The Ramsey-Theoretic Monster Mash

Boo-val Wigderson

ITS Fellows' Seminar
October 31, 2023

Dreadful was the din Of hissing through the hall, thick swarming now With complicated monsters head and tail

John Milton, Paradise Lost X.521-3

Uutline

Introduction: behemoths of Ramsey theory

Ghosts of graph Ramsey theory

Sea monsters and Ramsey multiplicity

Shapeshifters and oriented Ramsey numbers

※utline

Introduction: behemoths of Ramsey theory

Ghosts of graph Ramsey theory

Sea monsters and Ramsey multiplicity

Shapeshifters and oriented Ramsey numbers

What is Ramsey theory?

What is Ramsey theory?

Theorem ("Folklore")
Given N points, if half are colored red, then there are N/2 red points.

What is Ramsey theory?

Given an $N \times N$ grid, if half the points are colored red, how large of a red subgrid can we find?

What is Ramsey theory?

Given an $N \times N$ grid, if half the points are colored red, how large of a red subgrid can we find?

What is Ramsey theory?

Theorem ("Folklore")
Given N points, if half are colored red, then there are N/2 red points.
Theorem (Kővári-Sós-Turán 1954)
Given an $N \times N$ grid, if half the points are colored red, then there is a $\log N \times \log N$ red subgrid.

What is Ramsey theory?

Given N points, if half are colored red, how many evenly spaced red points can we find?

What is Ramsey theory?

Given N points, if half are colored red, how many evenly spaced red points can we find?

What is Ramsey theory?

Theorem ("Folklore")

Given N points, if half are colored red, then there are N/2 red points.
Theorem (Kővári-Sós-Turán 1954)
Given an $N \times N$ grid, if half the points are colored red, then there is a $\log N \times \log N$ red subgrid.
Theorem (Szemerédi 1975, Gowers 2001)
Given N points, if half the points are colored red, then there are log log $\log \log \log N$ evenly spaced red points.

What is Ramsey theory?

Given an $N \times N$ grid, if half the points are colored red, how large of an evenly spaced red subgrid can we find?

What is Ramsey theory?

Given an $N \times N$ grid, if half the points are colored red, how large of an evenly spaced red subgrid can we find?

What is Ramsey theory?

Theorem ("Folklore")

Given N points, if half are colored red, then there are $N / 2$ red points.
Theorem (Kővári-Sós-Turán 1954)
Given an $N \times N$ grid, if half the points are colored red, then there is a $\log N \times \log N$ red subgrid.
Theorem (Szemerédi 1975, Gowers 2001)
Given N points, if half the points are colored red, then there are log $\log \log \log \log N$ evenly spaced red points.
Theorem (Furstenberg-Katznelson 1978, Nagle-Rödl-Schacht-Skokan 2006, Gowers 2007)

Given an $N \times N$ grid, if half the points are colored red, then there is a $\sqrt{A^{-1}(N)} \times \sqrt{A^{-1}(N)}$ evenly spaced red subgrid.

What is Ramsey theory?

Theorem ("Folklore")

Given N points, if half are colored red, then there are $N / 2$ red points.
Theorem (Kővári-Sós-Turán 1954)
Given an $N \times N$ grid, if half the points are colored red, then there is a $\log N \times \log N$ red subgrid.
Theorem (Szemerédi 1975, Gowers 2001)
Given N points, if half the points are colored red, then there are $\log \log \log \log \log N$ evenly spaced red points.
Theorem (Furstenberg-Katznelson 1978, Nagle-Rödl-Schacht-Skokan 2006, Gowers 2007)

Given an $N \times N$ grid, if half the points are colored red, then there is a $\sqrt{A^{-1}(N)} \times \sqrt{A^{-1}(N)}$ evenly spaced red subgrid.
Any large object contains a large structured subobject.

What is Ramsey theory?

Theorem ("Folklore")

Given N points, if half are colored red, then there are $N / 2$ red points.
Theorem (Kővári-Sós-Turán 1954)
Given an $N \times N$ grid, if half the points are colored red, then there is a $\log N \times \log N$ red subgrid.
Theorem (Szemerédi 1975, Gowers 2001)
Given N points, if half the points are colored red, then there are log $\log \log \log \log N$ evenly spaced red points.
Theorem (Furstenberg-Katznelson 1978,
Nagle-Rödl-Schacht-Skokan 2006, Gowers 2007)
Given an $N \times N$ grid, if half the points are colored red, then there is a $\sqrt{A^{-1}(N)} \times \sqrt{A^{-1}(N)}$ evenly spaced red subgrid.
Any large object contains a large structured subobject. Such results exist for integers, graphs, posets, Banach spaces...

※utline

Introduction: behemoths of Ramsey theory

Ghosts of graph Ramsey theory

Sea monsters and Ramsey multiplicity

Shapeshifters and oriented Ramsey numbers

Graph Ramsey theory

Graph Ramsey theory

There is a 2-coloring of the edges of K_{5} with no monochromatic triangle

Graph Ramsey theory

There is a 2-coloring of the edges of K_{5} with no monochromatic triangle

...but every 2 -coloring of the edges of K_{6} does have a monochromatic triangle.

Graph Ramsey theory

There is a 2 -coloring of the edges of K_{5} with no monochromatic triangle

...but every 2 -coloring of the edges of K_{6} does have a monochromatic triangle.

Graph Ramsey theory

There is a 2 -coloring of the edges of K_{5} with no monochromatic triangle

... but every 2 -coloring of the edges of K_{6} does have a monochromatic triangle.

Graph Ramsey theory

There is a 2 -coloring of the edges of K_{5} with no monochromatic triangle

...but every 2 -coloring of the edges of K_{6} does have a monochromatic triangle.

Graph Ramsey theory

There is a 2 -coloring of the edges of K_{5} with no monochromatic triangle

...but every 2 -coloring of the edges of K_{6} does have a monochromatic triangle.

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Theorem (Ramsey 1930, Erdős-Szekeres 1935) $r(t)$ exists (i.e. is finite). In fact, $r(t)<4^{t}$.

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Theorem (Ramsey 1930, Erdős-Szekeres 1935) $r(t)$ exists (i.e. is finite). In fact, $r(t)<4^{t}$.

For a lower bound we need a construction: a coloring of K_{N} with no monochromatic K_{t}.

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Theorem (Ramsey 1930, Erdős-Szekeres 1935)
$r(t)$ exists (i.e. is finite). In fact, $r(t)<4^{t}$.
For a lower bound we need a construction: a coloring of K_{N} with no monochromatic K_{t}.

Theorem (Erdős 1947)

$$
r(t)>2^{t / 2}
$$

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Theorem (Ramsey 1930, Erdős-Szekeres 1935)
$r(t)$ exists (i.e. is finite). In fact, $r(t)<4^{t}$.
For a lower bound we need a construction: a coloring of K_{N} with no monochromatic K_{t}.

Theorem (Erdős 1947)

$$
r(t)>2^{t / 2}
$$

Proof: Let $N=2^{t / 2}$. Consider a random two-coloring of $E\left(K_{N}\right)$.

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Theorem (Ramsey 1930, Erdős-Szekeres 1935)
$r(t)$ exists (i.e. is finite). In fact, $r(t)<4^{t}$.
For a lower bound we need a construction: a coloring of K_{N} with no monochromatic K_{t}.

Theorem (Erdős 1947)

$$
r(t)>2^{t / 2}
$$

Proof: Let $N=2^{t / 2}$. Consider a random two-coloring of $E\left(K_{N}\right)$.
$\mathbb{E}\left[\#\right.$ monochromatic $\left.K_{t}\right]$

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Theorem (Ramsey 1930, Erdős-Szekeres 1935)
$r(t)$ exists (i.e. is finite). In fact, $r(t)<4^{t}$.
For a lower bound we need a construction: a coloring of K_{N} with no monochromatic K_{t}.

Theorem (Erdős 1947)

$$
r(t)>2^{t / 2}
$$

Proof: Let $N=2^{t / 2}$. Consider a random two-coloring of $E\left(K_{N}\right)$.

$$
\mathbb{E}\left[\# \text { monochromatic } K_{t}\right]=\binom{N}{t} 2^{1-\binom{t}{2}}
$$

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Theorem (Ramsey 1930, Erdős-Szekeres 1935)
$r(t)$ exists (i.e. is finite). In fact, $r(t)<4^{t}$.
For a lower bound we need a construction: a coloring of K_{N} with no monochromatic K_{t}.

Theorem (Erdős 1947)

$$
r(t)>2^{t / 2}
$$

Proof: Let $N=2^{t / 2}$. Consider a random two-coloring of $E\left(K_{N}\right)$.

$$
\mathbb{E}\left[\# \text { monochromatic } K_{t}\right]=\binom{N}{t} 2^{1-\binom{t}{2}}<N^{t} 2^{-\frac{1}{2} t^{2}}
$$

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Theorem (Ramsey 1930, Erdős-Szekeres 1935)
$r(t)$ exists (i.e. is finite). In fact, $r(t)<4^{t}$.
For a lower bound we need a construction: a coloring of K_{N} with no monochromatic K_{t}.

Theorem (Erdős 1947)

$$
r(t)>2^{t / 2}
$$

Proof: Let $N=2^{t / 2}$. Consider a random two-coloring of $E\left(K_{N}\right)$.

$$
\mathbb{E}\left[\# \text { monochromatic } K_{t}\right]=\binom{N}{t} 2^{1-\binom{t}{2}}<N^{t} 2^{-\frac{1}{2} t^{2}}=1 .
$$

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Theorem (Ramsey 1930, Erdős-Szekeres 1935)
$r(t)$ exists (i.e. is finite). In fact, $r(t)<4^{t}$.
For a lower bound we need a construction: a coloring of K_{N} with no monochromatic K_{t}.

Theorem (Erdős 1947)

$$
r(t)>2^{t / 2}
$$

Proof: Let $N=2^{t / 2}$. Consider a random two-coloring of $E\left(K_{N}\right)$.

$$
\mathbb{E}\left[\# \text { monochromatic } K_{t}\right]=\binom{N}{t} 2^{1-\left(\frac{1}{2}\right)}<N^{t} 2^{-\frac{1}{2} t^{2}}=1 .
$$

So there exists a coloring of $E\left(K_{N}\right)$ with <1 monochromatic K_{t}.

Ghosts

Theorem (Erdős 1947)

$r(t)>2^{t / 2}$. In other words, if $N=2^{t / 2}$, then there exists a coloring of $E\left(K_{N}\right)$ with no monochromatic K_{t}.

Ghosts

Theorem (Erdős 1947)

$r(t)>2^{t / 2}$. In other words, if $N=2^{t / 2}$, then there exists a coloring of $E\left(K_{N}\right)$ with no monochromatic K_{t}.

The same proof shows that 99.99999% of the colorings of $E\left(K_{N}\right)$ have no monochromatic K_{t}.

Ghosts

Theorem (Erdős 1947)

$r(t)>2^{t / 2}$. In other words, if $N=2^{t / 2}$, then there exists a coloring of $E\left(K_{N}\right)$ with no monochromatic K_{t}.

The same proof shows that 99.99999% of the colorings of $E\left(K_{N}\right)$ have no monochromatic K_{t}. Then where are they?

Open problem (Erdős)

Find an explicit coloring on $N \geq 1.0001^{t}$ vertices with no monochromatic K_{t}.

Ghosts

Theorem (Erdős 1947)

$r(t)>2^{t / 2}$. In other words, if $N=2^{t / 2}$, then there exists a coloring of $E\left(K_{N}\right)$ with no monochromatic K_{t}.

The same proof shows that 99.99999% of the colorings of $E\left(K_{N}\right)$ have no monochromatic K_{t}. Then where are they?

Open problem (Erdős)

Find an explicit coloring on $N \geq 1.0001^{t}$ vertices with no monochromatic K_{t}.

Such Ramsey colorings are ghosts. We know they must exist, but we haven't been able to find one!

Ghosts

Theorem (Erdős 1947)

$r(t)>2^{t / 2}$. In other words, if $N=2^{t / 2}$, then there exists a coloring of $E\left(K_{N}\right)$ with no monochromatic K_{t}.

The same proof shows that 99.99999% of the colorings of $E\left(K_{N}\right)$ have no monochromatic K_{t}. Then where are they?

Open problem (Erdős)

Find an explicit coloring on $N \geq 1.0001^{t}$ vertices with no monochromatic K_{t}.

Such Ramsey colorings are ghosts. We know they must exist, but we haven't been able to find one!

Theorem (Li 2023)

There exists an explicit coloring on $N \geq 2^{t^{0.00001}}$ vertices with no monochromatic K_{t}.

Bell, book, and candle

Theorem (Ramsey 1930): If N is sufficiently large, every coloring of $E\left(K_{N}\right)$ contains a monochromatic K_{t}.

Bell, book, and candle

Theorem (Ramsey 1930): If N is sufficiently large, every coloring of $E\left(K_{N}\right)$ contains a monochromatic K_{t}.
How can we prove this? How do we exorcise the ghosts?

Bell, book, and candle

Theorem (Ramsey 1930): If N is sufficiently large, every coloring of $E\left(K_{N}\right)$ contains a monochromatic K_{t}.
How can we prove this? How do we exorcise the ghosts?
Definition
The book graph $B_{n}^{(k)}$ consists of n copies of K_{k+1} joined along a common K_{k}.

Bell, book, and candle

Theorem (Ramsey 1930): If N is sufficiently large, every coloring of $E\left(K_{N}\right)$ contains a monochromatic K_{t}.
How can we prove this? How do we exorcise the ghosts?
Definition
The book graph $B_{n}^{(k)}$ consists of n copies of K_{k+1} joined along a common K_{k}.

Bell, book, and candle

Theorem (Ramsey 1930): If N is sufficiently large, every coloring of $E\left(K_{N}\right)$ contains a monochromatic K_{t}.
How can we prove this? How do we exorcise the ghosts?
Definition
The book graph $B_{n}^{(k)}$ consists of n copies of K_{k+1} joined along a common K_{k}.

Bell, book, and candle

Theorem (Ramsey 1930): If N is sufficiently large, every coloring of $E\left(K_{N}\right)$ contains a monochromatic K_{t}.
How can we prove this? How do we exorcise the ghosts?
Definition
The book graph $B_{n}^{(k)}$ consists of n copies of K_{k+1} joined along a common K_{k}.

Bell, book, and candle

Theorem (Ramsey 1930): If N is sufficiently large, every coloring of $E\left(K_{N}\right)$ contains a monochromatic K_{t}.
How can we prove this? How do we exorcise the ghosts?
Definition
The book graph $B_{n}^{(k)}$ consists of n copies of K_{k+1} joined along a common K_{k}.

Key observation: Finding a large monochromatic book in K_{N} helps us find a monochromatic K_{t}.

Bell, book, and candle

Theorem (Ramsey 1930): If N is sufficiently large, every coloring of $E\left(K_{N}\right)$ contains a monochromatic K_{t}.
How can we prove this? How do we exorcise the ghosts?
Definition
The book graph $B_{n}^{(k)}$ consists of n copies of K_{k+1} joined along a common K_{k}.

Key observation: Finding a large monochromatic book in K_{N} helps us find a monochromatic K_{t}. In the n "page" vertices, it suffices to find a red K_{t} or a blue K_{t-k}.

Finding large books

Key observation: Finding a large monochromatic book in K_{N} helps us find a monochromatic K_{t}.

Finding large books

Key observation: Finding a large monochromatic book in K_{N} helps us find a monochromatic K_{t}.

Theorem (Conlon 2019)

Every coloring of $E\left(K_{N}\right)$ contains a monochromatic $B_{n}^{(k)}$ with

$$
n \geq 2^{-k} N-o(N)
$$

(and this is asymptotically tight).

Finding large books

Key observation: Finding a large monochromatic book in K_{N} helps us find a monochromatic K_{t}.
Theorem (Conlon 2019)
Every coloring of $E\left(K_{N}\right)$ contains a monochromatic $B_{n}^{(k)}$ with

$$
n \geq 2^{-k} N-O_{k}\left(\frac{N}{\log _{*} N}\right)
$$

(and this is asymptotically tight).

Finding large books

Key observation: Finding a large monochromatic book in K_{N} helps us find a monochromatic K_{t}.

Theorem (Conlon 2019)

Every coloring of $E\left(K_{N}\right)$ contains a monochromatic $B_{n}^{(k)}$ with

$$
n \geq 2^{-k} N-O_{k}\left(\frac{N}{\log _{*} N}\right)
$$

(and this is asymptotically tight).

Theorem (Conlon-Fox-W. 2022)

Every coloring of $E\left(K_{N}\right)$ contains a monochromatic $B_{n}^{(k)}$ with

$$
n \geq 2^{-k} N-O_{k}\left(\frac{N}{(\log \log \log N)^{1 / 25}}\right)
$$

Finding large books

Key observation: Finding a large monochromatic book in K_{N} helps us find a monochromatic K_{t}.

Theorem (Conlon 2019)

Every coloring of $E\left(K_{N}\right)$ contains a monochromatic $B_{n}^{(k)}$ with

$$
n \geq 2^{-k} N-O_{k}\left(\frac{N}{\log _{*} N}\right)
$$

(and this is asymptotically tight).

Theorem (Conlon-Fox-W. 2022)

Every coloring of $E\left(K_{N}\right)$ contains a monochromatic $B_{n}^{(k)}$ with

$$
n \geq 2^{-k} N-O_{k}\left(\frac{N}{(\log \log \log N)^{1 / 25}}\right)
$$

This result is still far too weak to improve the bound $r(t)<4^{t}$.

The book algorithm

Theorem (Erdős-Szekeres 1935, Erdős 1947)

$$
2^{t / 2}<r(t)<4^{t} .
$$

The book algorithm

Theorem (Erdős-Szekeres 1935, Erdős 1947)

$$
2^{t / 2}<r(t)<4^{t} .
$$

Theorem (Campos-Griffiths-Morris-Sahasrabudhe 2023)

$$
r(t)<3.993^{t} .
$$

The book algorithm

Theorem (Erdős-Szekeres 1935, Erdős 1947)

$$
2^{t / 2}<r(t)<4^{t} .
$$

Theorem (Campos-Griffiths-Morris-Sahasrabudhe 2023)

$$
r(t)<3.993^{t} .
$$

They introduced a "book algorithm" which can find some appropriate monochromatic book.

The book algorithm

Theorem (Erdős-Szekeres 1935, Erdős 1947)

$$
2^{t / 2}<r(t)<4^{t}
$$

Theorem (Campos-Griffiths-Morris-Sahasrabudhe 2023)

$$
r(t)<3.993^{t}
$$

They introduced a "book algorithm" which can find some appropriate monochromatic book.

The book algorithm

Theorem (Erdős-Szekeres 1935, Erdős 1947)

$$
2^{t / 2}<r(t)<4^{t}
$$

Theorem (Campos-Griffiths-Morris-Sahasrabudhe 2023)

$$
r(t)<3.993^{t}
$$

They introduced a "book algorithm" which can find some appropriate monochromatic book.

※utline

Introduction: behemoths of Ramsey theory

Ghosts of graph Ramsey theory

Sea monsters and Ramsey multiplicity

Shapeshifters and oriented Ramsey numbers

Edges vs. triangles

Edges vs. triangles

Edges vs. triangles

Edges vs. triangles

Edges vs. triangles

Edges vs. triangles

Edges vs. triangles

Edges vs. triangles

Edges vs. triangles

Edges vs. triangles

Edges vs. triangles

Densities

Theorem (Razborov 2008)

The lower envelope for edges vs. K_{3} is given by the function

$$
y=\frac{(t-1)(t-2 \sqrt{t(t-x(t+1))})(t+\sqrt{t(t-x(t+1))})^{2}}{(t(t+1))^{2}}
$$

where $t=\left\lfloor\frac{1}{1-x}\right\rfloor$.

Densities

Theorem (Razborov 2008, Nikiforov 2011, Reiher 2016)
The lower envelope for edges vs. K_{r} is given by the function

$$
y=\frac{(t-1)!(t-2 \sqrt{t(t-x(t+1))})(t+\sqrt{t(t-x(t+1))})^{r-1}}{(t(t+1))^{r-1}(t-r+1)!}
$$

where $t=\left\lfloor\frac{1}{1-x}\right\rfloor$.

Densities

Theorem (Razborov 2008, Nikiforov 2011, Reiher 2016)
The lower envelope for edges vs. K_{r} is given by the function

$$
y=\frac{(t-1)!(t-2 \sqrt{t(t-x(t+1))})(t+\sqrt{t(t-x(t+1))})^{r-1}}{(t(t+1))^{r-1}(t-r+1)!}
$$

where $t=\left\lfloor\frac{1}{1-x}\right\rfloor$.
Conjecture (Sidorenko 1993)
If H is bipartite, the lower envelope for edges vs. H is given by

$$
y=x^{m}
$$

where $m=e(H)$.

Densities

Theorem (Razborov 2008, Nikiforov 2011, Reiher 2016)
The lower envelope for edges vs. K_{r} is given by the function

$$
y=\frac{(t-1)!(t-2 \sqrt{t(t-x(t+1))})(t+\sqrt{t(t-x(t+1))})^{r-1}}{(t(t+1))^{r-1}(t-r+1)!}
$$

where $t=\left\lfloor\frac{1}{1-x}\right\rfloor$.

Conjecture (Sidorenko 1993)

If H is bipartite, the lower envelope for edges vs. H is given by

$$
y=x^{m}
$$

where $m=e(H)$.
"A random graph minimizes the number of copies of H, among all graphs with the same number of edges."

Ramsey multiplicity

Conjecture (Sidorenko 1993)

For bipartite H, a random graph minimizes the number of H copies.

Ramsey multiplicity

Conjecture (Sidorenko 1993)
For bipartite H, a random graph minimizes the number of H copies.
Can such a statement be true for general H ?

Ramsey multiplicity

Conjecture (Sidorenko 1993)

For bipartite H, a random graph minimizes the number of H copies.
Can such a statement be true for general H ?
Conjecture (Erdős 1962, Burr-Rosta 1980)
For any H, a random coloring minimizes the number of monochromatic copies of H.

Ramsey multiplicity

Conjecture (Sidorenko 1993)

For bipartite H, a random graph minimizes the number of H copies.
Can such a statement be true for general H ?
Conjecture (Erdős 1962, Burr-Rosta 1980)
For any H, a random coloring minimizes the number of monochromatic copies of H .
Theorem (Goodman 1959)
This is true for $H=K_{3}$.

Ramsey multiplicity

Conjecture (Sidorenko 1993)
For bipartite H, a random graph minimizes the number of H copies.
Can such a statement be true for general H ?
Conjecture (Erdős 1962, Burr-Rosta 1980)
For any H, a random coloring minimizes the number of monochromatic copies of H .

Theorem (Goodman 1959)
This is true for $H=K_{3}$.
Theorem (Thomason 1989)
This is false for $\mathrm{H}=\mathrm{K}_{4}$!

Ramsey multiplicity

Conjecture (Sidorenko 1993)

For bipartite H, a random graph minimizes the number of H copies.
Can such a statement be true for general H ?
Conjecture (Erdős 1962, Burr-Rosta 1980)
For any H , a random coloring minimizes the number of monochromatic copies of H .

Theorem (Goodman 1959)

This is true for $H=K_{3}$.
Theorem (Thomason 1989)
This is false for $H=K_{4}$!
There exists a coloring of $E\left(K_{N}\right)$ with $<\frac{1}{33}\binom{N}{4}$ monochromatic K_{4} (vs. $\frac{1}{32}\binom{N}{4}$ in a random coloring).

Ramsey multiplicity

Conjecture (Sidorenko 1993)

For bipartite H, a random graph minimizes the number of H copies.
Can such a statement be true for general H ?
Conjecture (Erdős 1962, Burr-Rosta 1980)
For any H, a random coloring minimizes the number of monochromatic copies of H .

Theorem (Goodman 1959)

This is true for $H=K_{3}$.
Theorem (Thomason 1989)
This is false for $\mathrm{H}=\mathrm{K}_{4}$!
There exists a coloring of $E\left(K_{N}\right)$ with $<\frac{1}{33}\binom{N}{4}$ monochromatic K_{4} (vs. $\frac{1}{32}\binom{N}{4}$ in a random coloring).
m-fold cover of an orthogonal tower with maximal Witt index.

A simpler monster

Conjecture (Erdős 1962, Burr-Rosta 1980)
For any H , a random coloring minimizes the number of monochromatic copies of H.

A simpler monster

Conjecture (Erdős 1962, Burr-Rosta 1980)

For any H, a random coloring minimizes the number of monochromatic copies of H .

Theorem (Fox 2008)

If H has chromatic number k and $\gg k^{2}$ edges, the Turán coloring beats the random coloring.

A simpler monster

Conjecture (Erdős 1962, Burr-Rosta 1980)

For any H, a random coloring minimizes the number of monochromatic copies of H.

Theorem (Fox 2008)

If H has chromatic number k and $\gg k^{2}$ edges, the Turán coloring beats the random coloring.

$k-1$ parts

Theorem (Fox-W. 2023)

If $H=K_{k}+$ many pendant edges, the Turán coloring minimizes the number of monochromatic copies of H.

A simpler monster

Conjecture (Erdős 1962, Burr-Rosta 1980)

For any H, a random coloring minimizes the number of monochromatic copies of H.

Theorem (Fox 2008)

If H has chromatic number k and $\gg k^{2}$ edges, the Turán coloring beats the random coloring.

$k-1$ parts

Theorem (Fox-W. 2023)

If $H=K_{k}+$ many pendant edges, the Turán coloring minimizes the number of monochromatic copies of H.

Open problem: Which coloring minimizes the number of K_{4} ?

Uutline

Introduction: behemoths of Ramsey theory

Ghosts of graph Ramsey theory

Sea monsters and Ramsey multiplicity

Shapeshifters and oriented Ramsey numbers

Ramsey numbers of graphs and digraphs

Ramsey numbers of graphs and digraphs

The Ramsey number $r(t)$ is the minimum N such that every
2-edge-coloring of K_{N} contains a monochromatic K_{t}.

$$
2^{t / 2}<r(t)<3.993^{t} .
$$

Ramsey numbers of graphs and digraphs

The Ramsey number $r(t)$ is the minimum N such that every
2-edge-coloring of K_{N} contains a monochromatic K_{t}.

$$
2^{t / 2}<r(t)<3.993^{t} .
$$

The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every edge orientation of K_{N} contains a transitive K_{t}.

Ramsey numbers of graphs and digraphs

The Ramsey number $r(t)$ is the minimum N such that every
2-edge-coloring of K_{N} contains a monochromatic K_{t}.

$$
2^{t / 2}<r(t)<3.993^{t} .
$$

The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_{t}.

Ramsey numbers of graphs and digraphs

The Ramsey number $r(t)$ is the minimum N such that every
2-edge-coloring of K_{N} contains a monochromatic K_{t}.

$$
2^{t / 2}<r(t)<3.993^{t} .
$$

The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_{t}.

$$
2^{t / 2}<\vec{r}(t)<2^{t} .
$$

Ramsey numbers of graphs and digraphs

The Ramsey number $r(t)$ is the minimum N such that every
2-edge-coloring of K_{N} contains a monochromatic K_{t}.

$$
2^{t / 2}<r(t)<3.993^{t} .
$$

The Ramsey number $r(H)$ of a graph H is the minimum N such that every 2-coloring of $E\left(K_{N}\right)$ contains a monochromatic copy of H.

The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_{t}.

$$
2^{t / 2}<\vec{r}(t)<2^{t} .
$$

Ramsey numbers of graphs and digraphs

The Ramsey number $r(t)$ is the minimum N such that every 2-edge-coloring of K_{N} contains a monochromatic K_{t}.

$$
2^{t / 2}<r(t)<3.993^{t} .
$$

The Ramsey number $r(H)$ of a graph H is the minimum N such that every 2 -coloring of $E\left(K_{N}\right)$ contains a monochromatic copy of H.

The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_{t}.

$$
2^{t / 2}<\vec{r}(t)<2^{t} .
$$

The oriented Ramsey number $\vec{r}(H)$ of an acyclic digraph H is the minimum N such that every N -vertex tournament contains a copy of H.

Ramsey numbers of graphs and digraphs

The Ramsey number $r(t)$ is the minimum N such that every 2-edge-coloring of K_{N} contains a monochromatic K_{t}.

$$
2^{t / 2}<r(t)<3.993^{t} .
$$

The Ramsey number $r(H)$ of a graph H is the minimum N such that every 2 -coloring of $E\left(K_{N}\right)$ contains a monochromatic copy of H.

Chvátal-Rödl-SzemerédiTrotter (1983): If H has t vertices and maximum degree Δ, then $r(H)=O_{\Delta}(t)$.

The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_{t}.

$$
2^{t / 2}<\vec{r}(t)<2^{t} .
$$

The oriented Ramsey number $\vec{r}(H)$ of an acyclic digraph H is the minimum N such that every N -vertex tournament contains a copy of H.

Ramsey numbers of graphs and digraphs

The Ramsey number $r(t)$ is the minimum N such that every 2-edge-coloring of K_{N} contains a monochromatic K_{t}.

$$
2^{t / 2}<r(t)<3.993^{t} .
$$

The Ramsey number $r(H)$ of a graph H is the minimum N such that every 2 -coloring of $E\left(K_{N}\right)$ contains a monochromatic copy of H.

Chvátal-Rödl-SzemerédiTrotter (1983): If H has t vertices and maximum degree Δ, then $r(H)=O_{\Delta}(t)$.

The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_{t}.

$$
2^{t / 2}<\vec{r}(t)<2^{t} .
$$

The oriented Ramsey number $\vec{r}(H)$ of an acyclic digraph H is the minimum N such that every N -vertex tournament contains a copy of H.

Bucić-Letzter-Sudakov (2019): If H has t vertices and maximum degree Δ, is it true that
$\vec{r}(H)=O_{\Delta}(t)$?

Ramsey numbers of graphs and digraphs

The Ramsey number $r(t)$ is the minimum N such that every
2-edge-coloring of K_{N} contains a monochromatic K_{t}.

$$
2^{t / 2}<r(t)<3.993^{t} .
$$

The Ramsey number $r(H)$ of a graph H is the minimum N such that every 2 -coloring of $E\left(K_{N}\right)$ contains a monochromatic copy of H.

Chvátal-Rödl-SzemerédiTrotter (1983): If H has t vertices and maximum degree Δ, then $r(H)=O_{\Delta}(t)$.

The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_{t}.

$$
2^{t / 2}<\vec{r}(t)<2^{t} .
$$

The oriented Ramsey number $\vec{r}(H)$ of an acyclic digraph H is the minimum N such that every N -vertex tournament contains a copy of H.

Bucić-Letzter-Sudakov (2019): If H has t vertices and maximum degree Δ, is it true that $\vec{r}(H)=O_{\Delta}(t)$?

Theorem (Fox-He-W. 2022)
No! For any $C>0$, there exist bounded-degree H with $\vec{r}(H)>t^{C}$.

Shapeshifters

Theorem (Fox-He-W. 2022)
For any $C>0$, there exist bounded-degree H with $\vec{r}(H)>t^{C}$.

Shapeshifters

Theorem (Fox-He-W. 2022)
For any $C>0$, there exist bounded-degree H with $\vec{r}(H)>t^{C}$.
Theorem (Fox-He-W. 2022)
$\vec{r}(H)$ is "small" if H has "few edge length scales".

Shapeshifters

Theorem (Fox-He-W. 2022)
For any $C>0$, there exist bounded-degree H with $\vec{r}(H)>t^{C}$.
Theorem (Fox-He-W. 2022)
$\vec{r}(H)$ is "small" if H has "few edge length scales".

Shapeshifters

Theorem (Fox-He-W. 2022)
For any $C>0$, there exist bounded-degree H with $\vec{r}(H)>t^{C}$.
Theorem (Fox-He-W. 2022)
$\vec{r}(H)$ is "small" if H has "few edge length scales".

Shapeshifters

Theorem (Fox-He-W. 2022)
For any $C>0$, there exist bounded-degree H with $\vec{r}(H)>t^{C}$.
Theorem (Fox-He-W. 2022)
$\vec{r}(H)$ is "small" if H has "few edge length scales".

Shapeshifters

Theorem (Fox-He-W. 2022)
For any $C>0$, there exist bounded-degree H with $\vec{r}(H)>t^{C}$.
Theorem (Fox-He-W. 2022)
$\vec{r}(H)$ is "small" if H has "few edge length scales".

The digraphs for which $\vec{r}(H)$ is "large" are shapeshifters: they have many edges at every length scale, despite having bounded degree.

Thank you!

