible?

Note that F(x1, ..., xq) = det(xiM1 + - - - + x4My) is a polynomial, and
there exists such an M iff F #£ 0.

e If F#£ 0, arandom assignment (xy, ..., x4) = (c1, ..., Cg) satisfies
F(ci, ..., cq) # 0 with high probability [Schwartz-Zippel].

e [f F=0,then F(cy, ..., cg) = 0 for any assignment
(X1, ...,Xd) = (C1, ceey Cd).
This yields an efficient randomized algorithm for this problem!

Theorem (Kabanets-Impagliazzo 2004)
An efficient deterministic algorithm implies that “VP # VNP”.
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Equivalently:

e |tisalinear subspace S C "
e Choosing a basis My, ..., My for S, it is the set of all linear
combinations ciMy + - -+ + cgMy.
> eg.S= {c1 (f1 (2)) +cy (;fz) 1Cq,Co € [F}
e |tisthe symbolic matrix x;M1 + - - - + x4My, whose entries are
linear forms in the variables x, ..., x4.
3ty 2
> e,g.x(j %) ‘H’(; 92) = (2;—i —)Z(y)
e |tisthe n x n x d tensor whose slices are My, ..., M.
® |tisthe quantum operator ®(X) = Zf; MiXM;.

Meta-question

Suppose every matrix M € S satisfies some property P. What can be
said about §?

Example: P = singularity. Determining whether every every M € §
is singular is the problem from the previous slide.
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Matrix spaces from graphs

bipartite graphH  ~~ matrix space Sy
. 1,00 a O

2 2 2 (O 0 b)
3 3 3\c d e

Theorem (Tutte 1947, Edmonds 1967, Lovéasz 1979)
H has a perfect matching iff there is some invertible M € Sy,.

Proof.

= The indicator of a perfect matching yields an invertible M.
<= Consider the determinant F = }__ sgn(o) []"_; xis(;) of the
symbolic matrix representing Sy. If an invertible M exists, then

F # 0. So some term [] xio(iy # 0, yielding a perfect matching.
This yields a randomized algorithm for bipartite perfect matching.
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An extremal problem

Question
Suppose every matrix M € S is singular. What can be said about §?

As we saw, this is an important computational question. It also
arises naturally in algebraic geometry and algebraic topology.

Extremal question: How large can S be? Certainly dimS < n? — 1.
X110 X2 0 Xin

The example shows dimS > n? —nis possible.

Xn—1,1 Xn—12 *** Xn—1,n

Theorem (Dieudonné 1948)
IfeveryM e S C F"™" is singular, then dim S < n% —n.
Dieudonné was motivated by applications in invariant theory.

Fact

If a bipartite graph G on n + n vertices has no
perfect matching, then e(G) < n? —n.
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Sy is singular — His PM-free
(i.e. every M € Sy is singular) (i.e. has no perfect matching)

IfS C Sk,, issingular, then If H C K, , is PM-free, then
dimS <n? —n. e(H) <n? —n.
Max. dim S for singular S C S¢,, = Max. e(H) for PM-free H C K,,

Is a version of Dieudonné’s theorem true for G besides K, ,? Yes!

Theorem (LOQWWZ 2022)

Let G be any bipartite graph.
Max. dim S for singularS €S = Max. e(H) for PM-free H C G

The > direction is clear: any PM-free H C G yields a singular

Sy C Sg withdimSy = e(H).

The theorem says that such examples are best possible! Even
though there are many more subspaces of Sg than subgraphs of G.

A combinatorial “explanation” of an algebraic property!
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Sy satisfies P = H satisfies Q
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Basic and inherited correspondences

A basic correspondence is a result of the form
Sy satisfies P — H satisfies Q

for a linear-algebraic property P and a graph-theoretic property Q.

An inherited correspondence generalizes this to
Max. dim S _ Max. e(H)
for S C Sg satisfying P B for H C G satisfying Q
The basic correspondence immediately implies the > result.

Every matrix in Sy has rank <r <= H has no matching of size r

Theorem (LQWWZ 2022)
Max. dim S for S C Sg _ Max. e(H) forH C G

with all ranks < r with no matching of size r

The proof is based on Meshulam’s proof of Dieudonné’s theorem.
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Basic and inherited correspondences

A basic correspondence is a result of the form
Sy satisfies P — H satisfies Q

for a linear-algebraic property P and a graph-theoretic property Q.

An inherited correspondence generalizes this to
Max. dim S _ Max. e(H)
for S C Sg satisfying P B for H C G satisfying Q
The basic correspondence immediately implies the > result.

Every matrix in Sy has rank <r <= H has no matching of size r

Theorem (LQWWZ 2022)
Max. dim S for S C Sg _ Max. e(H) forH C G

with all ranks < r with no matching of size r
The proof is based on Meshulam’s proof of Dieudonné’s theorem.

Given such S C Sg, we efficiently and deterministically construct
such H C G with e(H) = dimSS.

Singularity
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Acyclicity and nilpotency

A matrix M is called nilpotent if MK = 0 for some k > 1.

A matrix space S C F"" is nilpotent if every M € S is nilpotent.

0 x vy 0 x O
0 0 z y 0 —x
0 00 0y O

y X =X
e 3, e e
1x223 1}/2}/3

The kth power of the symbolic matrix records, along all walks of
length k, the product of the edge labels along the walk.

Sis nilpotent if there exists k such that all such walks “cancel out”.

Corollary

Sy is nilpotent — H is acyclic

Nilpotency
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The inherited correspondence for nilpotency

Question: IfS C F""is nilpotent, how large can dim S be?

The space of strictly upper-triangular matrices shows that
dim$S > () is possible. Dieudonné'’s theorem shows dim$ < n? — n.

Theorem (Gerstenhaber 1958)
IfS C F"*" is nilpotent, then dim S < ()

Gerstenhaber was motivated by non-associative algebras.

Fact

If H is an acyclic n-vertex digraph, then e(H) < (5). @.

Theorem (LOQWWZ 2022)
Max. dim S for nilpotent S CSg = Max. e(H) for acyclicH C G

Corollary: GivenT C F"™", itis NP-hard to determine the max.
dimension of nilpotentS C T.

We adapt de Seguins Pazzis's proof of Gerstenhaber’s theorem.

Nilpotency
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Isomoprhism
There are two natural notions of isomorphism for S, T C F".

® S, T are conjugate if there exists A € GL,(F) with ASA~" =T.
® S, Tare congruent if there exists A € GL,(F) with ASAT = T.

Theorem (LQWWZ 2022)
For digraphs G, H, the following are equivalent:

(1) G and H are isomorphic. (a) Hisisom. to a subgraph of G.
(2) Sg and Sy are congruent. | (b) Sy is cong. to a subspace of Sg.
(3) Sg and Sy are conjugate.

(3) = (1) is surprisingly hard! The tensor formalism is very helpful.
Corollary: Itis NP-hard to determine if S is cong. to a subspace of T.
Fact: There is no inherited correspondence extending (a) < (b).

Isomoprhism
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Symmetries, properties, bipartite vs. directed graphs

The group GL,(F) x GL,(F) acts on F"™" by the left-right action.
* Corresponds to two independent changes of basis in [F".

e This action is natural when we identify F" " with F" @ F”, and
when we want to distinguish the domain and codomain.

e Certain properties are invariant under this action, e.g. rank.

e Generalizes the action of S, x S,, permuting the vertices of
bipartite graphs.

The group GL,(F) acts on F"" by the conjugation action.

¢ Corresponds to a single change of basis in F".

e This action is natural when we identify F"™" with End(F"), and
when we care about multiplying matrices.

e Certain additional properties are invariant, e.g. nilpotency.

® Generalizes the action of S, permuting the vertices of directed
graphs.

Conclusion
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Summary

® There are many connections (basic correspondences) between
graphs and matrix spaces.
Sy satisfies P — H satisfies Q

® Matrix spaces help us understand graphs (e.g. randomized
algorithm for perfect matchings).

® Sometimes, the basic correspondence can be boosted to an

inherited correspondence.
Max. dim S _ Max. e(H)
for S C Sg satisfying P for H C G satisfying Q
e Graphs help us understand matrix spaces (e.g. generalizations
of Dieudonné and Gerstenhaber's theorems).
® For certain properties, matrix spaces are surprisingly rigid:
> The lattice of subspaces of Sg is “not much richer” than the lattice
of subgraphs of G.
» The action of GL,(F) is “not much richer” than that of S,.

Conclusion
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A concrete open problem

Another basic correspondence: for a digraph H and an integer k,
every M € S has < k ~, everysetofdisjoint cycles
non-zero eigenvalues in H covers < k vertices

The case k = 0 recovers the basic correspondence between

acyclicity and nilpotency.

The case k = n — 1 is equivalent to the basic correspondence

between singularity and having no perfect matching.

Conjecture (LQWWZ 2022)

There is an inherited correspondence for every digraph G.

Theorem (Atkinson 1980)
If|F| > n, the inherited correspondence holds for G = H:

Max. dimS forS C F"™": Max. e(H) for n-vertex H:
every M € S has < k = every set of disjoint cycles
non-zero eigenvalues in H covers < k vertices

This generalizes both Dieudonné and Gerstenhaber’s theorems.

Conclusion
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A wide-ranging open problem

Develop this theory further!

e Which properties have basic and inherited correspondences?

® Which properties have basic correspondences but not
inherited versions (e.g. isomoprhism)?

e s there some general characterization (or necessary/sufficient
conditions) of which properties have inherited
correspondences?

» Why is the structure of Sg not much richer than that of G?

» A characterization may give a unified proof of Dieudonné and
Gerstenhaber’s theorems.

> A characterization may resolve the conjecture on the previous
slide, generalizing Atkinson’s theorem.
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Thank you!
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