Matrix spaces and graphs

Yuval Wigderson

Tel Aviv University November 22, 2022

With Yinan Li, Youming Qiao, Avi Wigderson, & Chuanqi Zhang

Outline

- Matrix spaces and why we care about them
- Graphs and matrix spaces of restricted support
- Properties of matrix spaces and properties of graphs
 - Singularity
 - Nilpotency
 - Isomorphism
- Inhertied correspondences: Deep connections between linear algebra and graph theory

Introduction

Singularity

Nilpotency

Isomoprhism

Problem

Let $M_1, ..., M_d$ be $n \times n$ matrices over \mathbb{C} . Does there exist some linear combination $M = c_1 M_1 + \cdots + c_d M_d$ that is invertible?

Problem

Let $M_1, ..., M_d$ be $n \times n$ matrices over \mathbb{C} . Does there exist some linear combination $M = c_1 M_1 + \cdots + c_d M_d$ that is invertible?

Note that $F(x_1, ..., x_d) = \det(x_1M_1 + \cdots + x_dM_d)$ is a polynomial,

Problem

Let $M_1, ..., M_d$ be $n \times n$ matrices over \mathbb{C} . Does there exist some linear combination $M = c_1 M_1 + \cdots + c_d M_d$ that is invertible?

Note that $F(x_1, ..., x_d) = \det(x_1M_1 + \cdots + x_dM_d)$ is a polynomial, and there exists such an M iff $F \not\equiv 0$.

Problem

Let $M_1, ..., M_d$ be $n \times n$ matrices over \mathbb{C} . Does there exist some linear combination $M = c_1 M_1 + \cdots + c_d M_d$ that is invertible?

Note that $F(x_1, ..., x_d) = \det(x_1M_1 + \cdots + x_dM_d)$ is a polynomial, and there exists such an M iff $F \neq 0$.

• If $F \neq 0$, a random assignment $(x_1, ..., x_d) = (c_1, ..., c_d)$ satisfies $F(c_1, ..., c_d) \neq 0$ with high probability [Schwartz-Zippel].

Problem

Let $M_1, ..., M_d$ be $n \times n$ matrices over \mathbb{C} . Does there exist some linear combination $M = c_1 M_1 + \cdots + c_d M_d$ that is invertible?

Note that $F(x_1, ..., x_d) = \det(x_1M_1 + \cdots + x_dM_d)$ is a polynomial, and there exists such an M iff $F \neq 0$.

- If $F \neq 0$, a random assignment $(x_1, ..., x_d) = (c_1, ..., c_d)$ satisfies $F(c_1, ..., c_d) \neq 0$ with high probability [Schwartz-Zippel].
- If $F \equiv 0$, then $F(c_1, ..., c_d) = 0$ for any assignment $(x_1, ..., x_d) = (c_1, ..., c_d)$.

Problem

Let $M_1, ..., M_d$ be $n \times n$ matrices over \mathbb{C} . Does there exist some linear combination $M = c_1 M_1 + \cdots + c_d M_d$ that is invertible?

Note that $F(x_1, ..., x_d) = \det(x_1M_1 + \cdots + x_dM_d)$ is a polynomial, and there exists such an M iff $F \neq 0$.

- If $F \neq 0$, a random assignment $(x_1, ..., x_d) = (c_1, ..., c_d)$ satisfies $F(c_1, ..., c_d) \neq 0$ with high probability [Schwartz-Zippel].
- If $F \equiv 0$, then $F(c_1, ..., c_d) = 0$ for any assignment $(x_1, ..., x_d) = (c_1, ..., c_d)$.

This yields an efficient randomized algorithm for this problem!

Problem

Let $M_1, ..., M_d$ be $n \times n$ matrices over \mathbb{C} . Does there exist some linear combination $M = c_1 M_1 + \cdots + c_d M_d$ that is invertible?

Note that $F(x_1, ..., x_d) = \det(x_1M_1 + \cdots + x_dM_d)$ is a polynomial, and there exists such an M iff $F \neq 0$.

- If $F \neq 0$, a random assignment $(x_1, ..., x_d) = (c_1, ..., c_d)$ satisfies $F(c_1, ..., c_d) \neq 0$ with high probability [Schwartz-Zippel].
- If $F \equiv 0$, then $F(c_1, ..., c_d) = 0$ for any assignment $(x_1, ..., x_d) = (c_1, ..., c_d)$.

This yields an efficient randomized algorithm for this problem!

Theorem (Kabanets-Impagliazzo 2004)

An efficient deterministic algorithm implies that "VP \neq VNP".

Introduction

Nilpotency

Isomoprhism

Introduction

Singularity

Nilpotency

Isomoprhism

A matrix space **S** is a vector space whose elements are matrices.

Introduction

Nilpotency

Isomoprhism

A matrix space **S** is a vector space whose elements are matrices. Equivalently:

• It is a linear subspace $\mathbf{S} \subseteq \mathbb{F}^{n \times n}$.

A matrix space **S** is a vector space whose elements are matrices. Equivalently:

- It is a linear subspace $\mathbf{S} \subseteq \mathbb{F}^{n \times n}$.
- Choosing a basis $M_1, ..., M_d$ for **S**, it is the set of all linear combinations $c_1M_1 + \cdots + c_dM_d$.

A matrix space **S** is a vector space whose elements are matrices. Equivalently:

- It is a linear subspace $\mathbf{S} \subseteq \mathbb{F}^{n \times n}$.
- Choosing a basis $M_1, ..., M_d$ for **S**, it is the set of all linear combinations $c_1M_1 + \cdots + c_dM_d$.
 - e.g. $\mathbf{S} = \left\{ c_1 \begin{pmatrix} 3 & 2 \\ -1 & 0 \end{pmatrix} + c_2 \begin{pmatrix} 1 & 0 \\ 2 & -2 \end{pmatrix} : c_1, c_2 \in \mathbb{F} \right\}$

A matrix space **S** is a vector space whose elements are matrices. Equivalently:

- It is a linear subspace $\mathbf{S} \subseteq \mathbb{F}^{n \times n}$.
- Choosing a basis $M_1, ..., M_d$ for **S**, it is the set of all linear combinations $c_1M_1 + \cdots + c_dM_d$.

• e.g. $\mathbf{S} = \left\{ c_1 \begin{pmatrix} 3 & 2 \\ -1 & 0 \end{pmatrix} + c_2 \begin{pmatrix} 1 & 0 \\ 2 & -2 \end{pmatrix} : c_1, c_2 \in \mathbb{F} \right\}$

• It is the symbolic matrix $x_1M_1 + \cdots + x_dM_d$, whose entries are linear forms in the variables x_1, \dots, x_d .

A matrix space **S** is a vector space whose elements are matrices. Equivalently:

- It is a linear subspace $\mathbf{S} \subseteq \mathbb{F}^{n \times n}$.
- Choosing a basis $M_1, ..., M_d$ for **S**, it is the set of all linear combinations $c_1M_1 + \cdots + c_dM_d$.

• e.g. $\mathbf{S} = \left\{ c_1 \begin{pmatrix} 3 & 2 \\ -1 & 0 \end{pmatrix} + c_2 \begin{pmatrix} 1 & 0 \\ 2 & -2 \end{pmatrix} : c_1, c_2 \in \mathbb{F} \right\}$

• It is the symbolic matrix $x_1M_1 + \cdots + x_dM_d$, whose entries are linear forms in the variables x_1, \dots, x_d .

• e.g.
$$x \begin{pmatrix} 3 & 2 \\ -1 & 0 \end{pmatrix} + y \begin{pmatrix} 1 & 0 \\ 2 & -2 \end{pmatrix} = \begin{pmatrix} 3x+y & 2x \\ 2y-x & -2y \end{pmatrix}$$

A matrix space **S** is a vector space whose elements are matrices. Equivalently:

- It is a linear subspace $\mathbf{S} \subseteq \mathbb{F}^{n \times n}$.
- Choosing a basis $M_1, ..., M_d$ for **S**, it is the set of all linear combinations $c_1M_1 + \cdots + c_dM_d$.

• e.g. $\mathbf{S} = \left\{ c_1 \begin{pmatrix} 3 & 2 \\ -1 & 0 \end{pmatrix} + c_2 \begin{pmatrix} 1 & 0 \\ 2 & -2 \end{pmatrix} : c_1, c_2 \in \mathbb{F} \right\}$

• It is the symbolic matrix $x_1M_1 + \cdots + x_dM_d$, whose entries are linear forms in the variables x_1, \dots, x_d .

• e.g.
$$x \begin{pmatrix} 3 & 2 \\ -1 & 0 \end{pmatrix} + y \begin{pmatrix} 1 & 0 \\ 2 & -2 \end{pmatrix} = \begin{pmatrix} 3x+y & 2x \\ 2y-x & -2y \end{pmatrix}$$

• It is the $n \times n \times d$ tensor whose slices are $M_1, ..., M_d$.

A matrix space **S** is a vector space whose elements are matrices. Equivalently:

- It is a linear subspace $\mathbf{S} \subseteq \mathbb{F}^{n \times n}$.
- Choosing a basis $M_1, ..., M_d$ for **S**, it is the set of all linear combinations $c_1M_1 + \cdots + c_dM_d$.

• e.g. $\mathbf{S} = \left\{ c_1 \begin{pmatrix} 3 & 2 \\ -1 & 0 \end{pmatrix} + c_2 \begin{pmatrix} 1 & 0 \\ 2 & -2 \end{pmatrix} : c_1, c_2 \in \mathbb{F} \right\}$

• It is the symbolic matrix $x_1M_1 + \cdots + x_dM_d$, whose entries are linear forms in the variables x_1, \dots, x_d .

• e.g.
$$x \begin{pmatrix} 3 & 2 \\ -1 & 0 \end{pmatrix} + y \begin{pmatrix} 1 & 0 \\ 2 & -2 \end{pmatrix} = \begin{pmatrix} 3x+y & 2x \\ 2y-x & -2y \end{pmatrix}$$

- It is the $n \times n \times d$ tensor whose slices are $M_1, ..., M_d$.
- It is the quantum operator $\Phi(X) = \sum_{i=1}^{d} M_i X M_i^*$.

A matrix space **S** is a vector space whose elements are matrices. Equivalently:

- It is a linear subspace $\mathbf{S} \subseteq \mathbb{F}^{n \times n}$.
- Choosing a basis $M_1, ..., M_d$ for **S**, it is the set of all linear combinations $c_1M_1 + \cdots + c_dM_d$.

• e.g. $\mathbf{S} = \left\{ c_1 \begin{pmatrix} 3 & 2 \\ -1 & 0 \end{pmatrix} + c_2 \begin{pmatrix} 1 & 0 \\ 2 & -2 \end{pmatrix} : c_1, c_2 \in \mathbb{F} \right\}$

• It is the symbolic matrix $x_1M_1 + \cdots + x_dM_d$, whose entries are linear forms in the variables x_1, \dots, x_d .

• e.g.
$$x \begin{pmatrix} 3 & 2 \\ -1 & 0 \end{pmatrix} + y \begin{pmatrix} 1 & 0 \\ 2 & -2 \end{pmatrix} = \begin{pmatrix} 3x+y & 2x \\ 2y-x & -2y \end{pmatrix}$$

- It is the $n \times n \times d$ tensor whose slices are $M_1, ..., M_d$.
- It is the quantum operator $\Phi(X) = \sum_{i=1}^{d} M_i X M_i^*$.

Meta-question

Suppose every matrix $M \in S$ satisfies some property P. What can be said about S?

A matrix space **S** is a vector space whose elements are matrices. Equivalently:

- It is a linear subspace $\mathbf{S} \subseteq \mathbb{F}^{n \times n}$.
- Choosing a basis $M_1, ..., M_d$ for **S**, it is the set of all linear combinations $c_1M_1 + \cdots + c_dM_d$.

• e.g.
$$\mathbf{S} = \left\{ c_1 \begin{pmatrix} 3 & 2 \\ -1 & 0 \end{pmatrix} + c_2 \begin{pmatrix} 1 & 0 \\ 2 & -2 \end{pmatrix} : c_1, c_2 \in \mathbb{F} \right\}$$

• It is the symbolic matrix $x_1M_1 + \cdots + x_dM_d$, whose entries are linear forms in the variables x_1, \dots, x_d .

• e.g.
$$x \begin{pmatrix} 3 & 2 \\ -1 & 0 \end{pmatrix} + y \begin{pmatrix} 1 & 0 \\ 2 & -2 \end{pmatrix} = \begin{pmatrix} 3x+y & 2x \\ 2y-x & -2y \end{pmatrix}$$

- It is the $n \times n \times d$ tensor whose slices are $M_1, ..., M_d$.
- It is the quantum operator $\Phi(X) = \sum_{i=1}^{d} M_i X M_i^*$.

Meta-question

Suppose every matrix $M \in S$ satisfies some property P. What can be said about S?

Example: P = singularity. Determining whether every every $M \in S$ is singular is the problem from the previous slide.

Introduction

Nilpoten

Isomoprhism

Introduction

Singularity

Nilpotency

Isomoprhism

bipartite or directed graph $H \longrightarrow \text{matrix space } S_H$

Introduction

Isomoprhism

bipartite or directed graph $H \longrightarrow$ matrix space S_H 1 • • 1 2 • • 2 3 • • 3 \longrightarrow 1 = 2 = 3 1 = 2 = 3 2 = 2 = 3 2 = 2 = 3 2 = 2 = 3 2 = 2 = 3 2 = 2 = 3 2 = 2 = 3 2 = 2 = 3 2 = 2 = 3 2 = 2 = 3 2 = 2 = 3 2 = 2 = 3 2 = 2 = 3 3 = 3 = 3 3 = 3 = 33 = 3 =

Introduction

Isomoprhism

Introduction

Nilpotency

Isomoprhism

Theorem (Tutte 1947, Edmonds 1967, Lovász 1979) H has a perfect matching iff there is some invertible $M \in S_H$.

Introduction

Singularit

Nilpotency

Isomoprhism

Theorem (Tutte 1947, Edmonds 1967, Lovász 1979) H has a perfect matching iff there is some invertible $M \in S_H$.

Proof.

Introduction

Singularit

Nilpotency

Isomoprhism

Theorem (Tutte 1947, Edmonds 1967, Lovász 1979) H has a perfect matching iff there is some invertible $M \in S_H$.

Proof. \rightarrow The indicator of a perfect matching yields

 \implies The indicator of a perfect matching yields an invertible *M*.

Introduction

Singularity

Nilpotency

Isomoprhism

Theorem (Tutte 1947, Edmonds 1967, Lovász 1979) H has a perfect matching iff there is some invertible $M \in S_H$.

Proof. \implies The indicator of a perfect matching yields an invertible *M*.

Introduction

Singularity

Nilpotency

Isomoprhism

Theorem (Tutte 1947, Edmonds 1967, Lovász 1979) H has a perfect matching iff there is some invertible $M \in S_{H}$.

Proof.

 $\implies \text{The indicator of a perfect matching yields an invertible } M.$ $\iff \text{Consider the determinant } F = \sum_{\sigma} \text{sgn}(\sigma) \prod_{i=1}^{n} x_{i\sigma(i)} \text{ of the symbolic matrix representing } \mathbf{S}_{H}.$

Introduction

Nilpotency

Isomoprhism

Theorem (Tutte 1947, Edmonds 1967, Lovász 1979)

H has a perfect matching iff there is some invertible $M \in S_H$.

Proof.

⇒ The indicator of a perfect matching yields an invertible M. ⇐ Consider the determinant $F = \sum_{\sigma} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} x_{i\sigma(i)}$ of the symbolic matrix representing S_H . If an invertible M exists, then $F \neq 0$.

Introduction

Singularity

Nilpotency

Isomoprhism

Theorem (Tutte 1947, Edmonds 1967, Lovász 1979)

H has a perfect matching iff there is some invertible $M \in \mathbf{S}_{H}$.

Proof.

⇒ The indicator of a perfect matching yields an invertible *M*. ⇐ Consider the determinant $F = \sum_{\sigma} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} x_{i\sigma(i)}$ of the symbolic matrix representing S_H . If an invertible *M* exists, then $F \neq 0$. So some term $\prod x_{i\sigma(i)} \neq 0$, yielding a perfect matching.

Introduction

Theorem (Tutte 1947, Edmonds 1967, Lovász 1979)

H has a perfect matching iff there is some invertible $M \in S_H$.

Proof.

⇒ The indicator of a perfect matching yields an invertible *M*. ⇐ Consider the determinant $F = \sum_{\sigma} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} x_{i\sigma(i)}$ of the symbolic matrix representing S_H . If an invertible *M* exists, then $F \neq 0$. So some term $\prod x_{i\sigma(i)} \neq 0$, yielding a perfect matching.

This yields a randomized algorithm for bipartite perfect matching.

Introduction

Nilpotency

Isomoprhisn

Matrix spaces with restricted support

Introduction

Singularity

Nilpotency

Isomoprhism

Matrix spaces with restricted support

S is supported on E(H) if all non-zero entries in **S** are indexed by edges of *H*. Equivalently, $S \subseteq S_H$.

Matrix spaces with restricted support

S is supported on E(H) if all non-zero entries in **S** are indexed by edges of *H*. Equivalently, $S \subseteq S_H$.

S is supported on E(H) if all non-zero entries in **S** are indexed by edges of *H*. Equivalently, $S \subseteq S_H$.

We can think of **S** as a labeling of E(H) by linear forms.

Introduction

Nilpotency

Isomoprhism

S is supported on E(H) if all non-zero entries in **S** are indexed by edges of *H*. Equivalently, $S \subseteq S_H$.

We can think of **S** as a labeling of E(H) by linear forms. Matrix spaces with restricted support arise naturally in many contexts (e.g. Valiant's construction, graph rigidity).

S is supported on E(H) if all non-zero entries in **S** are indexed by edges of *H*. Equivalently, $S \subseteq S_H$.

We can think of **S** as a labeling of E(H) by linear forms. Matrix spaces with restricted support arise naturally in many contexts (e.g. Valiant's construction, graph rigidity). Of course, **S** may have different properties from **S**_H.

S is supported on E(H) if all non-zero entries in **S** are indexed by edges of *H*. Equivalently, $S \subseteq S_H$.

We can think of **S** as a labeling of E(H) by linear forms. Matrix spaces with restricted support arise naturally in many contexts (e.g. Valiant's construction, graph rigidity). Of course, **S** may have different properties from **S**_H.

$$H = \bigvee_{e \to 0}^{e} \qquad \qquad \mathbf{S}_{H} = \begin{pmatrix} 0 & a & b \\ c & 0 & d \\ e & f & 0 \end{pmatrix}$$

has a perfect matching

contains an invertible *M*

Introduction

Singularity

Nilpotency

Isomoprhisn

Introdu

S is supported on E(H) if all non-zero entries in **S** are indexed by edges of *H*. Equivalently, $S \subseteq S_H$.

We can think of **S** as a labeling of E(H) by linear forms. Matrix spaces with restricted support arise naturally in many contexts (e.g. Valiant's construction, graph rigidity). Of course, **S** may have different properties from **S**_H.

$$H = \bigvee_{i \to \infty} S_{H} = \begin{pmatrix} 0 & a & b \\ c & 0 & d \\ e & f & 0 \end{pmatrix} \qquad S = \begin{pmatrix} 0 & x & y \\ -x & 0 & z \\ -y & -z & 0 \end{pmatrix} \subseteq S_{H}$$
The matching invertible M is a containst only singular M .

Question

Suppose every matrix $M \in \mathbf{S}$ is singular. What can be said about \mathbf{S} ?

atroc	luction

Question

Suppose every matrix $M \in \mathbf{S}$ is singular. What can be said about \mathbf{S} ?

As we saw, this is an important computational question. It also arises naturally in algebraic geometry and algebraic topology.

Introduction	Singularity	Nilpotency	Isomoprhism

Question

Suppose every matrix $M \in \mathbf{S}$ is singular. What can be said about \mathbf{S} ?

As we saw, this is an important computational question. It also arises naturally in algebraic geometry and algebraic topology. **Extremal question:** How large can **S** be?

Question

Suppose every matrix $M \in \mathbf{S}$ is singular. What can be said about \mathbf{S} ?

As we saw, this is an important computational question. It also arises naturally in algebraic geometry and algebraic topology. **Extremal question:** How large can **S** be? Certainly dim $S \le n^2$

Question

Suppose every matrix $M \in \mathbf{S}$ is singular. What can be said about \mathbf{S} ?

As we saw, this is an important computational question. It also arises naturally in algebraic geometry and algebraic topology. **Extremal question:** How large can **S** be? Certainly dim $S \le n^2 - 1$.

Question

Suppose every matrix $M \in \mathbf{S}$ is singular. What can be said about \mathbf{S} ?

As we saw, this is an important computational question. It also arises naturally in algebraic geometry and algebraic topology. **Extremal question:** How large can **S** be? Certainly dim $S \le n^2 - 1$.

The example
$$\begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n-1,1} & x_{n-1,2} & \cdots & x_{n-1,n} \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$
 shows dim $\mathbf{S} \ge n^2 - n$ is possible.

Introduction	Singularity	Nilpotency	Isomoprhism	Conclusion

Question

Suppose every matrix $M \in \mathbf{S}$ is singular. What can be said about \mathbf{S} ?

As we saw, this is an important computational question. It also arises naturally in algebraic geometry and algebraic topology. Extremal question: How large can **S** be? Certainly dim $S \le n^2 - 1$.

The example
$$\begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n-1,1} & x_{n-1,2} & \cdots & x_{n-1,n} \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$
 shows dim $\mathbf{S} \ge n^2 - n$ is possible.

Theorem (Dieudonné 1948)

If every $M \in \mathbf{S} \subseteq \mathbb{F}^{n \times n}$ is singular, then dim $\mathbf{S} \leq n^2 - n$.

Question

Suppose every matrix $M \in \mathbf{S}$ is singular. What can be said about \mathbf{S} ?

As we saw, this is an important computational question. It also arises naturally in algebraic geometry and algebraic topology. **Extremal question:** How large can **S** be? Certainly dim $S \le n^2 - 1$.

The example
$$\begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n-1,1} & x_{n-1,2} & \cdots & x_{n-1,n} \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$
 shows dim $\mathbf{S} \ge n^2 - n$ is possible.

Theorem (Dieudonné 1948)

If every $M \in \mathbf{S} \subseteq \mathbb{F}^{n \times n}$ is singular, then dim $\mathbf{S} \leq n^2 - n$.

Dieudonné was motivated by applications in invariant theory.

Question

Suppose every matrix $M \in \mathbf{S}$ is singular. What can be said about \mathbf{S} ?

As we saw, this is an important computational question. It also arises naturally in algebraic geometry and algebraic topology. **Extremal question:** How large can **S** be? Certainly dim $S \le n^2 - 1$.

The example
$$\begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n-1,1} & x_{n-1,2} & \cdots & x_{n-1,n} \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$
 shows dim $\mathbf{S} \ge n^2 - n$ is possible.

Theorem (Dieudonné 1948)

If every $M \in \mathbf{S} \subseteq \mathbb{F}^{n \times n}$ is singular, then dim $\mathbf{S} \leq n^2 - n$.

Dieudonné was motivated by applications in invariant theory.

Fact

If a bipartite graph G on n + n vertices has no perfect matching, then $e(G) \le n^2 - n$.

Introduction

Singularity

Nilpotenc

Isomoprhism

Introduction

Singularity

Nilpotency

Isomoprhism

S_H is singular (i.e. every $M \in S_H$ is singular) \iff (i.e. has no perfect matching)

H is PM-free

 S_H is singular (i.e. every $M \in S_H$ is singular) If $S \subseteq \mathbb{F}^{n \times n}$ is singular, then dim $S \leq n^2 - n$. *H* is PM-free (i.e. has no perfect matching)

If $H \subseteq K_{n,n}$ is PM-free, then $e(H) \le n^2 - n$.

ntroduction

Nilpotency

Isomoprhism

 S_H is singular (i.e. every $M \in S_H$ is singular)

If $\mathbf{S} \subseteq \mathbf{S}_{K_{n,n}}$ is singular, then dim $\mathbf{S} \leq n^2 - n$. *H* is PM-free (i.e. has no perfect matching)

If $H \subseteq K_{n,n}$ is PM-free, then $e(H) \le n^2 - n$.

ntroduction

Nilpotency

Isomoprhism

 S_H is singular (i.e. every $M \in S_H$ is singular)

If $\mathbf{S} \subseteq \mathbf{S}_{K_{n,n}}$ is singular, then dim $\mathbf{S} \le n^2 - n$.

Max. dim **S** for singular $S \subseteq S_{K_{n,n}}$

H is PM-free (i.e. has no perfect matching)

If $H \subseteq K_{n,n}$ is PM-free, then $e(H) \le n^2 - n$.

= Max. e(H) for PM-free $H \subseteq K_{n,n}$

troduction			
	troc	LICTION	
uouuuu			

 $\begin{array}{ll} \mathbf{S}_{H} \text{ is singular} & H \text{ is PM-free} \\ \text{(i.e. every } M \in \mathbf{S}_{H} \text{ is singular}) & \longleftrightarrow & \text{(i.e. has no perfect matching)} \\ \text{If } \mathbf{S} \subseteq \mathbf{S}_{K_{n,n}} \text{ is singular, then} & \text{If } H \subseteq K_{n,n} \text{ is PM-free, then} \\ \dim \mathbf{S} \leq n^{2} - n. & e(H) \leq n^{2} - n. \end{array}$

Max. dim **S** for singular $\mathbf{S} \subseteq \mathbf{S}_{K_{n,n}} = \text{Max. } \mathbf{e}(H)$ for PM-free $H \subseteq K_{n,n}$

Is a version of Dieudonné's theorem true for G besides $K_{n,n}$?

\tr	0	C		

 S_H is singular H is PM-free (i.e. has no perfect matching) (i.e. every $M \in \mathbf{S}_H$ is singular) If $\mathbf{S} \subseteq \mathbf{S}_{K_{n,n}}$ is singular, then If $H \subseteq K_{n,n}$ is PM-free, then $\dim \mathbf{S} < n^2 - n.$ $e(H) < n^2 - n$. Max. dim **S** for singular $\mathbf{S} \subseteq \mathbf{S}_{K_{n,n}} = \text{Max. } \mathbf{e}(H)$ for PM-free $H \subseteq K_{n,n}$ Is a version of Dieudonné's theorem true for G besides $K_{n,n}$? Yes! Theorem (LQWWZ 2022) Let G be any bipartite graph. *Max.* dim **S** for singular $\mathbf{S} \subset \mathbf{S}_{G}$ Max. e(H) for PM-free $H \subseteq G$ =

 S_H is singular H is PM-free (i.e. has no perfect matching) (i.e. every $M \in \mathbf{S}_H$ is singular) If $H \subseteq K_{n,n}$ is PM-free, then If $\mathbf{S} \subseteq \mathbf{S}_{K_{n,n}}$ is singular, then $\dim \mathbf{S} < n^2 - n.$ $e(H) < n^2 - n$. Max. dim **S** for singular $\mathbf{S} \subseteq \mathbf{S}_{K_{n,n}} = \text{Max. } \mathbf{e}(H)$ for PM-free $H \subseteq K_{n,n}$ Is a version of Dieudonné's theorem true for G besides $K_{n,n}$? Yes! Theorem (LQWWZ 2022) Let G be any bipartite graph. Max. dim **S** for singular $\mathbf{S} \subset \mathbf{S}_G$ = Max. e(H) for PM-free $H \subseteq G$

The \geq direction is clear: any PM-free $H \subseteq G$ yields a singular $\mathbf{S}_H \subseteq \mathbf{S}_G$ with dim $\mathbf{S}_H = \mathbf{e}(H)$.

 S_H is singular H is PM-free (i.e. has no perfect matching) (i.e. every $M \in \mathbf{S}_H$ is singular) If $H \subseteq K_{n,n}$ is PM-free, then If $\mathbf{S} \subseteq \mathbf{S}_{K_{n,n}}$ is singular, then $\dim \mathbf{S} < n^2 - n.$ $e(H) < n^2 - n$. Max. dim **S** for singular $\mathbf{S} \subseteq \mathbf{S}_{K_{n,n}} = \text{Max. } \mathbf{e}(H)$ for PM-free $H \subseteq K_{n,n}$ Is a version of Dieudonné's theorem true for G besides $K_{n,n}$? Yes! Theorem (LQWWZ 2022) Let G be any bipartite graph. Max. dim **S** for singular $\mathbf{S} \subset \mathbf{S}_G$ = Max. e(H) for PM-free $H \subseteq G$

The \geq direction is clear: any PM-free $H \subseteq G$ yields a singular $S_H \subseteq S_G$ with dim $S_H = e(H)$.

The theorem says that such examples are best possible! Even though there are many more subspaces of S_G than subgraphs of G.

 S_H is singular H is PM-free (i.e. has no perfect matching) (i.e. every $M \in \mathbf{S}_H$ is singular) If $\mathbf{S} \subseteq \mathbf{S}_{K_{nn}}$ is singular, then If $H \subseteq K_{n,n}$ is PM-free, then $\dim \mathbf{S} < n^2 - n.$ $e(H) < n^2 - n$. Max. dim **S** for singular $\mathbf{S} \subseteq \mathbf{S}_{K_{n,n}} = \text{Max. } \mathbf{e}(H)$ for PM-free $H \subseteq K_{n,n}$ Is a version of Dieudonné's theorem true for G besides $K_{n,n}$? Yes! Theorem (LQWWZ 2022) Let G be any bipartite graph. Max. e(H) for PM-free $H \subseteq G$ *Max.* dim **S** for singular $\mathbf{S} \subset \mathbf{S}_{G}$ =

The \geq direction is clear: any PM-free $H \subseteq G$ yields a singular $S_H \subseteq S_G$ with dim $S_H = e(H)$.

The theorem says that such examples are best possible! Even though there are many more subspaces of S_G than subgraphs of G.

A combinatorial "explanation" of an algebraic property!

Introduction

Nilpotency

Isomoprhism

ntroduction

Singularity

Nilpotency

Isomoprhism

A basic correspondence is a result of the form S_H satisfies $P \iff H$ satisfies Qfor a linear-algebraic property P and a graph-theoretic property Q.

ntrod	uction

A basic correspondence is a result of the form S_H satisfies $P \iff H$ satisfies Qfor a linear-algebraic property P and a graph-theoretic property Q. An inherited correspondence generalizes this to Max. dim S = Max. e(H)for $S \subseteq S_G$ satisfying $P = for H \subseteq G$ satisfying Q

A basic correspondence is a result of the form S_H satisfies $P \iff H$ satisfies Qfor a linear-algebraic property P and a graph-theoretic property Q. An inherited correspondence generalizes this to Max. dim S = Max. e(H)for $S \subseteq S_G$ satisfying P for $H \subseteq G$ satisfying QThe basic correspondence immediately implies the \geq result.

A **basic correspondence** is a result of the form S_H satisfies $P \iff H$ satisfies Qfor a linear-algebraic property P and a graph-theoretic property Q. An **inherited correspondence** generalizes this to Max. dim S = Max. e(H)for $S \subseteq S_G$ satisfying P for $H \subseteq G$ satisfying QThe basic correspondence immediately implies the \geq result.

Every matrix in S_H has rank $< r \iff H$ has no matching of size r

A basic correspondence is a result of the form S_H satisfies $P \iff H$ satisfies Qfor a linear-algebraic property P and a graph-theoretic property Q. An inherited correspondence generalizes this to Max. dim S = Max. e(H)for $S \subseteq S_G$ satisfying $P = for H \subseteq G$ satisfying QThe basic correspondence immediately implies the \geq result. Every matrix in S_H has rank $< r \iff H$ has no matching of size rTheorem (LQWWZ 2022)

 $Max. \dim \mathbf{S} \text{ for } \mathbf{S} \subseteq \mathbf{S}_{G} = with all ranks < r$

 $Max. \ e(H) \ for \ H \subseteq G$ with no matching of size r

Introduction

Nilpotency

Isomoprhism

A **basic correspondence** is a result of the form S_H satisfies $P \iff H$ satisfies Qfor a linear-algebraic property P and a graph-theoretic property Q. An **inherited correspondence** generalizes this to Max. dim S = Max. e(H)for $S \subseteq S_G$ satisfying P for $H \subseteq G$ satisfying QThe basic correspondence immediately implies the \geq result. Every matrix in S_H has rank $< r \iff H$ has no matching of size rTheorem (LQWWZ 2022)

 $\begin{array}{ll} \text{Max. dim } \mathbf{S} \text{ for } \mathbf{S} \subseteq \mathbf{S}_G \\ \text{with all ranks < r} \end{array} = \begin{array}{l} M \\ \text{with} \end{array}$

Max. e(H) for $H \subseteq G$ with no matching of size r

The proof is based on Meshulam's proof of Dieudonné's theorem.

Introduction

Nilpotency

Isomoprhism

A **basic correspondence** is a result of the form S_H satisfies $P \iff H$ satisfies Qfor a linear-algebraic property P and a graph-theoretic property Q. An **inherited correspondence** generalizes this to Max. dim S = Max. e(H)for $S \subseteq S_G$ satisfying P = for $H \subseteq G$ satisfying QThe basic correspondence immediately implies the \geq result.

Every matrix in S_H has rank $< r \iff H$ has no matching of size r

Theorem (LQWWZ 2022)		
Max. dim S for $S \subseteq S_G$ with all ranks < r	=	Max. $e(H)$ for $H \subseteq G$ with no matching of size r

The proof is based on Meshulam's proof of Dieudonné's theorem. Given such $S \subseteq S_G$, we efficiently and deterministically construct such $H \subseteq G$ with $e(H) = \dim S$.

Isomoprhism

Introduction

Singularity

Nilpotency

Isomoprhism

A matrix *M* is called nilpotent if $M^k = 0$ for some $k \ge 1$.

Introduction

Nilpotency

Isomoprhism

A matrix *M* is called nilpotent if $M^k = 0$ for some $k \ge 1$. A matrix space $\mathbf{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent if every $M \in \mathbf{S}$ is nilpotent.

A matrix *M* is called nilpotent if $M^k = 0$ for some $k \ge 1$. A matrix space $\mathbf{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent if every $M \in \mathbf{S}$ is nilpotent. $\begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix}$
A matrix *M* is called nilpotent if $M^k = 0$ for some $k \ge 1$. A matrix space $\mathbf{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent if every $M \in \mathbf{S}$ is nilpotent. $\begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & x & 0 \\ y & 0 & -x \\ 0 & y & 0 \end{pmatrix}$

A matrix *M* is called nilpotent if $M^k = 0$ for some $k \ge 1$. A matrix space $\mathbf{S} \subset \mathbb{F}^{n \times n}$ is nilpotent if every $M \in \mathbf{S}$ is nilpotent.

/0	х	y	(0	х	0 \
0	0	z	y y	0	-x
(0	0	0/	(0	у	0/

Isomoprhism

A matrix *M* is called nilpotent if $M^k = 0$ for some $k \ge 1$.

A matrix space $\mathbf{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent if every $M \in \mathbf{S}$ is nilpotent.

The kth power of the symbolic matrix records, along all walks of length k, the product of the edge labels along the walk.

A matrix *M* is called nilpotent if $M^k = 0$ for some $k \ge 1$.

A matrix space $\mathbf{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent if every $M \in \mathbf{S}$ is nilpotent.

$\begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & x & 0 \\ y & 0 & -x \\ 0 & y & 0 \end{pmatrix}$
$ \begin{array}{c} $	$\underbrace{x}_{1} \underbrace{y}_{2} \underbrace{x}_{y}_{3} \underbrace{x}_{3}$

The kth power of the symbolic matrix records, along all walks of length k, the product of the edge labels along the walk.

S is nilpotent if there exists *k* such that all such walks "cancel out".

A matrix *M* is called nilpotent if $M^k = 0$ for some $k \ge 1$.

A matrix space $\mathbf{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent if every $M \in \mathbf{S}$ is nilpotent.

<i>y</i>	
$\begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & x & 0 \\ y & 0 & -x \\ 0 & y & 0 \end{pmatrix}$

The kth power of the symbolic matrix records, along all walks of length k, the product of the edge labels along the walk.

S is nilpotent if there exists *k* such that all such walks "cancel out".

Introduction

Singularit

Nilpotency

Isomoprhism

Question: If $\mathbf{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent, how large can dim \mathbf{S} be?

Introduction

Nilpotency

Isomoprhism

Question: If $S \subseteq \mathbb{F}^{n \times n}$ is nilpotent, how large can dim S be? The space of strictly upper-triangular matrices shows that dim $S \ge \binom{n}{2}$ is possible.

Question: If $S \subseteq \mathbb{F}^{n \times n}$ is nilpotent, how large can dim S be? The space of strictly upper-triangular matrices shows that dim $S \ge \binom{n}{2}$ is possible. Dieudonné's theorem shows dim $S \le n^2 - n$.

Question: If $S \subseteq \mathbb{F}^{n \times n}$ is nilpotent, how large can dim S be? The space of strictly upper-triangular matrices shows that dim $S \ge \binom{n}{2}$ is possible. Dieudonné's theorem shows dim $S \le n^2 - n$.

Theorem (Gerstenhaber 1958)

If $\mathbf{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent, then dim $\mathbf{S} \leq \binom{n}{2}$.

ntr					n
пu	U	u	C	U	ш.

Question: If $S \subseteq \mathbb{F}^{n \times n}$ is nilpotent, how large can dim S be? The space of strictly upper-triangular matrices shows that dim $S \ge \binom{n}{2}$ is possible. Dieudonné's theorem shows dim $S \le n^2 - n$.

Theorem (Gerstenhaber 1958)

If $\mathbf{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent, then dim $\mathbf{S} \leq {n \choose 2}$.

Gerstenhaber was motivated by non-associative algebras.

Intr		LIC	tτ	
ii i u	00	uc		OII

Question: If $S \subseteq \mathbb{F}^{n \times n}$ is nilpotent, how large can dim S be? The space of strictly upper-triangular matrices shows that dim $S \ge \binom{n}{2}$ is possible. Dieudonné's theorem shows dim $S \le n^2 - n$.

Theorem (Gerstenhaber 1958)

If $\mathbf{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent, then dim $\mathbf{S} \leq {n \choose 2}$.

Gerstenhaber was motivated by non-associative algebras.

Fact

If *H* is an acyclic *n*-vertex digraph, then $e(H) \leq {n \choose 2}$.

Isomoprhism

Question: If $S \subseteq \mathbb{F}^{n \times n}$ is nilpotent, how large can dim S be? The space of strictly upper-triangular matrices shows that dim $S \ge \binom{n}{2}$ is possible. Dieudonné's theorem shows dim $S \le n^2 - n$.

Theorem (Gerstenhaber 1958)

If $\mathbf{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent, then dim $\mathbf{S} \leq {n \choose 2}$.

Gerstenhaber was motivated by non-associative algebras.

Fact

If *H* is an acyclic *n*-vertex digraph, then $e(H) \leq {n \choose 2}$.

Theorem (LQWWZ 2022)

Max. dim **S** for nilpotent $\mathbf{S} \subseteq \mathbf{S}_G$ = *Max.* $\mathbf{e}(H)$ for acyclic $H \subseteq G$

Introduction

Nilpotency

Isomoprhism

Question: If $S \subseteq \mathbb{F}^{n \times n}$ is nilpotent, how large can dim S be? The space of strictly upper-triangular matrices shows that dim $S \ge \binom{n}{2}$ is possible. Dieudonné's theorem shows dim $S \le n^2 - n$.

Theorem (Gerstenhaber 1958)

If $\mathbf{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent, then dim $\mathbf{S} \leq {n \choose 2}$.

Gerstenhaber was motivated by non-associative algebras.

Fact

If *H* is an acyclic *n*-vertex digraph, then $e(H) \leq {n \choose 2}$.

Theorem (LQWWZ 2022)

Max. dim **S** for nilpotent $\mathbf{S} \subseteq \mathbf{S}_G$ = *Max.* e(H) for acyclic $H \subseteq G$

Corollary: Given $T \subseteq \mathbb{F}^{n \times n}$, it is NP-hard to determine the max. dimension of nilpotent $S \subseteq T$.

Question: If $S \subseteq \mathbb{F}^{n \times n}$ is nilpotent, how large can dim S be? The space of strictly upper-triangular matrices shows that dim $S \ge \binom{n}{2}$ is possible. Dieudonné's theorem shows dim $S \le n^2 - n$.

Theorem (Gerstenhaber 1958)

If $\mathbf{S} \subseteq \mathbb{F}^{n \times n}$ is nilpotent, then dim $\mathbf{S} \leq {n \choose 2}$.

Gerstenhaber was motivated by non-associative algebras.

Fact

If *H* is an acyclic *n*-vertex digraph, then $e(H) \leq {n \choose 2}$.

Theorem (LQWWZ 2022)

Max. dim **S** for nilpotent $\mathbf{S} \subseteq \mathbf{S}_G$ = *Max.* e(H) for acyclic $H \subseteq G$

Corollary: Given $T \subseteq \mathbb{F}^{n \times n}$, it is NP-hard to determine the max. dimension of nilpotent $S \subseteq T$.

We adapt de Seguins Pazzis's proof of Gerstenhaber's theorem.

Nilpotency

Isomoprhism

ntroduction

Singularity

Nilpotency

Isomoprhism

There are two natural notions of isomorphism for **S**, $\mathbf{T} \subseteq \mathbb{F}^{n \times n}$.

Introduction

Nilpotency

Isomoprhism

There are two natural notions of isomorphism for **S**, $T \subseteq \mathbb{F}^{n \times n}$.

• **S**, **T** are conjugate if there exists $A \in GL_n(\mathbb{F})$ with $ASA^{-1} = T$.

Nilpotency

Isomoprhism

There are two natural notions of isomorphism for **S**, $\mathbf{T} \subseteq \mathbb{F}^{n \times n}$.

- **S**, **T** are conjugate if there exists $A \in GL_n(\mathbb{F})$ with $ASA^{-1} = T$.
- **S**, **T** are congruent if there exists $A \in GL_n(\mathbb{F})$ with $ASA^T = T$.

There are two natural notions of isomorphism for **S**, $\mathbf{T} \subseteq \mathbb{F}^{n \times n}$.

- S, T are conjugate if there exists $A \in GL_n(\mathbb{F})$ with $ASA^{-1} = T$.
- **S**, **T** are congruent if there exists $A \in GL_n(\mathbb{F})$ with $ASA^T = T$.

Theorem (LQWWZ 2022)

For digraphs G, H, the following are equivalent:

- (1) G and H are isomorphic.
- (2) S_G and S_H are congruent.
- (3) \mathbf{S}_G and \mathbf{S}_H are conjugate.

There are two natural notions of isomorphism for **S**, $\mathbf{T} \subseteq \mathbb{F}^{n \times n}$.

- **S**, **T** are conjugate if there exists $A \in GL_n(\mathbb{F})$ with $ASA^{-1} = T$.
- **S**, **T** are congruent if there exists $A \in GL_n(\mathbb{F})$ with $ASA^T = T$.

Theorem (LQWWZ 2022)

For digraphs G, H, the following are equivalent:

- (1) G and H are isomorphic.
- (2) \mathbf{S}_G and \mathbf{S}_H are congruent.
- (3) \mathbf{S}_{G} and \mathbf{S}_{H} are conjugate.

 $(3) \Longrightarrow (1)$ is surprisingly hard! The tensor formalism is very helpful.

There are two natural notions of isomorphism for **S**, $\mathbf{T} \subseteq \mathbb{F}^{n \times n}$.

- **S**, **T** are conjugate if there exists $A \in GL_n(\mathbb{F})$ with $ASA^{-1} = T$.
- **S**, **T** are congruent if there exists $A \in GL_n(\mathbb{F})$ with $ASA^T = T$.

Theorem (LQWWZ 2022)

For digraphs G, H, the following are equivalent:

G and H are isomorphic.
 S_G and S_H are congruent.

(3) \mathbf{S}_{G} and \mathbf{S}_{H} are conjugate.

(a) H is isom. to a subgraph of G.

(b) S_H is cong. to a subspace of S_G .

 $(3) \Longrightarrow (1)$ is surprisingly hard! The tensor formalism is very helpful.

There are two natural notions of isomorphism for **S**, $\mathbf{T} \subseteq \mathbb{F}^{n \times n}$.

- **S**, **T** are conjugate if there exists $A \in GL_n(\mathbb{F})$ with $ASA^{-1} = T$.
- **S**, **T** are congruent if there exists $A \in GL_n(\mathbb{F})$ with $ASA^T = T$.

Theorem (LQWWZ 2022)

For digraphs G, H, the following are equivalent:

(1) G and H are isomorphic. (2) S_G and S_H are congruent.

(3) \mathbf{S}_{G} and \mathbf{S}_{H} are conjugate.

(a) H is isom. to a subgraph of G.

(b) S_H is cong. to a subspace of S_G .

(3) \implies (1) is surprisingly hard! The tensor formalism is very helpful. **Corollary:** It is NP-hard to determine if **S** is cong. to a subspace of **T**.

Introduction

There are two natural notions of isomorphism for **S**, $\mathbf{T} \subseteq \mathbb{F}^{n \times n}$.

- **S**, **T** are conjugate if there exists $A \in GL_n(\mathbb{F})$ with $ASA^{-1} = T$.
- **S**, **T** are congruent if there exists $A \in GL_n(\mathbb{F})$ with $ASA^T = T$.

Theorem (LQWWZ 2022)

For digraphs G, H, the following are equivalent:

G and H are isomorphic.
 S_G and S_H are congruent.

(3) S_G and S_H are conjugate.

(a) H is isom. to a subgraph of G.

(b) S_H is cong. to a subspace of S_G .

(3) \implies (1) is surprisingly hard! The tensor formalism is very helpful. **Corollary:** It is NP-hard to determine if **S** is cong. to a subspace of **T**. **Fact:** There is **no** inherited correspondence extending (a) \iff (b).

Introduction

Singularit

Nilpotenc

Isomoprhism

The group $GL_n(\mathbb{F}) \times GL_n(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the **left-right action**.

Introduction

The group $GL_n(\mathbb{F}) \times GL_n(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the **left-right action**.

• Corresponds to two independent changes of basis in \mathbb{F}^n .

The group $GL_n(\mathbb{F}) \times GL_n(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the **left-right action**.

- Corresponds to two independent changes of basis in \mathbb{F}^n .
- This action is natural when we identify $\mathbb{F}^{n \times n}$ with $\mathbb{F}^n \otimes \mathbb{F}^n$, and when we want to distinguish the domain and codomain.

The group $GL_n(\mathbb{F}) \times GL_n(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the **left-right action**.

- Corresponds to two independent changes of basis in \mathbb{F}^n .
- This action is natural when we identify $\mathbb{F}^{n \times n}$ with $\mathbb{F}^n \otimes \mathbb{F}^n$, and when we want to distinguish the domain and codomain.
- Certain properties are invariant under this action, e.g. rank.

The group $GL_n(\mathbb{F}) \times GL_n(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the **left-right action**.

- Corresponds to two independent changes of basis in \mathbb{F}^n .
- This action is natural when we identify $\mathbb{F}^{n \times n}$ with $\mathbb{F}^n \otimes \mathbb{F}^n$, and when we want to distinguish the domain and codomain.
- Certain properties are invariant under this action, e.g. rank.

The group $GL_n(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the **conjugation action**.

The group $GL_n(\mathbb{F}) \times GL_n(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the **left-right action**.

- Corresponds to two independent changes of basis in \mathbb{F}^n .
- This action is natural when we identify $\mathbb{F}^{n \times n}$ with $\mathbb{F}^n \otimes \mathbb{F}^n$, and when we want to distinguish the domain and codomain.
- Certain properties are invariant under this action, e.g. rank.

The group $GL_n(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the **conjugation action**.

• Corresponds to a single change of basis in \mathbb{F}^n .

The group $GL_n(\mathbb{F}) \times GL_n(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the **left-right action**.

- Corresponds to two independent changes of basis in \mathbb{F}^n .
- This action is natural when we identify $\mathbb{F}^{n \times n}$ with $\mathbb{F}^n \otimes \mathbb{F}^n$, and when we want to distinguish the domain and codomain.
- Certain properties are invariant under this action, e.g. rank.

- Corresponds to a single change of basis in \mathbb{F}^n .
- This action is natural when we identify 𝔽^{n×n} with End(𝔽ⁿ), and when we care about multiplying matrices.

The group $GL_n(\mathbb{F}) \times GL_n(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the **left-right action**.

- Corresponds to two independent changes of basis in \mathbb{F}^n .
- This action is natural when we identify $\mathbb{F}^{n \times n}$ with $\mathbb{F}^n \otimes \mathbb{F}^n$, and when we want to distinguish the domain and codomain.
- Certain properties are invariant under this action, e.g. rank.

- Corresponds to a single change of basis in \mathbb{F}^n .
- This action is natural when we identify $\mathbb{F}^{n \times n}$ with $\operatorname{End}(\mathbb{F}^n)$, and when we care about multiplying matrices.
- Certain additional properties are invariant, e.g. nilpotency.

The group $GL_n(\mathbb{F}) \times GL_n(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the **left-right action**.

- Corresponds to two independent changes of basis in \mathbb{F}^n .
- This action is natural when we identify $\mathbb{F}^{n \times n}$ with $\mathbb{F}^n \otimes \mathbb{F}^n$, and when we want to distinguish the domain and codomain.
- Certain properties are invariant under this action, e.g. rank.
- Generalizes the action of $S_n \times S_n$, permuting the vertices of bipartite graphs.

- Corresponds to a single change of basis in \mathbb{F}^n .
- This action is natural when we identify 𝔽^{n×n} with End(𝔽ⁿ), and when we care about multiplying matrices.
- Certain additional properties are invariant, e.g. nilpotency.

The group $GL_n(\mathbb{F}) \times GL_n(\mathbb{F})$ acts on $\mathbb{F}^{n \times n}$ by the **left-right action**.

- Corresponds to two independent changes of basis in \mathbb{F}^n .
- This action is natural when we identify $\mathbb{F}^{n \times n}$ with $\mathbb{F}^n \otimes \mathbb{F}^n$, and when we want to distinguish the domain and codomain.
- Certain properties are invariant under this action, e.g. rank.
- Generalizes the action of $S_n \times S_n$, permuting the vertices of bipartite graphs.

- Corresponds to a single change of basis in \mathbb{F}^n .
- This action is natural when we identify $\mathbb{F}^{n \times n}$ with $\operatorname{End}(\mathbb{F}^n)$, and when we care about multiplying matrices.
- Certain additional properties are invariant, e.g. nilpotency.
- Generalizes the action of S_n , permuting the vertices of directed graphs.

Summary

ntroduction

Singularity

Nilpotency

Isomoprhism
• There are many connections (basic correspondences) between graphs and matrix spaces.

$$S_H$$
 satisfies P \iff H satisfies Q

- There are many connections (basic correspondences) between graphs and matrix spaces.
 - S_H satisfies P \iff H satisfies Q
- Matrix spaces help us understand graphs (e.g. randomized algorithm for perfect matchings).

• There are many connections (basic correspondences) between graphs and matrix spaces.

 S_H satisfies P \iff H satisfies Q

- Matrix spaces help us understand graphs (e.g. randomized algorithm for perfect matchings).
- Sometimes, the basic correspondence can be boosted to an inherited correspondence. Max. dim S
 Max. e(H)

for $\mathbf{S} \subseteq \mathbf{S}_G$ satisfying \mathbf{P} =

Max. e(H)for $H \subseteq G$ satisfying **Q**

• There are many connections (basic correspondences) between graphs and matrix spaces.

 S_H satisfies P \iff H satisfies Q

- Matrix spaces help us understand graphs (e.g. randomized algorithm for perfect matchings).
- Sometimes, the basic correspondence can be boosted to an inherited correspondence.

 $\begin{array}{rcl} \text{Max. dim } \boldsymbol{S} & & & \text{Max. } \boldsymbol{e}(H) \\ \text{for } \boldsymbol{S} \subseteq \boldsymbol{S}_G \text{ satisfying } \boldsymbol{P} & & & \text{for } H \subseteq G \text{ satisfying } \boldsymbol{Q} \end{array}$

• Graphs help us understand matrix spaces (e.g. generalizations of Dieudonné and Gerstenhaber's theorems).

• There are many connections (basic correspondences) between graphs and matrix spaces.

 S_H satisfies P \iff H satisfies Q

- Matrix spaces help us understand graphs (e.g. randomized algorithm for perfect matchings).
- Sometimes, the basic correspondence can be boosted to an inherited correspondence.

 $\begin{array}{rcl} & \text{Max. dim } \boldsymbol{S} & \\ \text{for } \boldsymbol{S} \subseteq \boldsymbol{S}_G \text{ satisfying } \boldsymbol{P} & \end{array} & = & \begin{array}{rcl} & \text{Max. } \boldsymbol{e}(H) \\ & \text{for } H \subseteq G \text{ satisfying } \boldsymbol{Q} \end{array}$

- Graphs help us understand matrix spaces (e.g. generalizations of Dieudonné and Gerstenhaber's theorems).
- For certain properties, matrix spaces are surprisingly rigid:
 - ► The lattice of subspaces of **S**_G is "not much richer" than the lattice of subgraphs of G.
 - The action of $GL_n(\mathbb{F})$ is "not much richer" than that of S_n .

troduction

Singularity

Nilpotency

Isomoprhism

Another basic correspondence: for a digraph H and an integer k, every $M \in \mathbf{S}_H$ has $\leq k$ non-zero eigenvalues \longleftrightarrow every set of disjoint cycles in H covers $\leq k$ vertices

Isomoprhism

Another basic correspondence: for a digraph H and an integer k, every $M \in \mathbf{S}_H$ has $\leq k$ every set of disjoint cycles non-zero eigenvalues \longleftrightarrow in H covers $\leq k$ vertices The case k = 0 recovers the basic correspondence between acyclicity and nilpotency.

Another basic correspondence: for a digraph H and an integer k, every $M \in \mathbf{S}_H$ has $\leq k$ \iff every set of disjoint cycles non-zero eigenvalues in H covers $\leq k$ vertices The case k = 0 recovers the basic correspondence between acyclicity and nilpotency.

The case k = n - 1 is equivalent to the basic correspondence between singularity and having no perfect matching.

Another basic correspondence: for a digraph H and an integer k, every $M \in S_H$ has $\leq k$ every set of disjoint cycles non-zero eigenvalues \Leftrightarrow in H covers $\leq k$ vertices The case k = 0 recovers the basic correspondence between acyclicity and nilpotency.

The case k = n - 1 is equivalent to the basic correspondence between singularity and having no perfect matching.

Conjecture (LQWWZ 2022)

There is an inherited correspondence for every digraph G.

Another basic correspondence: for a digraph H and an integer k, every $M \in \mathbf{S}_H$ has $\leq k$ \iff every set of disjoint cycles non-zero eigenvalues in H covers $\leq k$ vertices The case k = 0 recovers the basic correspondence between acyclicity and nilpotency.

The case k = n - 1 is equivalent to the basic correspondence between singularity and having no perfect matching.

Conjecture (LQWWZ 2022)

There is an inherited correspondence for every digraph G.

Theorem (Atkinson 1980)

If $|\mathbb{F}| > n$, the inherited correspondence holds for $G = \overleftarrow{K_n}$:

Max. dim **S** for $\mathbf{S} \subseteq \mathbb{F}^{n \times n}$: every $M \in \mathbf{S}$ has $\leq k$ non-zero eigenvalues

 Max. e(H) for n-vertex H:
every set of disjoint cycles in H covers ≤ k vertices

Another basic correspondence: for a digraph H and an integer k, every $M \in \mathbf{S}_H$ has $\leq k$ every set of disjoint cycles non-zero eigenvalues in H covers $\leq k$ vertices The case k = 0 recovers the basic correspondence between acyclicity and nilpotency.

The case k = n - 1 is equivalent to the basic correspondence between singularity and having no perfect matching.

Conjecture (LQWWZ 2022)

There is an inherited correspondence for every digraph G.

Theorem (Atkinson 1980)

If $|\mathbb{F}| > n$, the inherited correspondence holds for $G = \overleftarrow{K_n}$:

Max. dim **S** for $\mathbf{S} \subseteq \mathbb{F}^{n \times n}$: every $M \in \mathbf{S}$ has $\leq k$ non-zero eigenvalues

 Max. e(H) for n-vertex H:
every set of disjoint cycles in H covers ≤ k vertices

This generalizes both Dieudonné and Gerstenhaber's theorems.

Introduction

Nilpotenc

Isomoprhisn

ntroduction

Singularity

Nilpotency

Isomoprhism

Develop this theory further!

Introduction				
	Inti		luct.	
		UU	iuci	

Isomoprhism

Develop this theory further!

• Which properties have basic and inherited correspondences?

ntroductu	
	211

- Which properties have basic and inherited correspondences?
- Which properties have basic correspondences but not inherited versions (e.g. isomoprhism)?

- Which properties have basic and inherited correspondences?
- Which properties have basic correspondences but not inherited versions (e.g. isomoprhism)?
- Is there some general characterization (or necessary/sufficient conditions) of which properties have inherited correspondences?

- Which properties have basic and inherited correspondences?
- Which properties have basic correspondences but not inherited versions (e.g. isomoprhism)?
- Is there some general characterization (or necessary/sufficient conditions) of which properties have inherited correspondences?
 - Why is the structure of S_G not much richer than that of G?

- Which properties have basic and inherited correspondences?
- Which properties have basic correspondences but not inherited versions (e.g. isomoprhism)?
- Is there some general characterization (or necessary/sufficient conditions) of which properties have inherited correspondences?
 - Why is the structure of S_G not much richer than that of G?
 - A characterization may give a unified proof of Dieudonné and Gerstenhaber's theorems.

- Which properties have basic and inherited correspondences?
- Which properties have basic correspondences but not inherited versions (e.g. isomoprhism)?
- Is there some general characterization (or necessary/sufficient conditions) of which properties have inherited correspondences?
 - Why is the structure of S_G not much richer than that of G?
 - A characterization may give a unified proof of Dieudonné and Gerstenhaber's theorems.
 - A characterization may resolve the conjecture on the previous slide, generalizing Atkinson's theorem.

Thank you!

troduction

Singularity

Nilpotency

Isomoprhism