Matrix spaces and graphs

Yuval Wigderson

Tel Aviv University
November 22, 2022

With Yinan Li, Youming Qiao, Avi Wigderson, \& Chuanqi Zhang

Outline

- Matrix spaces and why we care about them
- Graphs and matrix spaces of restricted support
- Properties of matrix spaces and properties of graphs
- Singularity
- Nilpotency
- Isomorphism
- Inhertied correspondences: Deep connections between linear algebra and graph theory

Warmup

Warmup

Problem

Let M_{1}, \ldots, M_{d} be $n \times n$ matrices over \mathbb{C}. Does there exist some linear combination $M=c_{1} M_{1}+\cdots+c_{d} M_{d}$ that is invertible?

Warmup

Problem

Let M_{1}, \ldots, M_{d} be $n \times n$ matrices over \mathbb{C}. Does there exist some linear combination $M=c_{1} M_{1}+\cdots+c_{d} M_{d}$ that is invertible?

Note that $F\left(x_{1}, \ldots, x_{d}\right)=\operatorname{det}\left(x_{1} M_{1}+\cdots+x_{d} M_{d}\right)$ is a polynomial,

Warmup

Problem

Let M_{1}, \ldots, M_{d} be $n \times n$ matrices over \mathbb{C}. Does there exist some linear combination $M=c_{1} M_{1}+\cdots+c_{d} M_{d}$ that is invertible?

Note that $F\left(x_{1}, \ldots, x_{d}\right)=\operatorname{det}\left(x_{1} M_{1}+\cdots+x_{d} M_{d}\right)$ is a polynomial, and there exists such an M iff $F \not \equiv 0$.

Warmup

Problem

Let M_{1}, \ldots, M_{d} be $n \times n$ matrices over \mathbb{C}. Does there exist some linear combination $M=c_{1} M_{1}+\cdots+c_{d} M_{d}$ that is invertible?

Note that $F\left(x_{1}, \ldots, x_{d}\right)=\operatorname{det}\left(x_{1} M_{1}+\cdots+x_{d} M_{d}\right)$ is a polynomial, and there exists such an M iff $F \not \equiv 0$.

- If $F \not \equiv 0$, a random assignment $\left(x_{1}, \ldots, x_{d}\right)=\left(c_{1}, \ldots, c_{d}\right)$ satisfies $F\left(c_{1}, \ldots, c_{d}\right) \neq 0$ with high probability [Schwartz-Zippel].

Warmup

Problem

Let M_{1}, \ldots, M_{d} be $n \times n$ matrices over \mathbb{C}. Does there exist some linear combination $M=c_{1} M_{1}+\cdots+c_{d} M_{d}$ that is invertible?

Note that $F\left(x_{1}, \ldots, x_{d}\right)=\operatorname{det}\left(x_{1} M_{1}+\cdots+x_{d} M_{d}\right)$ is a polynomial, and there exists such an M iff $F \not \equiv 0$.

- If $F \not \equiv 0$, a random assignment $\left(x_{1}, \ldots, x_{d}\right)=\left(c_{1}, \ldots, c_{d}\right)$ satisfies $F\left(c_{1}, \ldots, c_{d}\right) \neq 0$ with high probability [Schwartz-Zippel].
- If $F \equiv 0$, then $F\left(c_{1}, \ldots, c_{d}\right)=0$ for any assignment $\left(x_{1}, \ldots, x_{d}\right)=\left(c_{1}, \ldots, c_{d}\right)$.

Warmup

Problem

Let M_{1}, \ldots, M_{d} be $n \times n$ matrices over \mathbb{C}. Does there exist some linear combination $M=c_{1} M_{1}+\cdots+c_{d} M_{d}$ that is invertible?

Note that $F\left(x_{1}, \ldots, x_{d}\right)=\operatorname{det}\left(x_{1} M_{1}+\cdots+x_{d} M_{d}\right)$ is a polynomial, and there exists such an M iff $F \not \equiv 0$.

- If $F \not \equiv 0$, a random assignment $\left(x_{1}, \ldots, x_{d}\right)=\left(c_{1}, \ldots, c_{d}\right)$ satisfies $F\left(c_{1}, \ldots, c_{d}\right) \neq 0$ with high probability [Schwartz-Zippel].
- If $F \equiv 0$, then $F\left(c_{1}, \ldots, c_{d}\right)=0$ for any assignment $\left(x_{1}, \ldots, x_{d}\right)=\left(c_{1}, \ldots, c_{d}\right)$.
This yields an efficient randomized algorithm for this problem!

Warmup

Problem

Let M_{1}, \ldots, M_{d} be $n \times n$ matrices over \mathbb{C}. Does there exist some linear combination $M=c_{1} M_{1}+\cdots+c_{d} M_{d}$ that is invertible?

Note that $F\left(x_{1}, \ldots, x_{d}\right)=\operatorname{det}\left(x_{1} M_{1}+\cdots+x_{d} M_{d}\right)$ is a polynomial, and there exists such an M iff $F \not \equiv 0$.

- If $F \not \equiv 0$, a random assignment $\left(x_{1}, \ldots, x_{d}\right)=\left(c_{1}, \ldots, c_{d}\right)$ satisfies $F\left(c_{1}, \ldots, c_{d}\right) \neq 0$ with high probability [Schwartz-Zippel].
- If $F \equiv 0$, then $F\left(c_{1}, \ldots, c_{d}\right)=0$ for any assignment $\left(x_{1}, \ldots, x_{d}\right)=\left(c_{1}, \ldots, c_{d}\right)$.
This yields an efficient randomized algorithm for this problem!
Theorem (Kabanets-Impagliazzo 2004)
An efficient deterministic algorithm implies that "VP $\neq V N P$ ".

Matrix spaces

Matrix spaces

A matrix space \boldsymbol{S} is a vector space whose elements are matrices.

Matrix spaces

A matrix space \boldsymbol{S} is a vector space whose elements are matrices. Equivalently:

- It is a linear subspace $\boldsymbol{S} \subseteq \mathbb{F}^{n \times n}$.

Matrix spaces

A matrix space \boldsymbol{S} is a vector space whose elements are matrices. Equivalently:

- It is a linear subspace $S \subseteq \mathbb{F}^{n \times n}$.
- Choosing a basis M_{1}, \ldots, M_{d} for S, it is the set of all linear combinations $c_{1} M_{1}+\cdots+c_{d} M_{d}$.

Matrix spaces

A matrix space \boldsymbol{S} is a vector space whose elements are matrices. Equivalently:

- It is a linear subspace $\boldsymbol{S} \subseteq \mathbb{F}^{n \times n}$.
- Choosing a basis M_{1}, \ldots, M_{d} for S, it is the set of all linear combinations $c_{1} M_{1}+\cdots+c_{d} M_{d}$.
- e.g. $\boldsymbol{S}=\left\{c_{1}\left(\begin{array}{cc}3 & 2 \\ -1 & 0\end{array}\right)+c_{2}\left(\begin{array}{cc}1 & 0 \\ 2 & -2\end{array}\right): c_{1}, c_{2} \in \mathbb{F}\right\}$

Matrix spaces

A matrix space \boldsymbol{S} is a vector space whose elements are matrices. Equivalently:

- It is a linear subspace $S \subseteq \mathbb{F}^{n \times n}$.
- Choosing a basis M_{1}, \ldots, M_{d} for S, it is the set of all linear combinations $c_{1} M_{1}+\cdots+c_{d} M_{d}$.
- e.g. $\boldsymbol{S}=\left\{c_{1}\left(\begin{array}{cc}3 & 2 \\ -1 & 0\end{array}\right)+c_{2}\left(\begin{array}{cc}1 & 0 \\ 2 & -2\end{array}\right): c_{1}, c_{2} \in \mathbb{F}\right\}$
- It is the symbolic matrix $x_{1} M_{1}+\cdots+x_{d} M_{d}$, whose entries are linear forms in the variables x_{1}, \ldots, x_{d}.

Matrix spaces

A matrix space \boldsymbol{S} is a vector space whose elements are matrices. Equivalently:

- It is a linear subspace $\boldsymbol{S} \subseteq \mathbb{F}^{n \times n}$.
- Choosing a basis M_{1}, \ldots, M_{d} for S, it is the set of all linear combinations $c_{1} M_{1}+\cdots+c_{d} M_{d}$.
- e.g. $\boldsymbol{S}=\left\{c_{1}\left(\begin{array}{cc}3 & 2 \\ -1 & 0\end{array}\right)+c_{2}\left(\begin{array}{cc}1 & 0 \\ 2 & -2\end{array}\right): c_{1}, c_{2} \in \mathbb{F}\right\}$
- It is the symbolic matrix $x_{1} M_{1}+\cdots+x_{d} M_{d}$, whose entries are linear forms in the variables x_{1}, \ldots, x_{d}.
- e.g. $x\left(\begin{array}{cc}3 & 2 \\ -1 & 0\end{array}\right)+y\left(\begin{array}{cc}1 & 0 \\ 2 & -2\end{array}\right)=\left(\begin{array}{ccc}3 x+y & 2 x \\ 2 y-x & -2 y\end{array}\right)$

Matrix spaces

A matrix space \boldsymbol{S} is a vector space whose elements are matrices. Equivalently:

- It is a linear subspace $\boldsymbol{S} \subseteq \mathbb{F}^{n \times n}$.
- Choosing a basis M_{1}, \ldots, M_{d} for S, it is the set of all linear combinations $c_{1} M_{1}+\cdots+c_{d} M_{d}$.
- e.g. $\boldsymbol{S}=\left\{c_{1}\left(\begin{array}{cc}3 & 2 \\ -1 & 0\end{array}\right)+c_{2}\left(\begin{array}{cc}1 & 0 \\ 2 & -2\end{array}\right): c_{1}, c_{2} \in \mathbb{F}\right\}$
- It is the symbolic matrix $x_{1} M_{1}+\cdots+x_{d} M_{d}$, whose entries are linear forms in the variables x_{1}, \ldots, x_{d}.
\rightarrow e.g.x $\left(\begin{array}{cc}3 & 2 \\ -1 & 0\end{array}\right)+y\left(\begin{array}{cc}1 & 0 \\ 2 & -2\end{array}\right)=\left(\begin{array}{cc}3 x+y & 2 x \\ 2 y-x & -2 y\end{array}\right)$
- It is the $n \times n \times d$ tensor whose slices are M_{1}, \ldots, M_{d}.

Matrix spaces

A matrix space \boldsymbol{S} is a vector space whose elements are matrices. Equivalently:

- It is a linear subspace $\boldsymbol{S} \subseteq \mathbb{F}^{n \times n}$.
- Choosing a basis M_{1}, \ldots, M_{d} for S, it is the set of all linear combinations $c_{1} M_{1}+\cdots+c_{d} M_{d}$.
- e.g. $\boldsymbol{S}=\left\{c_{1}\left(\begin{array}{cc}3 & 2 \\ -1 & 0\end{array}\right)+c_{2}\left(\begin{array}{cc}1 & 0 \\ 2 & -2\end{array}\right): c_{1}, c_{2} \in \mathbb{F}\right\}$
- It is the symbolic matrix $x_{1} M_{1}+\cdots+x_{d} M_{d}$, whose entries are linear forms in the variables x_{1}, \ldots, x_{d}.
\rightarrow e.g.x $\left(\begin{array}{cc}3 & 2 \\ -1 & 0\end{array}\right)+y\left(\begin{array}{cc}1 & 0 \\ 2 & -2\end{array}\right)=\left(\begin{array}{cc}3 x+y & 2 x \\ 2 y-x & -2 y\end{array}\right)$
- It is the $n \times n \times d$ tensor whose slices are M_{1}, \ldots, M_{d}.
- It is the quantum operator $\Phi(X)=\sum_{i=1}^{d} M_{i} X M_{i}^{*}$.

Matrix spaces

A matrix space \boldsymbol{S} is a vector space whose elements are matrices. Equivalently:

- It is a linear subspace $S \subseteq \mathbb{F}^{n \times n}$.
- Choosing a basis M_{1}, \ldots, M_{d} for S, it is the set of all linear combinations $c_{1} M_{1}+\cdots+c_{d} M_{d}$.
- e.g. $\boldsymbol{S}=\left\{c_{1}\left(\begin{array}{cc}3 & 2 \\ -1 & 0\end{array}\right)+c_{2}\left(\begin{array}{cc}1 & 0 \\ 2 & -2\end{array}\right): c_{1}, c_{2} \in \mathbb{F}\right\}$
- It is the symbolic matrix $x_{1} M_{1}+\cdots+x_{d} M_{d}$, whose entries are linear forms in the variables x_{1}, \ldots, x_{d}.
- e.g. $x\left(\begin{array}{cc}3 & 2 \\ -1 & 0\end{array}\right)+y\left(\begin{array}{cc}1 & 0 \\ 2 & -2\end{array}\right)=\left(\begin{array}{cc}3 x+y & 2 x \\ 2 y-x & -2 y\end{array}\right)$
- It is the $n \times n \times d$ tensor whose slices are M_{1}, \ldots, M_{d}.
- It is the quantum operator $\Phi(X)=\sum_{i=1}^{d} M_{i} X M_{i}^{*}$.

Meta-question

Suppose every matrix $M \in S$ satisfies some property P. What can be said about \boldsymbol{S} ?

Matrix spaces

A matrix space \boldsymbol{S} is a vector space whose elements are matrices. Equivalently:

- It is a linear subspace $S \subseteq \mathbb{F}^{n \times n}$.
- Choosing a basis M_{1}, \ldots, M_{d} for S, it is the set of all linear combinations $c_{1} M_{1}+\cdots+c_{d} M_{d}$.
- e.g. $\boldsymbol{S}=\left\{c_{1}\left(\begin{array}{rr}3 & 2 \\ -1 & 0\end{array}\right)+c_{2}\left(\begin{array}{cc}1 & 0 \\ 2 & -2\end{array}\right): c_{1}, c_{2} \in \mathbb{F}\right\}$
- It is the symbolic matrix $x_{1} M_{1}+\cdots+x_{d} M_{d}$, whose entries are linear forms in the variables x_{1}, \ldots, x_{d}.
- e.g. $x\left(\begin{array}{cc}3 & 2 \\ -1 & 0\end{array}\right)+y\left(\begin{array}{cc}1 & 0 \\ 2 & -2\end{array}\right)=\left(\begin{array}{cc}3 x+y & 2 x \\ 2 y-x & -2 y\end{array}\right)$
- It is the $n \times n \times d$ tensor whose slices are M_{1}, \ldots, M_{d}.
- It is the quantum operator $\Phi(X)=\sum_{i=1}^{d} M_{i} X M_{i}^{*}$.

Meta-question

Suppose every matrix $M \in S$ satisfies some property P. What can be said about \boldsymbol{S} ?

Example: $\boldsymbol{P}=$ singularity. Determining whether every every $M \in \boldsymbol{S}$ is singular is the problem from the previous slide.

Matrix spaces from graphs

Matrix spaces from graphs

bipartite or directed graph H

Matrix spaces from graphs

bipartite or directed graph H

matrix space \boldsymbol{S}_{H}

Matrix spaces from graphs

bipartite or directed graph H

matrix space \boldsymbol{S}_{H}

Matrix spaces from graphs

bipartite or directed graph $H \leadsto$ matrix space \boldsymbol{S}_{H}

Theorem (Tutte 1947, Edmonds 1967, Lovász 1979) H has a perfect matching iff there is some invertible $M \in \mathbf{S}_{H}$.

Matrix spaces from graphs

bipartite or directed graph $H \leadsto$ matrix space \boldsymbol{S}_{H}

Theorem (Tutte 1947, Edmonds 1967, Lovász 1979) H has a perfect matching iff there is some invertible $M \in \boldsymbol{S}_{\boldsymbol{H}}$. Proof.

Matrix spaces from graphs

bipartite or directed graph $H \leadsto$ matrix space $\boldsymbol{S}_{\boldsymbol{H}}$

Theorem (Tutte 1947, Edmonds 1967, Lovász 1979)
H has a perfect matching iff there is some invertible $M \in \mathbf{S}_{H}$.

Proof.

\Longrightarrow The indicator of a perfect matching yields an invertible M.

Matrix spaces from graphs

bipartite or directed graph $H \leadsto$ matrix space $\boldsymbol{S}_{\boldsymbol{H}}$

Theorem (Tutte 1947, Edmonds 1967, Lovász 1979)
H has a perfect matching iff there is some invertible $M \in \boldsymbol{S}_{H}$.

Proof.

\Longrightarrow The indicator of a perfect matching yields an invertible M.

Matrix spaces from graphs

bipartite or directed graph $H \quad \leadsto$ matrix space $\boldsymbol{S}_{\boldsymbol{H}}$

Theorem (Tutte 1947, Edmonds 1967, Lovász 1979) H has a perfect matching iff there is some invertible $M \in \mathbf{S}_{H}$.

Proof.

\Longrightarrow The indicator of a perfect matching yields an invertible M.
\Longleftarrow Consider the determinant $F=\sum_{\sigma} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} x_{i \sigma(i)}$ of the symbolic matrix representing S_{H}.

Matrix spaces from graphs

bipartite or directed graph $H \quad \leadsto$ matrix space $\boldsymbol{S}_{\boldsymbol{H}}$

Theorem (Tutte 1947, Edmonds 1967, Lovász 1979)
H has a perfect matching iff there is some invertible $M \in \boldsymbol{S}_{\boldsymbol{H}}$.

Proof.

\Longrightarrow The indicator of a perfect matching yields an invertible M.
\Longleftarrow Consider the determinant $F=\sum_{\sigma} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} x_{i \sigma(i)}$ of the symbolic matrix representing \boldsymbol{S}_{H}. If an invertible M exists, then $F \not \equiv 0$.

Matrix spaces from graphs

bipartite or directed graph $H \quad \leadsto$ matrix space $\boldsymbol{S}_{\boldsymbol{H}}$

Theorem (Tutte 1947, Edmonds 1967, Lovász 1979)
H has a perfect matching iff there is some invertible $M \in \mathbf{S}_{H}$.

Proof.

\Longrightarrow The indicator of a perfect matching yields an invertible M.
\Longleftarrow Consider the determinant $F=\sum_{\sigma} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} x_{i \sigma(i)}$ of the symbolic matrix representing \boldsymbol{S}_{H}. If an invertible M exists, then $F \not \equiv 0$. So some term $\prod x_{i \sigma(i)} \neq 0$, yielding a perfect matching.

Matrix spaces from graphs

bipartite or directed graph $H \quad \leadsto$ matrix space $\boldsymbol{S}_{\boldsymbol{H}}$

Theorem (Tutte 1947, Edmonds 1967, Lovász 1979)
H has a perfect matching iff there is some invertible $M \in \mathbf{S}_{H}$.

Proof.

\Longrightarrow The indicator of a perfect matching yields an invertible M.
\Longleftarrow Consider the determinant $F=\sum_{\sigma} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} x_{i \sigma(i)}$ of the symbolic matrix representing \boldsymbol{S}_{H}. If an invertible M exists, then $F \not \equiv 0$. So some term $\prod x_{i \sigma(i)} \neq 0$, yielding a perfect matching.

This yields a randomized algorithm for bipartite perfect matching.

Matrix spaces with restricted support

Matrix spaces with restricted support

\boldsymbol{S} is supported on $E(H)$ if all non-zero entries in \boldsymbol{S} are indexed by edges of H. Equivalently, $\boldsymbol{S} \subseteq \boldsymbol{S}_{H}$.

Matrix spaces with restricted support

\boldsymbol{S} is supported on $E(H)$ if all non-zero entries in \boldsymbol{S} are indexed by edges of H. Equivalently, $\boldsymbol{S} \subseteq \boldsymbol{S}_{H}$.

1
2
3 $\left(\begin{array}{ccc}1 & 2 & 3 \\ x & x+y & 0 \\ 0 & 0 & z \\ z-2 x & y+z & 0\end{array}\right)$

Matrix spaces with restricted support

\boldsymbol{S} is supported on $E(H)$ if all non-zero entries in \boldsymbol{S} are indexed by edges of H. Equivalently, $\boldsymbol{S} \subseteq \boldsymbol{S}_{H}$.

1
2
3 $\left(\begin{array}{ccc}1 & 2 & 3 \\ x & x+y & 0 \\ 0 & 0 & z \\ z-2 x & y+z & 0\end{array}\right)$

We can think of \boldsymbol{S} as a labeling of $E(H)$ by linear forms.

Matrix spaces with restricted support

\boldsymbol{S} is supported on $E(H)$ if all non-zero entries in \boldsymbol{S} are indexed by edges of H. Equivalently, $\boldsymbol{S} \subseteq \boldsymbol{S}_{H}$.

1
2
3 $\left(\begin{array}{ccc}1 & 2 & 3 \\ x & x+y & 0 \\ 0 & 0 & z \\ z-2 x & y+z & 0\end{array}\right)$

We can think of \boldsymbol{S} as a labeling of $E(H)$ by linear forms.
Matrix spaces with restricted support arise naturally in many contexts (e.g. Valiant's construction, graph rigidity).

Matrix spaces with restricted support

\boldsymbol{S} is supported on $E(H)$ if all non-zero entries in \boldsymbol{S} are indexed by edges of H. Equivalently, $\boldsymbol{S} \subseteq \boldsymbol{S}_{H}$.

1
2
3 $\left(\begin{array}{ccc}1 & 2 & 3 \\ x & x+y & 0 \\ 0 & 0 & z \\ z-2 x & y+z & 0\end{array}\right)$

We can think of \boldsymbol{S} as a labeling of $E(H)$ by linear forms.
Matrix spaces with restricted support arise naturally in many contexts (e.g. Valiant's construction, graph rigidity).
Of course, \boldsymbol{S} may have different properties from \boldsymbol{S}_{H}.

Matrix spaces with restricted support

\boldsymbol{S} is supported on $E(H)$ if all non-zero entries in \boldsymbol{S} are indexed by edges of H. Equivalently, $\boldsymbol{S} \subseteq \boldsymbol{S}_{H}$.

1
2
3 $\left(\begin{array}{ccc}1 & 2 & 3 \\ x & x+y & 0 \\ 0 & 0 & z \\ z-2 x & y+z & 0\end{array}\right)$

We can think of \boldsymbol{S} as a labeling of $E(H)$ by linear forms.
Matrix spaces with restricted support arise naturally in many contexts (e.g. Valiant's construction, graph rigidity).
Of course, \boldsymbol{S} may have different properties from \boldsymbol{S}_{H}.

has a perfect matching
contains an
invertible M

Matrix spaces with restricted support

S is supported on $E(H)$ if all non-zero entries in S are indexed by edges of H. Equivalently, $\boldsymbol{S} \subseteq \boldsymbol{S}_{H}$.

1
2
3 $\left(\begin{array}{ccc}1 & 2 & 3 \\ x & x+y & 0 \\ 0 & 0 & z \\ z-2 x & y+z & 0\end{array}\right)$

We can think of \boldsymbol{S} as a labeling of $E(H)$ by linear forms.
Matrix spaces with restricted support arise naturally in many contexts (e.g. Valiant's construction, graph rigidity).
Of course, \boldsymbol{S} may have different properties from \boldsymbol{S}_{H}.

has a perfect matching
contains an invertible M
contains only singular M.

An extremal problem

Question

Suppose every matrix $M \in \boldsymbol{S}$ is singular. What can be said about \boldsymbol{S} ?

An extremal problem

Question

Suppose every matrix $M \in \boldsymbol{S}$ is singular. What can be said about \boldsymbol{S} ?
As we saw, this is an important computational question. It also arises naturally in algebraic geometry and algebraic topology.

An extremal problem

Question

Suppose every matrix $M \in \boldsymbol{S}$ is singular. What can be said about \boldsymbol{S} ?
As we saw, this is an important computational question. It also arises naturally in algebraic geometry and algebraic topology. Extremal question: How large can \boldsymbol{S} be?

An extremal problem

Question

Suppose every matrix $M \in \boldsymbol{S}$ is singular. What can be said about \boldsymbol{S} ?
As we saw, this is an important computational question. It also arises naturally in algebraic geometry and algebraic topology. Extremal question: How large can \boldsymbol{S} be? Certainly $\operatorname{dim} \boldsymbol{S} \leq n^{2}$

An extremal problem

Question

Suppose every matrix $M \in \boldsymbol{S}$ is singular. What can be said about \boldsymbol{S} ?
As we saw, this is an important computational question. It also arises naturally in algebraic geometry and algebraic topology. Extremal question: How large can \boldsymbol{S} be? Certainly $\operatorname{dim} \boldsymbol{S} \leq n^{2}-1$.

An extremal problem

Question

Suppose every matrix $M \in \boldsymbol{S}$ is singular. What can be said about \boldsymbol{S} ?
As we saw, this is an important computational question. It also arises naturally in algebraic geometry and algebraic topology.
Extremal question: How large can S be? Certainly $\operatorname{dim} S \leq n^{2}-1$.
The example $\left(\begin{array}{cccc}x_{1,1} & x_{1,2} & \cdots & x_{1, n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n}-1,1 & x_{n}-1,2 & \cdots & x_{n} \\ 0 & 0 & \cdots & 0\end{array}\right)$ shows $\operatorname{dim} S \geq n^{2}-n$ is possible.

An extremal problem

Question

Suppose every matrix $M \in \boldsymbol{S}$ is singular. What can be said about \boldsymbol{S} ?
As we saw, this is an important computational question. It also arises naturally in algebraic geometry and algebraic topology.
Extremal question: How large can S be? Certainly $\operatorname{dim} S \leq n^{2}-1$.
The example $\left(\begin{array}{cccc}x_{1,1} & x_{1,2} & \cdots & x_{1, n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n}-1,1 & x_{n}-1,2 & \cdots & x_{n} \\ 0 & 0 & \cdots & 0\end{array}\right)$ shows $\operatorname{dim} S \geq n^{2}-n$ is possible.
Theorem (Dieudonné 1948)
If every $M \in \mathbf{S} \subseteq \mathbb{F}^{n \times n}$ is singular, then $\operatorname{dim} \boldsymbol{S} \leq n^{2}-n$.

An extremal problem

Question

Suppose every matrix $M \in \boldsymbol{S}$ is singular. What can be said about \boldsymbol{S} ?
As we saw, this is an important computational question. It also arises naturally in algebraic geometry and algebraic topology.
Extremal question: How large can \boldsymbol{S} be? Certainly $\operatorname{dim} \boldsymbol{S} \leq n^{2}-1$.

Theorem (Dieudonné 1948)
If every $M \in \boldsymbol{S} \subseteq \mathbb{F}^{n \times n}$ is singular, then $\operatorname{dim} \boldsymbol{S} \leq n^{2}-n$.
Dieudonné was motivated by applications in invariant theory.

An extremal problem

Question

Suppose every matrix $M \in \boldsymbol{S}$ is singular. What can be said about \boldsymbol{S} ?
As we saw, this is an important computational question. It also arises naturally in algebraic geometry and algebraic topology.
Extremal question: How large can S be? Certainly $\operatorname{dim} S \leq n^{2}-1$.
The example $\left(\begin{array}{cccc}x_{1,1} & x_{1,2} & \cdots & x_{1, n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n}-1,1 & x_{n}-1,2 & \cdots & x_{n} \\ 0 & 0 & \cdots & 0\end{array}\right)$ shows $\operatorname{dim} S \geq n^{2}-n$ is possible.
Theorem (Dieudonné 1948)
If every $M \in S \subseteq \mathbb{F}^{n \times n}$ is singular, then $\operatorname{dim} \boldsymbol{S} \leq n^{2}-n$.
Dieudonné was motivated by applications in invariant theory.

Fact

If a bipartite graph G on $n+n$ vertices has no perfect matching, then $e(G) \leq n^{2}-n$.

The inherited correspondence for singularity

The inherited correspondence for singularity

\boldsymbol{S}_{H} is singular
(i.e. every $M \in \boldsymbol{S}_{\boldsymbol{H}}$ is singular)
H is PM -free
(i.e. has no perfect matching)

The inherited correspondence for singularity

S_{H} is singular
(i.e. every $M \in \boldsymbol{S}_{\boldsymbol{H}}$ is singular)
If $S \subseteq \mathbb{F}^{n \times n}$ is singular, then $\operatorname{dim} S \leq n^{2}-n$.

H is $P M$-free
(i.e. has no perfect matching)

If $H \subseteq K_{n, n}$ is PM -free, then $e(H) \leq n^{2}-n$.

The inherited correspondence for singularity

\boldsymbol{S}_{H} is singular
(i.e. every $M \in \boldsymbol{S}_{\boldsymbol{H}}$ is singular)
If $S \subseteq S_{K_{n, n}}$ is singular, then $\operatorname{dim} S \leq n^{2}-n$.

H is $P M$-free
(i.e. has no perfect matching)

If $H \subseteq K_{n, n}$ is $P M$-free, then $e(H) \leq n^{2}-n$.

The inherited correspondence for singularity

$$
\begin{array}{ccc}
\boldsymbol{S}_{H} \text { is singular } \\
\text { (i.e. every } M \in \boldsymbol{S}_{H} \text { is singular) } & \Longleftrightarrow & H \text { is PM-free } \\
\text { If } \boldsymbol{S} \subseteq \boldsymbol{S}_{K_{n, n}} \text { is singular, then } & \text { (i.e. has no perfect matching) } \\
\operatorname{dim} \boldsymbol{S} \leq n^{2}-n . & \text { If } H \subseteq K_{n, n} \text { is PM-free, then } \\
e(H) \leq n^{2}-n .
\end{array}
$$

The inherited correspondence for singularity

$$
\begin{array}{ccc}
\boldsymbol{S}_{H} \text { is singular } \\
\text { (i.e. every } M \in \boldsymbol{S}_{H} \text { is singular) } & \Longleftrightarrow & H \text { is PM-free } \\
\text { If } \boldsymbol{S} \subseteq \boldsymbol{S}_{K_{n, n}} \text { is singular, then } & \text { (i.e. has no perfect matching) } \\
\operatorname{dim} \boldsymbol{S} \leq n^{2}-n . & \text { If } H \subseteq K_{n, n} \text { is PM-free, then } \\
e(H) \leq n^{2}-n .
\end{array}
$$

Max. $\operatorname{dim} \boldsymbol{S}$ for singular $\boldsymbol{S} \subseteq \boldsymbol{S}_{K_{n, n}}=$ Max. $e(H)$ for PM-free $H \subseteq K_{n, n}$ Is a version of Dieudonné's theorem true for G besides $K_{n, n}$?

The inherited correspondence for singularity

\boldsymbol{S}_{H} is singular		
(i.e. every $M \in \boldsymbol{S}_{H}$ is singular)		
If $\boldsymbol{S} \subseteq \boldsymbol{S}_{K_{n, n}}$ is singular, then	\Longleftrightarrow	H is PM-free
$\operatorname{dim} \boldsymbol{S} \leq n^{2}-n$.	(i.e. has no perfect matching)	
If $H \subseteq K_{n, n}$ is PM-free, then		
$e(H) \leq n^{2}-n$.		

Max. $\operatorname{dim} \boldsymbol{S}$ for singular $\boldsymbol{S} \subseteq \boldsymbol{S}_{K_{n, n}}=$ Max. $e(H)$ for PM-free $H \subseteq K_{n, n}$ Is a version of Dieudonné's theorem true for G besides $K_{n, n}$? Yes!

Theorem (LQWWZ 2022)
Let G be any bipartite graph.
Max. $\operatorname{dim} \boldsymbol{S}$ for singular $\boldsymbol{S} \subseteq \boldsymbol{S}_{G}=$ Max. $e(H)$ for PM-free $H \subseteq G$

The inherited correspondence for singularity

$\boldsymbol{S}_{\boldsymbol{H}}$ is singular
(i.e. every $M \in \boldsymbol{S}_{H}$ is singular)

If $S \subseteq S_{K_{n, n}}$ is singular, then $\operatorname{dim} S \leq n^{2}-n$.

Max. $\operatorname{dim} \boldsymbol{S}$ for singular $\boldsymbol{S} \subseteq \boldsymbol{S}_{K_{n, n}}=$ Max. $e(H)$ for PM-free $H \subseteq K_{n, n}$ Is a version of Dieudonné's theorem true for G besides $K_{n, n}$? Yes!

Theorem (LOWWZ 2022)

Let G be any bipartite graph.
Max. $\operatorname{dim} \boldsymbol{S}$ for singular $\boldsymbol{S} \subseteq \boldsymbol{S}_{G}=$ Max. $e(H)$ for PM-free $H \subseteq G$
The \geq direction is clear: any PM -free $H \subseteq G$ yields a singular $\boldsymbol{S}_{H} \subseteq \boldsymbol{S}_{G}$ with $\operatorname{dim} \boldsymbol{S}_{H}=e(H)$.

The inherited correspondence for singularity

\boldsymbol{S}_{H} is singular

(i.e. every $M \in \boldsymbol{S}_{H}$ is singular)

If $S \subseteq S_{K_{n, n}}$ is singular, then $\operatorname{dim} \boldsymbol{S} \leq n^{2}-n$.

Max. $\operatorname{dim} \boldsymbol{S}$ for singular $\boldsymbol{S} \subseteq \boldsymbol{S}_{K_{n, n}}=$ Max.e(H) forPM-free $H \subseteq K_{n, n}$ Is a version of Dieudonné's theorem true for G besides $K_{n, n}$? Yes!

Theorem (LQWWZ 2022)
Let G be any bipartite graph.
Max. $\operatorname{dim} \boldsymbol{S}$ for singular $\boldsymbol{S} \subseteq \boldsymbol{S}_{G}=$ Max. $e(H)$ for PM-free $H \subseteq G$
The \geq direction is clear: any PM-free $H \subseteq G$ yields a singular $\boldsymbol{S}_{H} \subseteq \boldsymbol{S}_{G}$ with $\operatorname{dim} \boldsymbol{S}_{H}=e(H)$.
The theorem says that such examples are best possible! Even though there are many more subspaces of \boldsymbol{S}_{G} than subgraphs of G.

The inherited correspondence for singularity

$\boldsymbol{S}_{\mathrm{H}}$ is singular

(i.e. every $M \in \boldsymbol{S}_{H}$ is singular)

If $S \subseteq S_{K_{n, n}}$ is singular, then $\operatorname{dim} \boldsymbol{S} \leq n^{2}-n$.

Max. $\operatorname{dim} \boldsymbol{S}$ for singular $\boldsymbol{S} \subseteq \boldsymbol{S}_{K_{n, n}}=$ Max.e(H) for PM-free $H \subseteq K_{n, n}$ Is a version of Dieudonné's theorem true for G besides $K_{n, n}$? Yes!

Theorem (LOWWZ 2022)

Let G be any bipartite graph.
Max. $\operatorname{dim} \boldsymbol{S}$ for singular $\boldsymbol{S} \subseteq \boldsymbol{S}_{G}=$ Max. $e(H)$ for PM-free $H \subseteq G$
The \geq direction is clear: any PM-free $H \subseteq G$ yields a singular $\boldsymbol{S}_{H} \subseteq \boldsymbol{S}_{G}$ with $\operatorname{dim} \boldsymbol{S}_{H}=e(H)$.
The theorem says that such examples are best possible! Even though there are many more subspaces of \boldsymbol{S}_{G} than subgraphs of G.
A combinatorial "explanation" of an algebraic property!

Basic and inherited correspondences

Basic and inherited correspondences

A basic correspondence is a result of the form \boldsymbol{S}_{H} satisfies $\boldsymbol{P} \quad \Longleftrightarrow \quad H$ satisfies \mathbf{Q} for a linear-algebraic property \mathbf{P} and a graph-theoretic property \mathbf{Q}.

Basic and inherited correspondences

A basic correspondence is a result of the form

$$
\boldsymbol{S}_{H} \text { satisfies } P \quad \Longleftrightarrow \quad H \text { satisfies } \mathbf{Q}
$$

for a linear-algebraic property \boldsymbol{P} and a graph-theoretic property \mathbf{Q}.
An inherited correspondence generalizes this to

$$
\begin{array}{cc}
\text { Max. dim } \boldsymbol{S} & \text { Max. } e(H) \\
\text { for } \boldsymbol{S} \subseteq \boldsymbol{S}_{G} \text { satisfying } \boldsymbol{P} & =
\end{array} \text { for } H \subseteq G \text { satisfying } \mathbf{Q}
$$

Basic and inherited correspondences

A basic correspondence is a result of the form

$$
\boldsymbol{S}_{H} \text { satisfies } \boldsymbol{P} \quad \Longleftrightarrow \quad H \text { satisfies } \mathbf{Q}
$$

for a linear-algebraic property \mathbf{P} and a graph-theoretic property \mathbf{Q}.
An inherited correspondence generalizes this to

$$
\begin{array}{cc}
\text { Max. dim } \boldsymbol{S} & \text { Max. } e(H) \\
\text { for } \boldsymbol{S} \subseteq \boldsymbol{S}_{G} \text { satisfying } \boldsymbol{P}
\end{array} \quad=\quad \text { for } H \subseteq G \text { satisfying } \mathbf{Q}
$$

The basic correspondence immediately implies the \geq result.

Basic and inherited correspondences

A basic correspondence is a result of the form

$$
\boldsymbol{S}_{H} \text { satisfies } P \quad \Longleftrightarrow \quad H \text { satisfies } \mathbf{Q}
$$

for a linear-algebraic property \boldsymbol{P} and a graph-theoretic property \mathbf{Q}.
An inherited correspondence generalizes this to

$$
\begin{array}{cc}
\text { Max. } \operatorname{dim} \boldsymbol{S} \\
\text { for } \boldsymbol{S} \subseteq \boldsymbol{S}_{G} \text { satisfying } \boldsymbol{P}
\end{array} \quad=\quad \text { Max. } e(H)
$$

The basic correspondence immediately implies the \geq result.
Every matrix in \boldsymbol{S}_{H} has rank $<r \Longleftrightarrow H$ has no matching of size r

Basic and inherited correspondences

A basic correspondence is a result of the form

$$
\boldsymbol{S}_{H} \text { satisfies } P \quad \Longleftrightarrow \quad H \text { satisfies } \mathbf{Q}
$$

for a linear-algebraic property \mathbf{P} and a graph-theoretic property \mathbf{Q}.
An inherited correspondence generalizes this to

$$
\begin{array}{cc}
\text { Max. } \operatorname{dim} \boldsymbol{S} \\
\text { for } \boldsymbol{S} \subseteq \boldsymbol{S}_{G} \text { satisfying } \boldsymbol{P}
\end{array} \quad=\quad \text { Max. } e(H)
$$

The basic correspondence immediately implies the \geq result.
Every matrix in S_{H} has rank $<r \Longleftrightarrow H$ has no matching of size r

Theorem (LQWWZ 2022)

$$
\begin{gathered}
\text { Max. } \operatorname{dim} \mathbf{S} \text { for } \mathbf{S} \subseteq \mathbf{S}_{G} \\
\text { with all ranks }<r
\end{gathered} \quad=\quad \begin{gathered}
\text { Max. } e(H) \text { for } H \subseteq G \\
\text { with no matching of size } r
\end{gathered}
$$

Basic and inherited correspondences

A basic correspondence is a result of the form

$$
\boldsymbol{S}_{H} \text { satisfies } \boldsymbol{P} \quad \Longleftrightarrow \quad H \text { satisfies } \mathbf{Q}
$$

for a linear-algebraic property \boldsymbol{P} and a graph-theoretic property \mathbf{Q}.
An inherited correspondence generalizes this to

$$
\begin{array}{cc}
\text { Max. dim } \boldsymbol{S} \\
\text { for } \boldsymbol{S} \subseteq \boldsymbol{S}_{G} \text { satisfying } \boldsymbol{P}
\end{array} \quad=\quad \text { Max. } e(H)
$$

The basic correspondence immediately implies the \geq result.
Every matrix in S_{H} has rank $<r \Longleftrightarrow H$ has no matching of size r
Theorem (LQWWZ 2022)

$$
\begin{aligned}
& \text { Max. } \operatorname{dim} \boldsymbol{S} \text { for } \mathbf{S} \subseteq \mathbf{S}_{G} \\
& \text { with all ranks }<r
\end{aligned} \quad=\quad \begin{gathered}
\text { Max. } e(H) \text { for } H \subseteq G \\
\text { with no matching of size } r
\end{gathered}
$$

The proof is based on Meshulam's proof of Dieudonné's theorem.

Basic and inherited correspondences

A basic correspondence is a result of the form

$$
\boldsymbol{S}_{H} \text { satisfies } P \quad \Longleftrightarrow \quad H \text { satisfies } \mathbf{Q}
$$

for a linear-algebraic property \boldsymbol{P} and a graph-theoretic property \mathbf{Q}.
An inherited correspondence generalizes this to

$$
\begin{array}{cc}
\text { Max. } \operatorname{dim} \boldsymbol{S} \\
\text { for } \boldsymbol{S} \subseteq \boldsymbol{S}_{G} \text { satisfying } \boldsymbol{P}
\end{array} \quad=\quad \text { Max. } e(H)
$$

The basic correspondence immediately implies the \geq result.
Every matrix in S_{H} has rank $<r \Longleftrightarrow H$ has no matching of size r
Theorem (LQWWZ 2022)

$$
\begin{array}{ll}
\text { Max. } \operatorname{dim} \boldsymbol{S} \text { for } \boldsymbol{S} \subseteq \boldsymbol{S}_{G} \\
\text { with all ranks }<r
\end{array} \quad=\quad \begin{gathered}
\text { Max. } e(H) \text { for } H \subseteq G \\
\text { with no matching of size } r
\end{gathered}
$$

The proof is based on Meshulam's proof of Dieudonné's theorem. Given such $\boldsymbol{S} \subseteq \boldsymbol{S}_{G}$, we efficiently and deterministically construct such $H \subseteq G$ with $e(H)=\operatorname{dim} \boldsymbol{S}$.

Acyclicity and nilpotency

Acyclicity and nilpotency

A matrix M is called nilpotent if $M^{k}=0$ for some $k \geq 1$.

Acyclicity and nilpotency

A matrix M is called nilpotent if $M^{k}=0$ for some $k \geq 1$.
A matrix space $\boldsymbol{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent if every $M \in \boldsymbol{S}$ is nilpotent.

Acyclicity and nilpotency

A matrix M is called nilpotent if $M^{k}=0$ for some $k \geq 1$.
A matrix space $S \subseteq \mathbb{F}^{n \times n}$ is nilpotent if every $M \in S$ is nilpotent.

$$
\left(\begin{array}{lll}
0 & x & y \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right)
$$

Acyclicity and nilpotency

A matrix M is called nilpotent if $M^{k}=0$ for some $k \geq 1$. A matrix space $S \subseteq \mathbb{F}^{n \times n}$ is nilpotent if every $M \in S$ is nilpotent.

$$
\left(\begin{array}{ccc}
0 & x & y \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{ccc}
0 & x & 0 \\
y & 0 & -x \\
0 & y & 0
\end{array}\right)
$$

Acyclicity and nilpotency

A matrix M is called nilpotent if $M^{k}=0$ for some $k \geq 1$. A matrix space $S \subseteq \mathbb{F}^{n \times n}$ is nilpotent if every $M \in S$ is nilpotent.

$$
\left(\begin{array}{lll}
0 & x & y \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
0 & x & 0 \\
y & 0 & -x \\
0 & y & 0
\end{array}\right)
$$

Acyclicity and nilpotency

A matrix M is called nilpotent if $M^{k}=0$ for some $k \geq 1$. A matrix space $S \subseteq \mathbb{F}^{n \times n}$ is nilpotent if every $M \in S$ is nilpotent.

$$
\left(\begin{array}{lll}
0 & x & y \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
0 & x & 0 \\
y & 0 & -x \\
0 & y & 0
\end{array}\right)
$$

The k th power of the symbolic matrix records, along all walks of length k, the product of the edge labels along the walk.

Acyclicity and nilpotency

A matrix M is called nilpotent if $M^{k}=0$ for some $k \geq 1$. A matrix space $S \subseteq \mathbb{F}^{n \times n}$ is nilpotent if every $M \in \boldsymbol{S}$ is nilpotent.

$$
\left(\begin{array}{lll}
0 & x & y \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
0 & x & 0 \\
y & 0 & -x \\
0 & y & 0
\end{array}\right)
$$

The k th power of the symbolic matrix records, along all walks of length k, the product of the edge labels along the walk.
\boldsymbol{S} is nilpotent if there exists k such that all such walks "cancel out".

Acyclicity and nilpotency

A matrix M is called nilpotent if $M^{k}=0$ for some $k \geq 1$. A matrix space $S \subseteq \mathbb{F}^{n \times n}$ is nilpotent if every $M \in S$ is nilpotent.

$$
\left(\begin{array}{lll}
0 & x & y \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{ccc}
0 & x & 0 \\
y & 0 & -x \\
0 & y & 0
\end{array}\right)
$$

The k th power of the symbolic matrix records, along all walks of length k, the product of the edge labels along the walk.
\boldsymbol{S} is nilpotent if there exists k such that all such walks "cancel out".
Corollary

$$
\mathbf{S}_{H} \text { is nilpotent }
$$

The inherited correspondence for nilpotency

The inherited correspondence for nilpotency

Question: If $\boldsymbol{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent, how large can $\operatorname{dim} \boldsymbol{S}$ be?

The inherited correspondence for nilpotency

Question: If $\boldsymbol{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent, how large can $\operatorname{dim} \boldsymbol{S}$ be?
The space of strictly upper-triangular matrices shows that $\operatorname{dim} S \geq\binom{ n}{2}$ is possible.

The inherited correspondence for nilpotency

Question: If $\boldsymbol{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent, how large can $\operatorname{dim} \boldsymbol{S}$ be?
The space of strictly upper-triangular matrices shows that $\operatorname{dim} \boldsymbol{S} \geq\binom{ n}{2}$ is possible. Dieudonné's theorem shows $\operatorname{dim} \boldsymbol{S} \leq n^{2}-n$.

The inherited correspondence for nilpotency

Question: If $\boldsymbol{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent, how large can $\operatorname{dim} \boldsymbol{S}$ be?
The space of strictly upper-triangular matrices shows that $\operatorname{dim} S \geq\binom{ n}{2}$ is possible. Dieudonnés theorem shows $\operatorname{dim} S \leq n^{2}-n$.

Theorem (Gerstenhaber 1958)
If $\boldsymbol{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent, then $\operatorname{dim} \boldsymbol{S} \leq\binom{ n}{2}$.

The inherited correspondence for nilpotency

Question: If $\boldsymbol{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent, how large can $\operatorname{dim} \boldsymbol{S}$ be?
The space of strictly upper-triangular matrices shows that $\operatorname{dim} S \geq\binom{ n}{2}$ is possible. Dieudonnés theorem shows $\operatorname{dim} S \leq n^{2}-n$.

Theorem (Gerstenhaber 1958)
If $\boldsymbol{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent, then $\operatorname{dim} \boldsymbol{S} \leq\binom{ n}{2}$.
Gerstenhaber was motivated by non-associative algebras.

The inherited correspondence for nilpotency

Question: If $\boldsymbol{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent, how large can $\operatorname{dim} \boldsymbol{S}$ be?
The space of strictly upper-triangular matrices shows that $\operatorname{dim} \boldsymbol{S} \geq\binom{ n}{2}$ is possible. Dieudonné's theorem shows $\operatorname{dim} \boldsymbol{S} \leq n^{2}-n$.

Theorem (Gerstenhaber 1958)
If $\boldsymbol{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent, then $\operatorname{dim} \boldsymbol{S} \leq\binom{ n}{2}$.
Gerstenhaber was motivated by non-associative algebras.

Fact

If H is an acyclic n-vertex digraph, then $e(H) \leq\binom{ n}{2}$.

The inherited correspondence for nilpotency

Question: If $\boldsymbol{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent, how large can $\operatorname{dim} \boldsymbol{S}$ be?
The space of strictly upper-triangular matrices shows that $\operatorname{dim} \boldsymbol{S} \geq\binom{ n}{2}$ is possible. Dieudonné's theorem shows $\operatorname{dim} \boldsymbol{S} \leq n^{2}-n$.

Theorem (Gerstenhaber 1958)
If $\boldsymbol{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent, then $\operatorname{dim} \boldsymbol{S} \leq\binom{ n}{2}$.
Gerstenhaber was motivated by non-associative algebras.

Fact

If H is an acyclic n-vertex digraph, then $e(H) \leq\binom{ n}{2}$.

Theorem (LOWWZ 2022)
Max. $\operatorname{dim} \boldsymbol{S}$ for nilpotent $\boldsymbol{S} \subseteq \boldsymbol{S}_{G}=$ Max. $e(H)$ for acyclic $H \subseteq G$

The inherited correspondence for nilpotency

Question: If $\boldsymbol{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent, how large can $\operatorname{dim} \boldsymbol{S}$ be?
The space of strictly upper-triangular matrices shows that $\operatorname{dim} \boldsymbol{S} \geq\binom{ n}{2}$ is possible. Dieudonné's theorem shows $\operatorname{dim} \boldsymbol{S} \leq n^{2}-n$.

Theorem (Gerstenhaber 1958)
If $\boldsymbol{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent, then $\operatorname{dim} \boldsymbol{S} \leq\binom{ n}{2}$.
Gerstenhaber was motivated by non-associative algebras.

Fact

If H is an acyclic n-vertex digraph, then $e(H) \leq\binom{ n}{2}$.

Theorem (LOWWZ 2022)
Max. $\operatorname{dim} \boldsymbol{S}$ for nilpotent $\boldsymbol{S} \subseteq \boldsymbol{S}_{G}=$ Max. $e(H)$ for acyclic $H \subseteq G$
Corollary: Given $\boldsymbol{T} \subseteq \mathbb{F}^{n \times n}$, it is NP-hard to determine the max. dimension of nilpotent $\boldsymbol{S} \subseteq \boldsymbol{T}$.

The inherited correspondence for nilpotency

Question: If $\boldsymbol{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent, how large can $\operatorname{dim} \boldsymbol{S}$ be?
The space of strictly upper-triangular matrices shows that $\operatorname{dim} \boldsymbol{S} \geq\binom{ n}{2}$ is possible. Dieudonné's theorem shows $\operatorname{dim} \boldsymbol{S} \leq n^{2}-n$.

Theorem (Gerstenhaber 1958)
If $\boldsymbol{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent, then $\operatorname{dim} \boldsymbol{S} \leq\binom{ n}{2}$.
Gerstenhaber was motivated by non-associative algebras.

Fact

If H is an acyclic n-vertex digraph, then $e(H) \leq\binom{ n}{2}$.

Theorem (LOWWZ 2022)
Max. $\operatorname{dim} \boldsymbol{S}$ for nilpotent $\boldsymbol{S} \subseteq \boldsymbol{S}_{G}=$ Max. $e(H)$ for acyclic $H \subseteq G$
Corollary: Given $\boldsymbol{T} \subseteq \mathbb{F}^{n \times n}$, it is NP-hard to determine the max. dimension of nilpotent $\boldsymbol{S} \subseteq \boldsymbol{T}$.
We adapt de Seguins Pazzis's proof of Gerstenhaber's theorem.

Isomoprhism

Isomoprhism

There are two natural notions of isomorphism for $\boldsymbol{S}, \boldsymbol{T} \subseteq \mathbb{F}^{n \times n}$.

Isomoprhism

There are two natural notions of isomorphism for $\boldsymbol{S}, \boldsymbol{T} \subseteq \mathbb{F}^{n \times n}$.

- $\boldsymbol{S}, \boldsymbol{T}$ are conjugate if there exists $A \in G L_{n}(\mathbb{F})$ with $A S A^{-1}=\boldsymbol{T}$.

Isomoprhism

There are two natural notions of isomorphism for $\boldsymbol{S}, \boldsymbol{T} \subseteq \mathbb{F}^{n \times n}$.

- $\boldsymbol{S}, \boldsymbol{T}$ are conjugate if there exists $A \in G L_{n}(\mathbb{F})$ with $A S A^{-1}=\boldsymbol{T}$.
- $\boldsymbol{S}, \boldsymbol{T}$ are congruent if there exists $A \in \mathrm{GL}_{n}(\mathbb{F})$ with $A S A^{\top}=\boldsymbol{T}$.

Isomoprhism

There are two natural notions of isomorphism for $\boldsymbol{S}, \boldsymbol{T} \subseteq \mathbb{F}^{n \times n}$.

- $\boldsymbol{S}, \boldsymbol{T}$ are conjugate if there exists $A \in G L_{n}(\mathbb{F})$ with $A S A^{-1}=\boldsymbol{T}$.
- $\boldsymbol{S}, \boldsymbol{T}$ are congruent if there exists $A \in G \mathrm{~L}_{n}(\mathbb{F})$ with $A S A^{\top}=\boldsymbol{T}$.

Theorem (LOWWZ 2022)
For digraphs G, H, the following are equivalent:
(1) G and H are isomorphic.
(2) \boldsymbol{S}_{G} and \boldsymbol{S}_{H} are congruent.
(3) \boldsymbol{S}_{G} and \boldsymbol{S}_{H} are conjugate.

Isomoprhism

There are two natural notions of isomorphism for $\boldsymbol{S}, \boldsymbol{T} \subseteq \mathbb{F}^{n \times n}$.

- $\boldsymbol{S}, \boldsymbol{T}$ are conjugate if there exists $A \in G L_{n}(\mathbb{F})$ with $A S A^{-1}=\boldsymbol{T}$.
- $\boldsymbol{S}, \boldsymbol{T}$ are congruent if there exists $A \in G L_{n}(\mathbb{F})$ with $A S A^{\top}=\boldsymbol{T}$.

Theorem (LQWWZ 2022)
For digraphs G, H, the following are equivalent:
(1) G and H are isomorphic.
(2) \boldsymbol{S}_{G} and \boldsymbol{S}_{H} are congruent.
(3) \boldsymbol{S}_{G} and \boldsymbol{S}_{H} are conjugate.
$(3) \Longrightarrow(1)$ is surprisingly hard! The tensor formalism is very helpful.

Isomoprhism

There are two natural notions of isomorphism for $\boldsymbol{S}, \boldsymbol{T} \subseteq \mathbb{F}^{n \times n}$.

- $\boldsymbol{S}, \boldsymbol{T}$ are conjugate if there exists $A \in G L_{n}(\mathbb{F})$ with $A S A^{-1}=\boldsymbol{T}$.
- $\boldsymbol{S}, \boldsymbol{T}$ are congruent if there exists $A \in G \mathrm{~L}_{n}(\mathbb{F})$ with $A S A^{\top}=\boldsymbol{T}$.

Theorem (LOWWZ 2022)

For digraphs G, H, the following are equivalent:
(1) G and H are isomorphic. \quad (a) H is isom. to a subgraph of G.
(2) \boldsymbol{S}_{G} and \boldsymbol{S}_{H} are congruent.
(b) \boldsymbol{S}_{H} is cong. to a subspace of \boldsymbol{S}_{G}.
(3) \boldsymbol{S}_{G} and \boldsymbol{S}_{H} are conjugate.
$(3) \Longrightarrow(1)$ is surprisingly hard! The tensor formalism is very helpful.

Isomoprhism

There are two natural notions of isomorphism for $\boldsymbol{S}, \boldsymbol{T} \subseteq \mathbb{F}^{n \times n}$.

- $\boldsymbol{S}, \boldsymbol{T}$ are conjugate if there exists $A \in G L_{n}(\mathbb{F})$ with $A S A^{-1}=\boldsymbol{T}$.
- $\boldsymbol{S}, \boldsymbol{T}$ are congruent if there exists $A \in G L_{n}(\mathbb{F})$ with $A S A^{\top}=\boldsymbol{T}$.

Theorem (LQWWZ 2022)

For digraphs G, H, the following are equivalent:
(1) G and H are isomorphic. \quad (a) H is isom. to a subgraph of G.
(2) \boldsymbol{S}_{G} and \boldsymbol{S}_{H} are congruent.
(b) \boldsymbol{S}_{H} is cong. to a subspace of \boldsymbol{S}_{G}.
(3) \boldsymbol{S}_{G} and \boldsymbol{S}_{H} are conjugate.
$(3) \Longrightarrow(1)$ is surprisingly hard! The tensor formalism is very helpful.
Corollary: It is NP-hard to determine if \boldsymbol{S} is cong. to a subspace of \boldsymbol{T}.

Isomoprhism

There are two natural notions of isomorphism for $\boldsymbol{S}, \boldsymbol{T} \subseteq \mathbb{F}^{n \times n}$.

- $\boldsymbol{S}, \boldsymbol{T}$ are conjugate if there exists $A \in G L_{n}(\mathbb{F})$ with $A S A^{-1}=\boldsymbol{T}$.
- $\boldsymbol{S}, \boldsymbol{T}$ are congruent if there exists $A \in G \mathrm{~L}_{n}(\mathbb{F})$ with $A S A^{\top}=\boldsymbol{T}$.

Theorem (LQWWZ 2022)

For digraphs G, H, the following are equivalent:
(1) G and H are isomorphic. \quad (a) H is isom. to a subgraph of G.
(2) \boldsymbol{S}_{G} and \boldsymbol{S}_{H} are congruent.
(b) \boldsymbol{S}_{H} is cong. to a subspace of \boldsymbol{S}_{G}.
(3) \boldsymbol{S}_{G} and \boldsymbol{S}_{H} are conjugate.
$(3) \Longrightarrow(1)$ is surprisingly hard! The tensor formalism is very helpful.
Corollary: It is NP-hard to determine if \boldsymbol{S} is cong. to a subspace of \boldsymbol{T}.
Fact: There is no inherited correspondence extending (a) \Longleftrightarrow (b).

Symmetries, properties, bipartite vs. directed graphs

Symmetries, properties, bipartite vs. directed graphs

The group $G L_{n}(\mathbb{F}) \times G L_{n}(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the left-right action.

Symmetries, properties, bipartite vs. directed graphs

The group $G L_{n}(\mathbb{F}) \times G L_{n}(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the left-right action.

- Corresponds to two independent changes of basis in \mathbb{F}^{n}.

Symmetries, properties, bipartite vs. directed graphs

The group $G L_{n}(\mathbb{F}) \times G L_{n}(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the left-right action.

- Corresponds to two independent changes of basis in \mathbb{F}^{n}.
- This action is natural when we identify $\mathbb{F}^{n \times n}$ with $\mathbb{F}^{n} \otimes \mathbb{F}^{n}$, and when we want to distinguish the domain and codomain.

Symmetries, properties, bipartite vs. directed graphs

The group $G L_{n}(\mathbb{F}) \times G L_{n}(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the left-right action.

- Corresponds to two independent changes of basis in \mathbb{F}^{n}.
- This action is natural when we identify $\mathbb{F}^{n \times n}$ with $\mathbb{F}^{n} \otimes \mathbb{F}^{n}$, and when we want to distinguish the domain and codomain.
- Certain properties are invariant under this action, e.g. rank.

Symmetries, properties, bipartite vs. directed graphs

The group $G L_{n}(\mathbb{F}) \times G L_{n}(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the left-right action.

- Corresponds to two independent changes of basis in \mathbb{F}^{n}.
- This action is natural when we identify $\mathbb{F}^{n \times n}$ with $\mathbb{F}^{n} \otimes \mathbb{F}^{n}$, and when we want to distinguish the domain and codomain.
- Certain properties are invariant under this action, e.g. rank.

The group $G L_{n}(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the conjugation action.

Symmetries, properties, bipartite vs. directed graphs

The group $G L_{n}(\mathbb{F}) \times G L_{n}(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the left-right action.

- Corresponds to two independent changes of basis in \mathbb{F}^{n}.
- This action is natural when we identify $\mathbb{F}^{n \times n}$ with $\mathbb{F}^{n} \otimes \mathbb{F}^{n}$, and when we want to distinguish the domain and codomain.
- Certain properties are invariant under this action, e.g. rank.

The group $\mathrm{GL}_{n}(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the conjugation action.

- Corresponds to a single change of basis in \mathbb{F}^{n}.

Symmetries, properties, bipartite vs. directed graphs

The group $G L_{n}(\mathbb{F}) \times G L_{n}(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the left-right action.

- Corresponds to two independent changes of basis in \mathbb{F}^{n}.
- This action is natural when we identify $\mathbb{F}^{n \times n}$ with $\mathbb{F}^{n} \otimes \mathbb{F}^{n}$, and when we want to distinguish the domain and codomain.
- Certain properties are invariant under this action, e.g. rank.

The group $\mathrm{GL}_{n}(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the conjugation action.

- Corresponds to a single change of basis in \mathbb{F}^{n}.
- This action is natural when we identify $\mathbb{F}^{n \times n}$ with End $\left(\mathbb{F}^{n}\right)$, and when we care about multiplying matrices.

Symmetries, properties, bipartite vs. directed graphs

The group $G L_{n}(\mathbb{F}) \times G L_{n}(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the left-right action.

- Corresponds to two independent changes of basis in \mathbb{F}^{n}.
- This action is natural when we identify $\mathbb{F}^{n \times n}$ with $\mathbb{F}^{n} \otimes \mathbb{F}^{n}$, and when we want to distinguish the domain and codomain.
- Certain properties are invariant under this action, e.g. rank.

The group $\mathrm{GL}_{n}(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the conjugation action.

- Corresponds to a single change of basis in \mathbb{F}^{n}.
- This action is natural when we identify $\mathbb{F}^{n \times n}$ with End $\left(\mathbb{F}^{n}\right)$, and when we care about multiplying matrices.
- Certain additional properties are invariant, e.g. nilpotency.

Symmetries, properties, bipartite vs. directed graphs

The group $G L_{n}(\mathbb{F}) \times G L_{n}(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the left-right action.

- Corresponds to two independent changes of basis in \mathbb{F}^{n}.
- This action is natural when we identify $\mathbb{F}^{n \times n}$ with $\mathbb{F}^{n} \otimes \mathbb{F}^{n}$, and when we want to distinguish the domain and codomain.
- Certain properties are invariant under this action, e.g. rank.
- Generalizes the action of $S_{n} \times S_{n}$, permuting the vertices of bipartite graphs.

The group $\mathrm{GL}_{n}(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the conjugation action.

- Corresponds to a single change of basis in \mathbb{F}^{n}.
- This action is natural when we identify $\mathbb{F}^{n \times n}$ with End $\left(\mathbb{F}^{n}\right)$, and when we care about multiplying matrices.
- Certain additional properties are invariant, e.g. nilpotency.

Symmetries, properties, bipartite vs. directed graphs

The group $G L_{n}(\mathbb{F}) \times G L_{n}(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the left-right action.

- Corresponds to two independent changes of basis in \mathbb{F}^{n}.
- This action is natural when we identify $\mathbb{F}^{n \times n}$ with $\mathbb{F}^{n} \otimes \mathbb{F}^{n}$, and when we want to distinguish the domain and codomain.
- Certain properties are invariant under this action, e.g. rank.
- Generalizes the action of $S_{n} \times S_{n}$, permuting the vertices of bipartite graphs.
The group $\mathrm{GL}_{n}(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the conjugation action.
- Corresponds to a single change of basis in \mathbb{F}^{n}.
- This action is natural when we identify $\mathbb{F}^{n \times n}$ with End $\left(\mathbb{F}^{n}\right)$, and when we care about multiplying matrices.
- Certain additional properties are invariant, e.g. nilpotency.
- Generalizes the action of S_{n}, permuting the vertices of directed graphs.

Summary

Summary

- There are many connections (basic correspondences) between graphs and matrix spaces. S_{H} satisfies P

H satisfies \mathbf{Q}

Summary

- There are many connections (basic correspondences) between graphs and matrix spaces.

\boldsymbol{S}_{H} satisfies $\boldsymbol{P} \quad \Longleftrightarrow \quad H$ satisfies \mathbf{Q}

- Matrix spaces help us understand graphs (e.g. randomized algorithm for perfect matchings).

Summary

- There are many connections (basic correspondences) between graphs and matrix spaces.

$$
S_{H} \text { satisfies } P \quad \Longleftrightarrow \quad H \text { satisfies } \mathbf{Q}
$$

- Matrix spaces help us understand graphs (e.g. randomized algorithm for perfect matchings).
- Sometimes, the basic correspondence can be boosted to an inherited correspondence.

| Max. $\operatorname{dim} \boldsymbol{S}$ |
| :---: | :---: |
| for $\boldsymbol{S} \subseteq \boldsymbol{S}_{G}$ satisfying \boldsymbol{P} |$\quad=\quad$| Max. $e(H)$ |
| :---: |
| for $H \subseteq G$ satisfying \mathbf{Q} |

Summary

- There are many connections (basic correspondences) between graphs and matrix spaces.

$$
S_{H} \text { satisfies } P \quad \Longleftrightarrow \quad H \text { satisfies } \mathbf{Q}
$$

- Matrix spaces help us understand graphs (e.g. randomized algorithm for perfect matchings).
- Sometimes, the basic correspondence can be boosted to an inherited correspondence.

| Max. $\operatorname{dim} \boldsymbol{S}$ |
| :---: | :---: |
| for $\boldsymbol{S} \subseteq \boldsymbol{S}_{G}$ satisfying \boldsymbol{P} |$=\quad$| Max. $e(H)$ |
| :---: |
| for $H \subseteq G$ satisfying \boldsymbol{Q} |

- Graphs help us understand matrix spaces (e.g. generalizations of Dieudonné and Gerstenhaber's theorems).

Summary

- There are many connections (basic correspondences) between graphs and matrix spaces.

$$
S_{H} \text { satisfies } P \quad \Longleftrightarrow \quad H \text { satisfies } \mathbf{Q}
$$

- Matrix spaces help us understand graphs (e.g. randomized algorithm for perfect matchings).
- Sometimes, the basic correspondence can be boosted to an inherited correspondence.

$$
\begin{array}{cc}
\text { Max. } \operatorname{dim} \boldsymbol{S} & \text { Max. } e(H) \\
\text { for } \boldsymbol{S} \subseteq \boldsymbol{S}_{G} \text { satisfying } \boldsymbol{P} & = \\
\text { for } H \subseteq G \text { satisfying } \mathbf{Q}
\end{array}
$$

- Graphs help us understand matrix spaces (e.g. generalizations of Dieudonné and Gerstenhaber's theorems).
- For certain properties, matrix spaces are surprisingly rigid:
- The lattice of subspaces of \boldsymbol{S}_{G} is "not much richer" than the lattice of subgraphs of G.
- The action of $G L_{n}(\mathbb{F})$ is "not much richer" than that of S_{n}.

A concrete open problem

A concrete open problem

Another basic correspondence: for a digraph H and an integer k, every $M \in \boldsymbol{S}_{H}$ has $\leq k$ non-zero eigenvalues every set of disjoint cycles in H covers $\leq k$ vertices

A concrete open problem

Another basic correspondence: for a digraph H and an integer k, every $M \in S_{H}$ has $\leq k \quad \Longleftrightarrow \quad$ every set of disjoint cycles non-zero eigenvalues $\Longleftrightarrow \quad$ in H covers $\leq k$ vertices
The case $k=0$ recovers the basic correspondence between acyclicity and nilpotency.

A concrete open problem

Another basic correspondence: for a digraph H and an integer k, every $M \in \boldsymbol{S}_{H}$ has $\leq k \quad \Longleftrightarrow \quad$ every set of disjoint cycles non-zero eigenvalues $\Longleftrightarrow \quad$ in H covers $\leq k$ vertices
The case $k=0$ recovers the basic correspondence between acyclicity and nilpotency.
The case $k=n-1$ is equivalent to the basic correspondence between singularity and having no perfect matching.

A concrete open problem

Another basic correspondence: for a digraph H and an integer k, every $M \in \boldsymbol{S}_{H}$ has $\leq k \quad \Longleftrightarrow \quad$ every set of disjoint cycles non-zero eigenvalues $\Longleftrightarrow \quad$ in H covers $\leq k$ vertices
The case $k=0$ recovers the basic correspondence between acyclicity and nilpotency.
The case $k=n-1$ is equivalent to the basic correspondence between singularity and having no perfect matching.

Conjecture (LOWWZ 2022)

There is an inherited correspondence for every digraph G.

A concrete open problem

Another basic correspondence: for a digraph H and an integer k, every $M \in \boldsymbol{S}_{H}$ has $\leq k \quad \Longleftrightarrow \quad$ every set of disjoint cycles non-zero eigenvalues $\Longleftrightarrow \quad$ in H covers $\leq k$ vertices
The case $k=0$ recovers the basic correspondence between acyclicity and nilpotency.
The case $k=n-1$ is equivalent to the basic correspondence between singularity and having no perfect matching.

Conjecture (LOWWZ 2022)

There is an inherited correspondence for every digraph G.
Theorem (Atkinson 1980)
If $|\mathbb{F}|>n$, the inherited correspondence holds for $G=\overleftrightarrow{K_{n}}$:
Max. $\operatorname{dim} \boldsymbol{S}$ for $\boldsymbol{S} \subseteq \mathbb{F}^{n \times n}: \quad$ Max. e(H) for n-vertex H :
every $M \in \boldsymbol{S}$ has $\leq k \quad=\quad$ every set of disjoint cycles non-zero eigenvalues in H covers $\leq k$ vertices

A concrete open problem

Another basic correspondence: for a digraph H and an integer k, every $M \in S_{H}$ has $\leq k \quad \Longleftrightarrow \quad$ every set of disjoint cycles non-zero eigenvalues $\Longleftrightarrow \quad$ in H covers $\leq k$ vertices
The case $k=0$ recovers the basic correspondence between acyclicity and nilpotency.
The case $k=n-1$ is equivalent to the basic correspondence between singularity and having no perfect matching.

Conjecture (LQWWZ 2022)

There is an inherited correspondence for every digraph G.

Theorem (Atkinson 1980)

If $|\mathbb{F}|>n$, the inherited correspondence holds for $G=\overleftrightarrow{K_{n}}$:
Max. $\operatorname{dim} \boldsymbol{S}$ for $\boldsymbol{S} \subseteq \mathbb{F}^{n \times n}: \quad$ Max. $e(H)$ for n-vertex H :
every $M \in \boldsymbol{S}$ has $\leq k \quad=\quad$ every set of disjoint cycles non-zero eigenvalues in H covers $\leq k$ vertices

This generalizes both Dieudonné and Gerstenhaber's theorems.

A wide-ranging open problem

A wide-ranging open problem

Develop this theory further!

A wide-ranging open problem

Develop this theory further!

- Which properties have basic and inherited correspondences?

A wide-ranging open problem

Develop this theory further!

- Which properties have basic and inherited correspondences?
- Which properties have basic correspondences but not inherited versions (e.g. isomoprhism)?

A wide-ranging open problem

Develop this theory further!

- Which properties have basic and inherited correspondences?
- Which properties have basic correspondences but not inherited versions (e.g. isomoprhism)?
- Is there some general characterization (or necessary/sufficient conditions) of which properties have inherited correspondences?

A wide-ranging open problem

Develop this theory further!

- Which properties have basic and inherited correspondences?
- Which properties have basic correspondences but not inherited versions (e.g. isomoprhism)?
- Is there some general characterization (or necessary/sufficient conditions) of which properties have inherited correspondences?
- Why is the structure of \boldsymbol{S}_{G} not much richer than that of G ?

A wide-ranging open problem

Develop this theory further!

- Which properties have basic and inherited correspondences?
- Which properties have basic correspondences but not inherited versions (e.g. isomoprhism)?
- Is there some general characterization (or necessary/sufficient conditions) of which properties have inherited correspondences?
- Why is the structure of S_{G} not much richer than that of G ?
- A characterization may give a unified proof of Dieudonné and Gerstenhaber's theorems.

A wide-ranging open problem

Develop this theory further!

- Which properties have basic and inherited correspondences?
- Which properties have basic correspondences but not inherited versions (e.g. isomoprhism)?
- Is there some general characterization (or necessary/sufficient conditions) of which properties have inherited correspondences?
- Why is the structure of S_{G} not much richer than that of G ?
- A characterization may give a unified proof of Dieudonné and Gerstenhaber's theorems.
- A characterization may resolve the conjecture on the previous slide, generalizing Atkinson's theorem.

Thank you!

