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Let F be a field (usually in this talk you lose nothing from assuming F = R or F = C).
Let Fm×n denote the vector space of m× n matrices with entries in F. In this talk, we will
be studying subspaces of the vector space Fm×n; in other words, we will be studying matrix
spaces, i.e. linear spaces of matrices.

At first, it’s not clear if there’s anything to study here. Indeed, we know that all vector
spaces of the same dimension over the same field are isomorphic, so it’s not clear why a d-
dimensional subspace of Fm×n should be any different from Fd. However, we gain additional
structure from the fact that we view the elements as matrices: namely, for every property of
matrices, we can ask about matrix spaces where all elements have that property. Here are a
few examples we will discuss later.

• What can we say about a matrix space S ⊆ Fm×n if every M ∈ S has rank at most r?

• What can we say about a matrix space S ⊆ Fn×n if every M ∈ S is singular?

• What can we say about a matrix space S ⊆ Fn×n if every non-zero M ∈ S is non-
singular?

• What can we say about a matrix space S ⊆ Fn×n if every M ∈ S is nilpotent?

In general, answering these questions can be very difficult. For example, finding a
polynomial-time algorithm to determine whether a matrix space S ⊆ Fn×n is singular (mean-
ing that every matrix in it is singular) is a famously difficult problem in theoretical computer
science. In fact, by combining results of Valiant and Impagliazzo–Kabanets, there is a re-
markable fact: the existence of a polynomial-time algorithm for this problem implies a result
that is very akin to P 6= NP. More precisely, if such a polynomial-time algorithm exists,
then one obtains unconditional lower bounds on either arithmetic or Boolean circuits: either
VNP * VP or NEXP * P/poly. I won’t explain what this means, nor how to prove it, but
it shows that there is a surprising depth to these innocent-looking problems.

1 Thirteen1 ways of looking at a matrix space

We can always think of a matrix space S ⊆ Fm×n as just that—a vector subspace of Fm×n.
However, there is another very useful perspective on matrix spaces, which also reveals the
close connection between this topic and abstract algebra.

Given a matrix space S ⊆ Fm×n, we may pick a basis A1, . . . , Ad of S, so that each Ai is
an m × n matrix. Then every element of S can be written as x1A1 + · · · + xdAd for some
x1, . . . , xd ∈ F. If we treat x1, . . . , xd as variables (or just abstract symbols), we can add all
of this and find that a generic element of S is a matrix whose entries are homogeneous linear
polynomials in x1, . . . , xd. Namely, the (i, j) entry of some generic element of S is simply
(A1)i,jx1 + · · ·+ (Ad)i,jxd, where here (A1)i,j, . . . , (Ad)i,j are scalars in F.

Definition 1.1. A symbolic matrix over F is a matrix whose entries are homogeneous linear
polynomials in variables x1, . . . , xd, where the coefficients of the polynomials are from F.
In other words, a symbolic matrix over F is simply a matrix over some polynomial ring
F[x1, . . . , xd], where we insist that all the entries are linear forms.

1Here, 13 = 2.
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The discussion above shows that given a matrix space S with a fixed basis A1, . . . , Ad,
we may create a symbolic matrix which we will call X(S) (note that we don’t record the
dependence on the basis, since it won’t end up mattering to us). Conversely, given a symbolic
matrix X, we may form a matrix space S by simply taking all possible evaluations of the
variables in F. Since we insist on the entries of our symbolic matrices being linear forms, it
is clear that doing this will yield a matrix space, and it is also clear that doing this to X(S)
recovers the space S.

In particular, when discussing matrix spaces, it is often easiest to represent them as
symbolic matrices. For example, rather than speaking of the matrix space spanned by
( 3 2
−1 0 ) and ( 1 0

−2 2 ), we can simply discuss the symbolic matrix
(

3x+y 2x
−x−2y 2y

)
.

The key fact we will need is that this conversion between matrix spaces and symbolic
matrices allows us to translate properties from one world to another: every matrix in S has
some property if and only if the single matrix X(S) has that same property, when viewed
as a matrix over a polynomial ring. Two specific instances of this fact are in the following
lemma, and it is usually easy to generalize this to any other property you might be interested
in.

Lemma 1.2. Let S ⊆ Fn×n be a matrix space, and let X(S) ∈ F[x1, . . . , xd]
n×n be the

corresponding symbolic matrix. The following hold assuming |F| is sufficiently large (|F| > n
suffices).

(a) Every M ∈ S is singular if and only if X(S) is singular.

(b) Every M ∈ S is nilpotent if and only if X(S) is nilpotent.

Proof. To prove (a), first suppose that X(S) is singular. This implies that det(X(S)), which
is an element of F[x1, . . . , xd], is the zero polynomial. That shows that for every evaluation
of x1, . . . , xd, the corresponding scalar matrix will have zero determinant, because we are
simply evaluating the zero polynomial at some point (x1, . . . , xd) = (a1, . . . , ad). Since every
M ∈ S can be obtained from X(S) by some such evaluation, we conclude that det(M) = 0
for all M ∈ S. For the converse, suppose that det(X(S)) is not the zero polynomial.
Since |F| is sufficiently large2, there is some evaluation (x1, . . . , xd) = (a1, . . . , ad) such that
det(X(S))(a1, . . . , ad) is not zero. But this evaluation yields some matrix M ∈ S, whose
determinant is non-zero.

For (b), the proof is nearly identical. A single n × n matrix M is nilpotent if and only
if Mn = 0. Every entry of X(S)n is some polynomial in the entries of X(S), and thus some
polynomial in x1, . . . , xd. If X(S) is nilpotent, then all these polynomials are identically
zero, so every evaluation of them is zero, so every M ∈ S is nilpotent. Conversely, if one of
these polynomials is non-zero, then there is some non-zero evaluation, and thus some M ∈ S
which is not nilpotent.

Remark. The assumption that |F| is large is actually necessary. For example, suppose

2By being careful here, one can obtain the bound |F| > n: we see that det(X(S)) has degree n, and
the Schwartz–Zippel lemma implies that no polynomial of degree n can vanish everywhere on a field of size
larger than n.
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F = F2. Then consider the matrix space given by

X(S) =

 0 x 0
0 0 y

x+ y 0 0


It is easy to see that for every choice of x, y ∈ F2, the corresponding matrix is singular: it
will have at least one all-zero row. However, det(X(S)) = x2y + xy2, which is not the zero
polynomial.

Similarly, we see that X(S) is not nilpotent (it certainly can’t be nilpotent if it’s non-
singular). However, for every evaluation of x, y ∈ F2, the matrix one gets is similar to a
strictly upper-triangular matrix, and thus is nilpotent.

In particular, when dealing with infinite fields like C, we see that we lose nothing by
studying properties of the symbolic matrix X(S) when we care about properties of matrices
in S. We also discover a connection to algebraic geometry. For example, every element of
a matrix space S is singular if and only if a single polynomial whose coefficients depend on
S—obtained as det(X(S))—is the zero polynomial.

One other consequence is that this seems to give us a nice algorithm for determining if
a matrix space S ⊆ Fn×n is singular. Namely, compute the symbolic matrix X(S), then
compute the polynomial det(X(S)) (which can be done in polynomial time by Gaussian
elimination), and then just check if this is the zero polynomial. The unfortunate issue
is that det(X(S)) is a polynomial of degree n in d variables. Such a polynomial will, in
general, have roughly dn monomials, and this is exponential in n. So even writing down this
polynomial, when expanded into monomials, will take exponential time. However, all is not
lost, and this technique does give a randomized polynomial-time algorithm for checking if S
is symbolic. Namely, pick a random evaluation for each of the variables in X(S), compute
the determinant of that, and see if it’s 0. If det(X(S)) is not the zero polynomial, then
for a random assignment of variables, we will get a non-zero value with high probability.
If det(X(S)) is the zero polynomial, then we will certainly get 0. In other words, if there
is some non-singular linear combination of a collection of matrices, then a random linear
combination will be non-singular with high probability.

This simple algorithm remains the best thing we know how to do for this problem, and
in fact, the main point of the Impagliazzo–Kabanets result mentioned earlier—that finding
a deterministic algorithm would yield computational lower bounds—is really a statement
about derandomization. If we can derandomize this probabilistic algorithm, we can prove
hardness results.

2 Matrix spaces of bounded rank

Given that fully understanding singular matrix spaces seems hard, it makes sense to start
with easier problems. For example, can we bound the dimension of a singular space of
matrices?

We can certainly say something: for example, if S ⊆ Fn×n has dimension n2, then it
must contain every n × n matrix, and thus cannot be singular. So if S is singular, then
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dimS ≤ n2 − 1. On the other hand, it is not too hard to come up with a singular matrix
space of dimension n2 − n: simply take the space of all matrices whose last row is 0. Where
does the truth lie between n2 − n and n2 − 1?

This question was first studied by Dieudonné in 1948, who solved it in order to address
an issue in invariant theory. Namely, Dieudonné was interested in characterizing the group
of symmetries of the space of singular matrices, i.e. the invariants of the algebraic variety in
Fn2

cut out by the single polynomial equation det(X) = 0. These symmetries were actually
already characterized by Frobenius in 1897 (apparently Dieudonné did not know this when he
studied this problem), using a different technique. Dieudonné’s technique, which is algebro-
geometric in nature, required classifying the maximal-dimensional singular matrix spaces. In
fact, there is a close connection between classifying maximal singular spaces and classifying
certain torsion-free sheaves on projective spaces, but I don’t really understand what this
means.

Anyway, Dieudonné proved that the lower bound is correct, namely that an n×n singular
matrix space has dimension at most n2 − n. There are two natural ways to generalize
Dieudonné’s theorem. The first, considered by Flanders, is to more generally study a space
of n × n matrices all of which have rank at most r, for some r < n. In this case, a natural
lower bound is nr, obtained by taking the space of all matrices whose last n − r rows are
all zero. Flanders proved that this lower bound is tight, at least when |F| is large enough.
The second natural generalization, considered (sort of implicitly) by Meshulam, is to move
beyond square matrices, and to consider m× n matrix spaces. In this case, we again have a
natural lower bound of max{mr, nr}, obtained by taking either m−r zero rows or n−r zero
columns. Again, this lower bound turns out to be tight (as shown by Meshulam), without
any restriction on |F|.

Theorem 2.1 (Dieudonné, Flanders, Meshulam). Let S ⊆ Fm×n have the property that
every matrix in S has rank at most r. Then dimS ≤ max{mr, nr}.

I will present Meshulam’s proof, which reveals a surprising connection between this topic
and graph theory. His proof needs a little bit of setup. First, let ≺ denote the lexicographic
ordering on [m] × [n], i.e. the ordering where (i, j) ≺ (i′, j′) if and only if i < i′ or i = i′

and j < j′. For an m × n matrix A, let p(A) denote the pivot of A, which is defined to
be the lexicographically first position in which A has a non-zero entry. Given a collection
A = {A1, . . . , Ad} of m × n matrices, let G(A) be the bipartite graph whose two parts are
[m] and [n], and whose edges are the pairs p(A1), . . . , p(Ad). In other words, we connect
i ∈ [m] to j ∈ [n] by an edge if (i, j) is the pivot of one of the matrices in A.

Recall that a matching in a graph is a collection of vertex-disjoint edges, and its size is
the number of such edges. The matching number ν(G) of a graph G is the size of the largest
matching it contains. Meshulam’s key lemma, which will easily imply Theorem 2.1, is the
following.

Lemma 2.2. Let A = {A1, . . . , Ad} be any collection of m × n matrices over any field F.
Then span(A1, . . . , Ad) contains a matrix of rank at least ν(G(A)).

Proof sketch. Suppose first, for simplicity, that each Ak is an elementary matrix, i.e. consists
of all zeroes except for a single one at position p(Ak). Suppose without loss of generality that
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a maximum matching in G(A) is given by the edges p(A1), . . . , p(Aν). This means that in
the matrix B = A1 + · · ·+Aν , we have ν ones and all other entries are zero, and these ν ones
appear in ν distinct rows and ν distinct columns. Indeed, this is exactly what a matching
in G(A) is: pivots of the matrices Ak which appear in distinct rows and columns. But this
shows that rankB = ν, and clearly B ∈ span(A1, . . . , Ad), which proves the lemma.

The main remaining point is that, although the special case above was extremely special,
the general case behaves essentially the same. Suppose again that p(A1), . . . , p(Aν) form a
maximum matching in G(A). It is no longer the case that B = A1 + · · · + Aν has a ν × ν
submatrix with exactly one 1 in each row and column, but it is “almost” like that. Indeed,
since we declared a pivot to be the lexicographically first non-zero entry of a matrix, we see
that the structure of B is something like that of an upper-triangular matrix. By exploiting
this structure, one can find a different matrix B′, still a linear combination of A1, . . . , Aν ,
whose rank is at least ν.

Proof of Theorem 2.1. Let S ⊆ Fm×n be a matrix space, and suppose that every matrix in
S has rank at most r. By performing Gaussian elimination, we can pick a basis A1, . . . , Ad
of S such that p(A1), . . . , p(Ad) are all distinct: this is a special case of the fact that every
subspace of FN has a basis where each basis vector has a distinct first non-zero coordinate.
Letting A = {A1, . . . , Ad}, we see that the graph G(A) has d = dim(S) edges. Moreover,
the matching number of G(A) is at most r, by Lemma 2.2.

Now, we need to recall König’s theorem, a fundamental result in graph theory. It says
that in any bipartite graph G, the matching number is equal to the vertex cover number,
namely the minimum number of vertices of G such that every edge is incident to one of them.
Recall that the vertices of G(A) are [m] ∪ [n], namely correspond to rows and columns of
the matrices. Because of this, we see that a vertex cover of G(A) is a collection of rows and
columns whose union contains p(A1), . . . , p(Ad).

Since every row contains at most n pivots, and every column contains at most m pivots,
we see that we need at least d/max{m,n} rows and columns to cover p(A1), . . . , p(Ad). But
by König’s theorem, we can find a collection of ν(G(A)) ≤ r rows and columns that cover
all these pivots. We conclude that

r ≥ ν(G(A)) ≥ d

max{m,n}
,

which is what we wanted to prove.

In addition to proving the bound on the dimension of a space all of whose elements have
rank at most r, this proof also shows us that the structure we came up with—namely a
matrix space consisting of r non-zero rows or columns—is really fundamental. Indeed, the
proof shows that in any matrix space with elements of rank at most r, the pivots of an
appropriately chosen basis must indeed lie in only r rows or columns. In fact, by using
the same ideas and a little more work, one can completely classify the spaces of dimension
max{rm, rn} with rank at most r: they can all be made into the form of having only r
non-zero rows or columns by applying an appropriate change of basis on the left or the right.

However, such a classification is much harder to find when the dimension is substantially
smaller than max{rm, rn}. Indeed, as we discussed above, it seems difficult to determine if
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an n × n matrix space is singular, i.e. if all its entires have rank at most n − 1. If we had
a good classification of such spaces, then one could expect an efficient algorithm to follow.
But there are a number of “exotic” singular spaces. A nice example is the space of n × n
anti-symmetric matrices, where n is odd.

3 Nilpotent spaces

Let S ⊆ Fn×n be a matrix space all of whose entries are nilpotent. What can we say
about S? This question was first studied by Gerstenhaber in the 1950s, motivated by some
questions in algebra: he was interested in developing the theory of non-associative algebras,
and questions about nilpotent matrix spaces arose naturally for much the same reason as
the nilradical arises naturally in the study of commutative rings.

As above, the most natural question is how “big” can such a nilpotent space be. Namely,
what is the maximum dimension of S ⊆ Fn×n if every matrix in S is nilpotent?

Since every nilpotent matrix is singular, we automatically get an upper bound of n2 − n
from Theorem 2.1. For the lower bound, a natural construction is the space of all strictly
upper-triangular matrices, i.e. the space of all matrices with zeroes on and below the main
diagonal. Every such matrix is certainly nilpotent, and this space has dimension

(
n
2

)
=

1
2
(n2−n), since there are

(
n
2

)
positions above the main diagonal. Thus, in this case, we have

a factor of two between our upper and lower bounds. Which is closer to the truth?
As with the case of matrix spaces of bounded rank, it turns out that this natural lower

bound is actually correct. This was proven for sufficiently large fields by Gerstenhaber, and
for all fields by Serezhkin in the 1980s.

Theorem 3.1 (Gerstenhaber, Serezhkin). Let S ⊆ Fn×n be a matrix space. If every matrix
in S is nilpotent, then dimS ≤

(
n
2

)
.

There are now a number of proofs known for this theorem, all beautiful and using a
variety of different ideas. My personal favorite proof is due to de Seguins Pazzis, who proves
Theorem 3.1 via a beautiful and surprising inductive argument. It is not at all obvious from
his proof as written, but it in fact turns out that this proof is also graph-theoretic at heart.
Indeed, much as Meshulam’s proof exploited a connection between the ranks of matrices
and matchings in bipartite graphs, de Seguins Pazzis’s proof is fundamentally about the
connection between nilpotent matrices and acyclic directed graphs. More generally, there
turns out to be a rich theory connecting between graph-theoretic properties and matrix-
theoretic ones, and many results about matrix spaces can be viewed as “quantum” versions
of graph-theoretic results.

4 Nowhere singular matrix spaces

For the last topic, I want to go in the opposite direction from the Dieudonné–Flanders–
Meshulam theorem. Namely, let us say that S ⊆ Fn×n is nowhere singular if every non-zero
matrix in S is invertible. This is basically the opposite extreme: rather than demanding that
every matrix in S be singular, we are demanding that every matrix in S be non-singular,
with the obvious exception of the zero matrix.
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It is very easy to come up with examples of one-dimensional nowhere singular spaces.
Namely, we can just pick any invertible matrix A ∈ Fn×n, and let S be the space spanned
by A. But it is not at all obvious how to construct even two-dimensional nowhere singular
spaces. In fact, in many instances, such spaces simply do not exist.

Proposition 4.1. Let S ⊆ Fn×n be nowhere singular. If F is algebraically closed, then
dimS ≤ 1.

Proof. Suppose for contradiction that dimS ≥ 2, and let A,B ∈ S be linearly independent.
Consider the polynomial p(λ) = det(A + λB), whose coefficients are in F. Since F is al-
gebraically closed, we conclude that p has a root, namely there exists some λ ∈ F so that
p(λ) = 0. But this implies that A+ λB is a singular matrix, and this is not the zero matrix
because A and B are linearly independent. This is a contradiction.

Because of this, we can’t hope to find interesting nowhere singular spaces over alge-
braically closed fields, such as C. What about over non-algebraically closed fields, like Q or
R? The same proof shows that even in these cases, we might need to temper our expectations.

Proposition 4.2. Let S ⊆ Rn×n be nowhere singular, and let n be odd. Then dimS ≤ 1.

Proof. As above, suppose for contradiction that A,B ∈ S are linearly independent, and let
p(λ) = det(A+λB). This is a polynomial with real coefficients whose degree, n, is odd. Since
every odd-degree real polynomial has a root, we can find some λ ∈ R such that p(λ) = 0,
which yields the same contradiction as above.

Nonetheless, when n is even, we can find nowhere singular spaces of real matrices with
dimension greater than 1. The simplest example is the 2× 2 space defined by the symbolic
matrix

X =

(
a b
−b a

)
.

We can directly compute that det(X) = a2 + b2, which is never zero for non-zero real a, b.
Thus, we have found a two-dimensional nowhere singular matrix space.

Going up to n = 4, we can find an even more interesting example, whose dimension is
four:

X =


a b c d
−b a −d c
−c d a −b
−d −c b a


One can directly check that

det(X) = (a2 + b2 + c2 + d2)2,

which is never zero for non-zero real a, b, c, d. This yields a 4-dimensional nowhere singular
real space for n = 4.

It is also not too hard to see that these two examples are best possible, and that a
nowhere singular n× n matrix space has dimension at most n.

Proposition 4.3. If S ⊆ Fn×n is nowhere singular, then dimS ≤ n.
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Proof. Let A1, . . . , Ad be a basis for S, and fix some non-zero vector v ∈ Fn. Consider the d
vectors A1v, . . . , Adv. If d > n, then these must be linearly independent, meaning that we
can find λ1, . . . , λd ∈ F, not all zero, so that λ1A1v + · · ·+ λdAdv = 0. But this implies that
λ1A1 + · · ·+ λdAd ∈ S has a non-trivial kernel, a contradiction.

Thus, we see that for odd n, the largest dimension of a nowhere singular space is 1, while
for n ∈ {2, 4}, the largest such dimension is n. It is not clear what pattern generalizes this,
and one can come up with several natural guesses. But I would certainly never guess the
following pattern.

Definition 4.4. For a positive integer n, we write n = (2a+1)24b+c for non-negative integers
a, b, c with c < 4; in other words, we consider the highest power of 2 dividing n, and then
further write that exponent in terms of its mod-4 behavior. Then the Hurwitz–Radon number
is defined as

HR(n) = 2c + 8b.

Theorem 4.5 (Hurwitz, Radon, Adams). The maximum dimension of an n × n nowhere
singular space of real matrices is HR(n).

The lower bound was proved by Hurwitz and Radon in the 1920s, by explicitly construct-
ing nowhere singular spaces in Rn×n of dimension HR(n). To understand where these con-
structions come from, we return to our examples above: the first one screams out “complex
numbers” while the latter screams out “quaternions”. This is, of course, not a coincidence,
and we make the following definition.

Definition 4.6. A family A1, . . . , At of n× n real orthogonal matrices is called a Hurwitz–
Radon family if A2

i = −I for all i and AiAj = −AjAi for all i 6= j.

Proposition 4.7. Let A1, . . . , At ∈ Rn×n be a Hurwitz–Radon family. Then the space S =
span(A1, . . . , At, I) is a nowhere singular matrix space of dimension t+ 1.

Proof. Note first that since each Ai is orthogonal and satisfies A2
i = −I, we conclude that

ATi = −Ai for all i. Suppose for contradiction that there exist λ1, . . . , λt, λ ∈ R so that
M := λ1A1 + · · ·+ λtAt + λI is singular. Note that

MMT = (λ1A1 + · · ·+ λtAt + λI)(−λ1A1 − · · · − λtAt + λI) = (λ21 + · · ·+ λ2t + λ2)I.

The left-hand side is singular, so we must have λ21 + · · ·+ λ2t + λ2 = 0, which proves that S
is nowhere singular.

The relations we require of a Hurwitz–Radon family are essentially the same as those
we require of the generators of C and H. More generally, a Clifford algebra is an algebraic
structure whose generators satisfy such relations, and C and H are the two smallest non-
trivial Clifford algebras. In order to turn a Clifford algebra into a Hurwitz–Radon family, we
simply need a map that embeds the Clifford algebra inside the matrix algebra Rn×n, namely
an orthogonal representation of the Clifford algebra.

As it turns out, Clifford algebras and their representations are fairly easy to understand,
and they can be fully classified. Using this classification, one can prove the following theorem.
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Theorem 4.8 (Hurwitz, Radon). The maximum size of a Hurwitz–Radon family in Rn×n

is HR(n)− 1.

This immediately implies the lower bound in Theorem 4.5, thanks to Proposition 4.7. The
upper bound is substantially harder, and was proved by Adams in the 1960s, in the process
of studying a different problem which arises naturally in topology. Namely, Adams was
studying families of linearly independent vector fields on spheres. Recall that a vector field
V on Sn−1 is an assignment of a vector Vx ∈ Rn to every point x of Sn−1, with the property
that Vx is orthogonal to x, and so that Vx varies continuously in x. A collection of vector
fields V (1), . . . , V (t) is called linearly independent if V

(1)
x , . . . , V

(t)
x are linearly independent

vectors in Rn for all x ∈ Sn−1.
The hairy ball theorem states that if n is odd, then every vector field V on Sn−1 must

vanish at some point, i.e. Vx = 0 for some x ∈ Sn−1. In particular, if n is odd, then there
does not exist any family of linearly independent vector fields on Sn−1. However, when n
is even, then one can always find at least one non-vanishing vector field on Sn−1. As a
natural generalization of the hairy ball theorem, one can ask for the maximum number of
linearly independent vector fields on Sn−1. The connection between this problem and that
of nowhere singular matrix spaces is given by the following.

Proposition 4.9. Let S ⊆ Rn×n be a nowhere singular space of dimension t+1. Then there
exist t linearly independent vector fields on Sn−1.

Proof. Let a basis of S be given by A1, . . . , At+1 ∈ Rn×n. By multiplying every matrix in S
by A−1t+1, we may assume that At+1 = I. For every x ∈ Sn−1 and every 1 ≤ i ≤ t, we define

V (i)
x = Aix− (x · Aix)x.

Note that V
(i)
x is orthogonal to x by design, since we have simply performed the Gram-

Schmidt orthogonalization process to ensure this. Additionally, the definition of V
(i)
x is

clearly continuous in x, so each V (i) is a vector field on Sn−1. To see that they are linearly
independent, suppose for contradiction that there exist x ∈ Sn−1 and λ1, . . . , λt ∈ R so that
λ1V

(1)
x + · · ·+ λtV

(t)
x = 0. This implies that

λ1A1x+ · · ·+ λtAtx− λx = 0,

where λ =
∑t

i=1 λi(x · Aix). But this in turn means that λ1A1 + · · · + λtAt − λI ∈ S is a
matrix with non-trivial kernel, contradicting the assumption that S is nowhere singular. So
we conclude that λ1 = · · · = λt = 0, as desired.

Thanks to this proposition, we see that we can find at least HR(n)−1 linearly independent
vector fields on Sn−1. Adams’s theorem is that this is actually best possible.

Theorem 4.10 (Adams). There do not exist HR(n) linearly independent vector fields on
Sn−1.

In order to prove this theorem, Adams had to define the so-called Adams operations
in topological K-theory. This allowed him to compute the topological K-theory of real
projective space, which turns out to be more or less equivalent to determining the number
of linearly independent vector fields on spheres. These operations are now central tools in
K-theory.
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