The Ramsey-Theoretic Monster Mash

Boo-val Wigderson

ITS Fellows' Seminar October 31, 2023

Dreadful was the din Of hissing through the hall, thick swarming now With complicated monsters head and tail

John Milton, Paradise Lost X.521-3

Introduction: behemoths of Ramsey theory

Ghosts of graph Ramsey theory

Sea monsters and Ramsey multiplicity

Shapeshifters and oriented Ramsey numbers

Sea monsters

Introduction: behemoths of Ramsey theory

Ghosts of graph Ramsey theory

Sea monsters and Ramsey multiplicity

Shapeshifters and oriented Ramsey numbers

Behemoths

Sea monsters

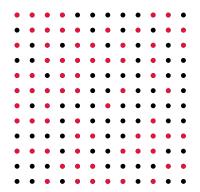
Behemoths

Theorem ("Folklore")

Given N points, if half are colored red, then there are N/2 red points.

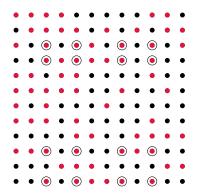
STO.

Given an $N \times N$ grid, if half the points are colored red, how large of a red subgrid can we find?



STO.

Given an $N \times N$ grid, if half the points are colored red, how large of a red subgrid can we find?



Theorem ("Folklore")

Given N points, if half are colored red, then there are N/2 red points.

Theorem (Kővári-Sós-Turán 1954)

Given an $N \times N$ grid, if half the points are colored red, then there is a $\log N \times \log N$ red subgrid.

Given *N* points, if half are colored red, how many evenly spaced red points can we find?

•										

Given *N* points, if half are colored red, how many evenly spaced red points can we find?

Theorem ("Folklore")

Given N points, if half are colored red, then there are N/2 red points.

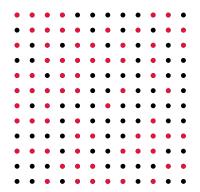
Theorem (Kővári-Sós-Turán 1954)

Given an $N \times N$ grid, if half the points are colored red, then there is a $\log N \times \log N$ red subgrid.

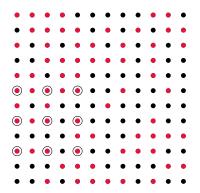
Theorem (Szemerédi 1975, Gowers 2001)

Given N points, if half the points are colored red, then there are log log log log log N evenly spaced red points.

Given an $N \times N$ grid, if half the points are colored red, how large of an evenly spaced red subgrid can we find?



Given an $N \times N$ grid, if half the points are colored red, how large of an evenly spaced red subgrid can we find?



Theorem ("Folklore")

Given N points, if half are colored red, then there are N/2 red points.

Theorem (Kővári-Sós-Turán 1954)

Given an $N \times N$ grid, if half the points are colored red, then there is a $\log N \times \log N$ red subgrid.

Theorem (Szemerédi 1975, Gowers 2001)

Given N points, if half the points are colored red, then there are log log log log log N evenly spaced red points.

Theorem (Furstenberg-Katznelson 1978, Nagle-Rödl-Schacht-Skokan 2006, Gowers 2007)

Given an $N \times N$ grid, if half the points are colored red, then there is a $\sqrt{A^{-1}(N)} \times \sqrt{A^{-1}(N)}$ evenly spaced red subgrid.

Theorem ("Folklore")

Given N points, if half are colored red, then there are N/2 red points.

Theorem (Kővári-Sós-Turán 1954)

Given an $N \times N$ grid, if half the points are colored red, then there is a $\log N \times \log N$ red subgrid.

Theorem (Szemerédi 1975, Gowers 2001)

Given N points, if half the points are colored red, then there are log log log log log N evenly spaced red points.

Theorem (Furstenberg-Katznelson 1978, Nagle-Rödl-Schacht-Skokan 2006, Gowers 2007)

Given an $N \times N$ grid, if half the points are colored red, then there is a $\sqrt{A^{-1}(N)} \times \sqrt{A^{-1}(N)}$ evenly spaced red subgrid.

Any large object contains a large structured subobject.

Theorem ("Folklore")

Given N points, if half are colored red, then there are N/2 red points.

Theorem (Kővári-Sós-Turán 1954)

Given an $N \times N$ grid, if half the points are colored red, then there is a $\log N \times \log N$ red subgrid.

Theorem (Szemerédi 1975, Gowers 2001)

Given N points, if half the points are colored red, then there are log log log log log N evenly spaced red points.

Theorem (Furstenberg-Katznelson 1978, Nagle-Rödl-Schacht-Skokan 2006, Gowers 2007)

Given an $N \times N$ grid, if half the points are colored red, then there is a $\sqrt{A^{-1}(N)} \times \sqrt{A^{-1}(N)}$ evenly spaced red subgrid.

Any large object contains a large structured subobject. Such results exist for integers, graphs, posets, Banach spaces...

Introduction: behemoths of Ramsey theory

Ghosts of graph Ramsey theory

Sea monsters and Ramsey multiplicity

Shapeshifters and oriented Ramsey numbers

There is a 2-coloring of the edges of K_5 with no monochromatic triangle

There is a 2-coloring of the edges of K_5 with no monochromatic triangle

There is a 2-coloring of the edges of K_5 with no monochromatic triangle

There is a 2-coloring of the edges of K_5 with no monochromatic triangle

There is a 2-coloring of the edges of K_5 with no monochromatic triangle

There is a 2-coloring of the edges of K_5 with no monochromatic triangle

r(t) = minimum N so that every 2-coloring of the edges of K_N has a monochromatic K_t .

r(t) = minimum N so that every 2-coloring of the edges of K_N has a monochromatic K_t .

Theorem (Ramsey 1930, Erdős-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, $r(t) < 4^t$.

r(t) = minimum N so that every 2-coloring of the edges of K_N has a monochromatic K_t .

Theorem (Ramsey 1930, Erdős-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, $r(t) < 4^t$.

For a lower bound we need a construction: a coloring of K_N with no monochromatic K_t .

r(t) = minimum N so that every 2-coloring of the edges of K_N has a monochromatic K_t .

Theorem (Ramsey 1930, Erdős-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, $r(t) < 4^t$.

For a lower bound we need a construction: a coloring of K_N with no monochromatic K_t .

Theorem (Erdős 1947)

 $r(t)>2^{t/2}.$

r(t) =minimum N so that every 2-coloring of the edges of K_N has a monochromatic K_t .

Theorem (Ramsey 1930, Erdős-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, $r(t) < 4^t$.

For a lower bound we need a construction: a coloring of K_N with no monochromatic K_t .

Theorem (Erdős 1947)

 $r(t)>2^{t/2}.$

Proof: Let $N = 2^{t/2}$. Consider a random two-coloring of $E(K_N)$.

r(t) =minimum N so that every 2-coloring of the edges of K_N has a monochromatic K_t .

Theorem (Ramsey 1930, Erdős-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, $r(t) < 4^t$.

For a lower bound we need a construction: a coloring of K_N with no monochromatic K_t .

Theorem (Erdős 1947)

 $r(t)>2^{t/2}.$

Proof: Let $N = 2^{t/2}$. Consider a random two-coloring of $E(K_N)$.

 $\mathbb{E}[\#$ monochromatic $K_t]$

r(t) =minimum N so that every 2-coloring of the edges of K_N has a monochromatic K_t .

Theorem (Ramsey 1930, Erdős-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, $r(t) < 4^t$.

For a lower bound we need a construction: a coloring of K_N with no monochromatic K_t .

Theorem (Erdős 1947)

 $r(t)>2^{t/2}.$

Proof: Let $N = 2^{t/2}$. Consider a random two-coloring of $E(K_N)$.

$$\mathbb{E}[\#\text{monochromatic } K_t] = \binom{N}{t} 2^{1 - \binom{t}{2}}$$

r(t) =minimum N so that every 2-coloring of the edges of K_N has a monochromatic K_t .

Theorem (Ramsey 1930, Erdős-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, $r(t) < 4^t$.

For a lower bound we need a construction: a coloring of K_N with no monochromatic K_t .

Theorem (Erdős 1947)

 $r(t)>2^{t/2}.$

Proof: Let $N = 2^{t/2}$. Consider a random two-coloring of $E(K_N)$.

$$\mathbb{E}[\#\text{monochromatic } K_t] = \binom{N}{t} 2^{1 - \binom{t}{2}} < N^t 2^{-\frac{1}{2}t^2}$$

r(t) =minimum N so that every 2-coloring of the edges of K_N has a monochromatic K_t .

Theorem (Ramsey 1930, Erdős-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, $r(t) < 4^t$.

For a lower bound we need a construction: a coloring of K_N with no monochromatic K_t .

Theorem (Erdős 1947)

 $r(t)>2^{t/2}.$

Proof: Let $N = 2^{t/2}$. Consider a random two-coloring of $E(K_N)$.

$$\mathbb{E}[\#\text{monochromatic } \mathcal{K}_t] = \binom{N}{t} 2^{1 - \binom{t}{2}} < N^t 2^{-\frac{1}{2}t^2} = 1.$$

r(t) =minimum N so that every 2-coloring of the edges of K_N has a monochromatic K_t .

Theorem (Ramsey 1930, Erdős-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, $r(t) < 4^t$.

For a lower bound we need a construction: a coloring of K_N with no monochromatic K_t .

Theorem (Erdős 1947)

 $r(t)>2^{t/2}.$

Proof: Let $N = 2^{t/2}$. Consider a random two-coloring of $E(K_N)$.

$$\mathbb{E}[\#\text{monochromatic } \mathcal{K}_t] = \binom{N}{t} 2^{1 - \binom{t}{2}} < N^t 2^{-\frac{1}{2}t^2} = 1.$$

So there exists a coloring of $E(K_N)$ with < 1 monochromatic K_t .

Ghosts

Theorem (Erdős 1947)

 $r(t) > 2^{t/2}$. In other words, if $N = 2^{t/2}$, then there exists a coloring of $E(K_N)$ with no monochromatic K_t .

Ghosts

Theorem (Erdős 1947)

 $r(t) > 2^{t/2}$. In other words, if $N = 2^{t/2}$, then there exists a coloring of $E(K_N)$ with no monochromatic K_t .

The same proof shows that 99.99999% of the colorings of $E(K_N)$ have no monochromatic K_t .

Ghosts

Theorem (Erdős 1947)

 $r(t) > 2^{t/2}$. In other words, if $N = 2^{t/2}$, then there exists a coloring of $E(K_N)$ with no monochromatic K_t .

The same proof shows that 99.9999% of the colorings of $E(K_N)$ have no monochromatic K_t . Then where are they?

Open problem (Erdős)

Find an explicit coloring on $N \ge 1.0001^t$ vertices with no monochromatic K_t .

Ghosts

Theorem (Erdős 1947)

 $r(t) > 2^{t/2}$. In other words, if $N = 2^{t/2}$, then there exists a coloring of $E(K_N)$ with no monochromatic K_t .

The same proof shows that 99.9999% of the colorings of $E(K_N)$ have no monochromatic K_t . Then where are they?

Open problem (Erdős)

Find an explicit coloring on $N \ge 1.0001^t$ vertices with no monochromatic K_t .

Such Ramsey colorings are ghosts. We know they must exist, but we haven't been able to find one!

Ghosts

Theorem (Erdős 1947)

 $r(t) > 2^{t/2}$. In other words, if $N = 2^{t/2}$, then there exists a coloring of $E(K_N)$ with no monochromatic K_t .

The same proof shows that 99.9999% of the colorings of $E(K_N)$ have no monochromatic K_t . Then where are they?

Open problem (Erdős)

Find an explicit coloring on $N \ge 1.0001^t$ vertices with no monochromatic K_t .

Such Ramsey colorings are ghosts. We know they must exist, but we haven't been able to find one!

Theorem (Li 2023)

There exists an explicit coloring on $N \ge 2^{t^{0.0001}}$ vertices with no monochromatic K_t .

Behemoths

Theorem (Ramsey 1930): If *N* is sufficiently large, every coloring of $E(K_N)$ contains a monochromatic K_t .

Theorem (Ramsey 1930): If *N* is sufficiently large, every coloring of $E(K_N)$ contains a monochromatic K_t .

How can we prove this? How do we exorcise the ghosts?

Theorem (Ramsey 1930): If *N* is sufficiently large, every coloring of $E(K_N)$ contains a monochromatic K_t .

How can we prove this? How do we exorcise the ghosts?

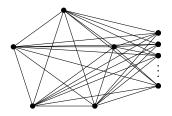
Definition

The book graph $B_n^{(k)}$ consists of *n* copies of K_{k+1} joined along a common K_k .

Theorem (Ramsey 1930): If *N* is sufficiently large, every coloring of $E(K_N)$ contains a monochromatic K_t .

How can we prove this? How do we exorcise the ghosts?

Definition The book graph $B_n^{(k)}$ consists of *n* copies of K_{k+1} joined along a common K_k .

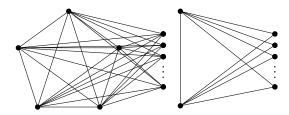


Theorem (Ramsey 1930): If *N* is sufficiently large, every coloring of $E(K_N)$ contains a monochromatic K_t .

How can we prove this? How do we exorcise the ghosts?

Definition

The book graph $B_n^{(k)}$ consists of *n* copies of K_{k+1} joined along a common K_k .

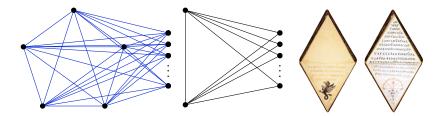


Theorem (Ramsey 1930): If *N* is sufficiently large, every coloring of $E(K_N)$ contains a monochromatic K_t .

How can we prove this? How do we exorcise the ghosts?

Definition

The book graph $B_n^{(k)}$ consists of *n* copies of K_{k+1} joined along a common K_k .

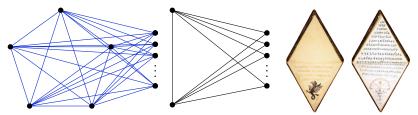


Theorem (Ramsey 1930): If *N* is sufficiently large, every coloring of $E(K_N)$ contains a monochromatic K_t .

How can we prove this? How do we exorcise the ghosts?

Definition

The book graph $B_n^{(k)}$ consists of *n* copies of K_{k+1} joined along a common K_k .



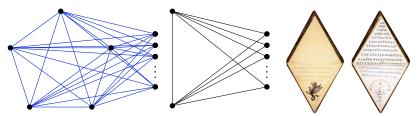
Key observation: Finding a large monochromatic book in K_N helps us find a monochromatic K_t .

Theorem (Ramsey 1930): If *N* is sufficiently large, every coloring of $E(K_N)$ contains a monochromatic K_t .

How can we prove this? How do we exorcise the ghosts?

Definition

The book graph $B_n^{(k)}$ consists of *n* copies of K_{k+1} joined along a common K_k .



Key observation: Finding a large monochromatic book in K_N helps us find a monochromatic K_t .

In the *n* "page" vertices, it suffices to find a red K_t or a blue K_{t-k} .

Behemoths

Sea monsters

Key observation: Finding a large monochromatic book in K_N helps us find a monochromatic K_t .

Key observation: Finding a large monochromatic book in K_N helps us find a monochromatic K_t .

Theorem (Conlon 2019)

Every coloring of $E(K_N)$ contains a monochromatic $B_n^{(k)}$ with

$$n \ge 2^{-k}N - o(N)$$

(and this is asymptotically tight).

Key observation: Finding a large monochromatic book in K_N helps us find a monochromatic K_t .

Theorem (Conlon 2019)

Every coloring of $E(K_N)$ contains a monochromatic $B_n^{(k)}$ with

$$n \geq 2^{-k}N - O_k\left(rac{N}{\log_* N}
ight)$$

(and this is asymptotically tight).

Key observation: Finding a large monochromatic book in K_N helps us find a monochromatic K_t .

Theorem (Conlon 2019)

Every coloring of $E(K_N)$ contains a monochromatic $B_n^{(k)}$ with

$$n \geq 2^{-k}N - O_k\left(\frac{N}{\log_* N}\right)$$

(and this is asymptotically tight).

Theorem (Conlon-Fox-W. 2022)

Every coloring of $E(K_N)$ contains a monochromatic $B_n^{(k)}$ with

$$n \geq 2^{-k}N - O_k\left(\frac{N}{(\log \log \log N)^{1/25}}\right).$$

Behemoths

Key observation: Finding a large monochromatic book in K_N helps us find a monochromatic K_t .

Theorem (Conlon 2019)

Every coloring of $E(K_N)$ contains a monochromatic $B_n^{(k)}$ with

$$n \geq 2^{-k}N - O_k\left(\frac{N}{\log_* N}\right)$$

(and this is asymptotically tight).

Theorem (Conlon-Fox-W. 2022)

Every coloring of $E(K_N)$ contains a monochromatic $B_n^{(k)}$ with

$$n \geq 2^{-k}N - O_k\left(\frac{N}{(\log \log \log N)^{1/25}}\right).$$

This result is still far too weak to improve the bound $r(t) < 4^t$.

Behemoths

Theorem (Erdős–Szekeres 1935, Erdős 1947) $2^{t/2} < r(t) < 4^t$.

Theorem (Erdős–Szekeres 1935, Erdős 1947) $2^{t/2} < r(t) < 4^t.$

Theorem (Campos-Griffiths-Morris-Sahasrabudhe 2023) $r(t) < 3.993^{t}$.

Theorem (Erdős–Szekeres 1935, Erdős 1947) $2^{t/2} < r(t) < 4^t.$

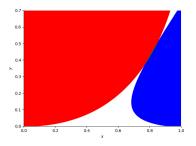
Theorem (Campos-Griffiths-Morris-Sahasrabudhe 2023) $r(t) < 3.993^{t}$.

They introduced a "book algorithm" which can find some appropriate monochromatic book.

Theorem (Erdős–Szekeres 1935, Erdős 1947) $2^{t/2} < r(t) < 4^t.$

Theorem (Campos-Griffiths-Morris-Sahasrabudhe 2023) $r(t) < 3.993^{t}.$

They introduced a "book algorithm" which can find some appropriate monochromatic book.



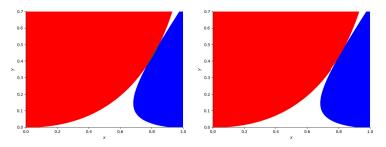
Ghosts

Sea monsters

Theorem (Erdős–Szekeres 1935, Erdős 1947) $2^{t/2} < r(t) < 4^t.$

Theorem (Campos-Griffiths-Morris-Sahasrabudhe 2023) $r(t) < 3.993^{t}.$

They introduced a "book algorithm" which can find some appropriate monochromatic book.



Ghosts

Sea monsters

Introduction: behemoths of Ramsey theory

Ghosts of graph Ramsey theory

Sea monsters and Ramsey multiplicity

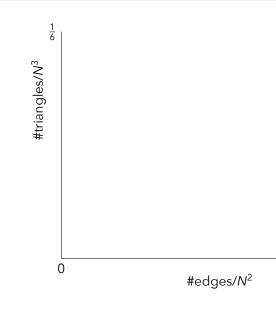
Shapeshifters and oriented Ramsey numbers

Sea monsters

Behemoths

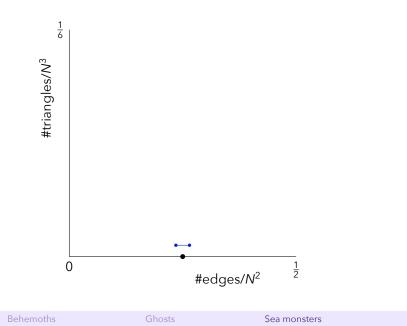
Ghost

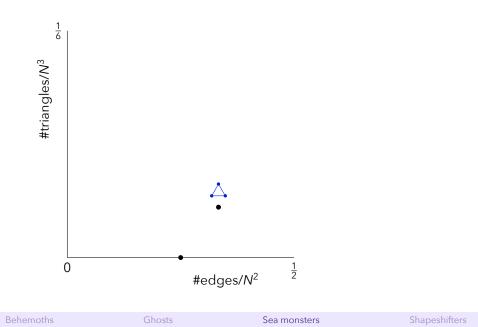
Sea monsters

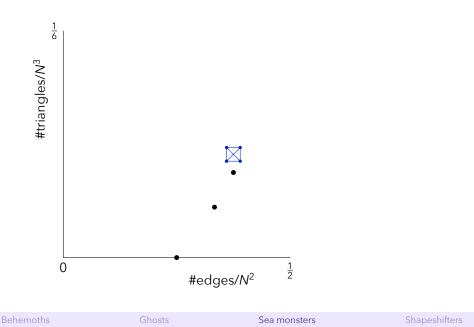


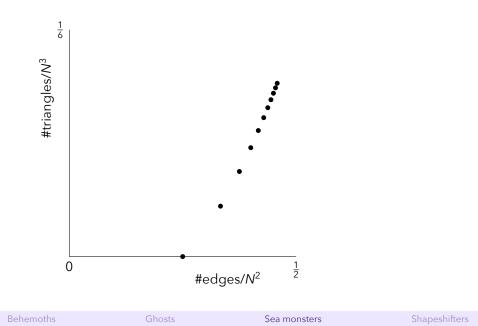
-			
Be		otl	he
DU			1.5

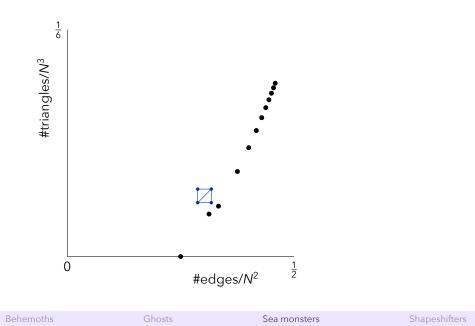
<u>1</u> 2

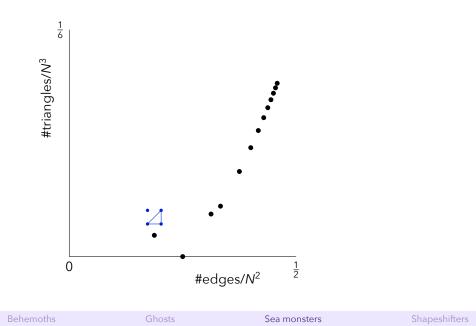


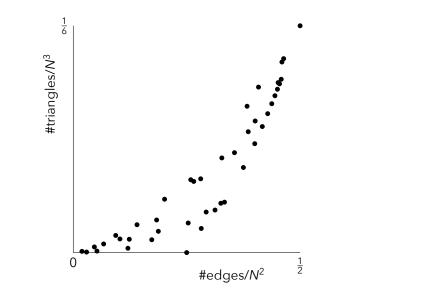


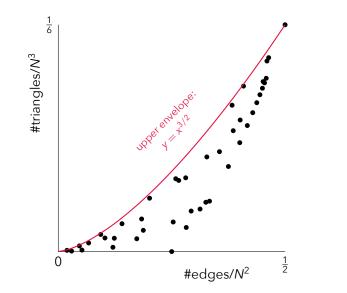


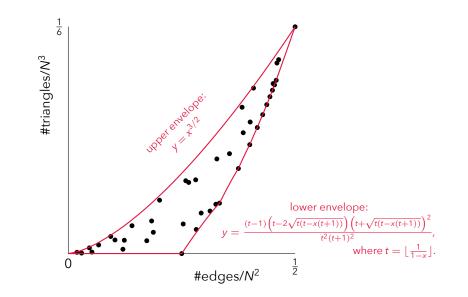












Densities

Theorem (Razborov 2008)

The lower envelope for edges vs. K_3 is given by the function

$$y = \frac{(t-1) \left(t - 2\sqrt{t(t-x(t+1))}\right) \left(t + \sqrt{t(t-x(t+1))}\right)^2}{(t(t+1))^2},$$

where $t = \lfloor \frac{1}{1-x} \rfloor$.

Densities

Theorem (Razborov 2008, Nikiforov 2011, Reiher 2016)

The lower envelope for edges vs. K_r is given by the function

$$y = \frac{(t-1)! \left(t - 2\sqrt{t(t-x(t+1))}\right) \left(t + \sqrt{t(t-x(t+1))}\right)^{r-1}}{(t(t+1))^{r-1}(t-r+1)!},$$
where $t = \lfloor -1 \rfloor$

where $t = \lfloor \frac{1}{1-x} \rfloor$.

Densities

Theorem (Razborov 2008, Nikiforov 2011, Reiher 2016)

The lower envelope for edges vs. K_r is given by the function

$$y = \frac{(t-1)! \left(t - 2\sqrt{t(t-x(t+1))}\right) \left(t + \sqrt{t(t-x(t+1))}\right)^{r-1}}{(t(t+1))^{r-1}(t-r+1)!},$$

where $t = \lfloor \frac{1}{1-x} \rfloor.$

Conjecture (Sidorenko 1993)

If H is bipartite, the lower envelope for edges vs. H is given by

$$y = x^m$$
,

where m = e(H).

Densities

Theorem (Razborov 2008, Nikiforov 2011, Reiher 2016)

The lower envelope for edges vs. K_r is given by the function

$$y = \frac{(t-1)! \left(t - 2\sqrt{t(t-x(t+1))}\right) \left(t + \sqrt{t(t-x(t+1))}\right)^{r-1}}{(t(t+1))^{r-1}(t-r+1)!},$$

where $t = \lfloor \frac{1}{1-x} \rfloor$.

Conjecture (Sidorenko 1993)

If H is bipartite, the lower envelope for edges vs. H is given by

$$y = x^m$$
,

where m = e(H).

"A random graph minimizes the number of copies of *H*, among all graphs with the same number of edges."

Behemoths

Ghosts

Sea monsters

Shapeshifters

Conjecture (Sidorenko 1993)

For bipartite H, a random graph minimizes the number of H copies.

Conjecture (Sidorenko 1993)

For bipartite H, a random graph minimizes the number of H copies.

Can such a statement be true for general H?

Conjecture (Sidorenko 1993)

For bipartite H, a random graph minimizes the number of H copies.

Can such a statement be true for general H?

Conjecture (Erdős 1962, Burr-Rosta 1980)

For any H, a random coloring minimizes the number of monochromatic copies of H.

Conjecture (Sidorenko 1993)

For bipartite H, a random graph minimizes the number of H copies.

Can such a statement be true for general H?

Conjecture (Erdős 1962, Burr-Rosta 1980)

For any H, a random coloring minimizes the number of monochromatic copies of H.

Theorem (Goodman 1959)

This is true for $H = K_3$.

Conjecture (Sidorenko 1993)

For bipartite H, a random graph minimizes the number of H copies.

Can such a statement be true for general H?

Conjecture (Erdős 1962, Burr-Rosta 1980)

For any H, a random coloring minimizes the number of monochromatic copies of H.

Theorem (Goodman 1959)

This is true for $H = K_3$.

Theorem (Thomason 1989)

```
This is false for H = K_4!
```


Conjecture (Sidorenko 1993)

For bipartite H, a random graph minimizes the number of H copies.

Can such a statement be true for general H?

Conjecture (Erdős 1962, Burr-Rosta 1980)

For any H, a random coloring minimizes the number of monochromatic copies of H.

Theorem (Goodman 1959)

This is true for $H = K_3$.

Theorem (Thomason 1989)

This is false for $H = K_4$! There exists a coloring of $E(K_N)$ with $< \frac{1}{33} {N \choose 4}$ monochromatic K_4 (vs. $\frac{1}{32} {N \choose 4}$ in a random coloring).

Conjecture (Sidorenko 1993)

For bipartite H, a random graph minimizes the number of H copies.

Can such a statement be true for general H?

Conjecture (Erdős 1962, Burr-Rosta 1980)

For any H, a random coloring minimizes the number of monochromatic copies of H.

Theorem (Goodman 1959)

This is true for $H = K_3$.

Theorem (Thomason 1989)

This is false for $H = K_4!$ There exists a coloring of $E(K_N)$ with $< \frac{1}{33} {N \choose 4}$ monochromatic K_4 (vs. $\frac{1}{32} {N \choose 4}$ in a random coloring).

m-fold cover of an orthogonal tower with maximal Witt index.

Behemoths

Conjecture (Erdős 1962, Burr-Rosta 1980)

For any H, a random coloring minimizes the number of monochromatic copies of H.

Conjecture (Erdős 1962, Burr-Rosta 1980)

For any H, a random coloring minimizes the number of monochromatic copies of H.

Theorem (Fox 2008)

If H has chromatic number k and $\gg k^2$ edges, the Turán coloring beats the random coloring.

Conjecture (Erdős 1962, Burr-Rosta 1980)

For any H, a random coloring minimizes the number of monochromatic copies of H.

Theorem (Fox 2008)

If H has chromatic number k and $\gg k^2$ edges, the Turán coloring beats the random coloring.

Theorem (Fox-W. 2023)

If $H = K_k + many$ pendant edges, the Turán coloring minimizes the number of monochromatic copies of H.

Sea monsters

Conjecture (Erdős 1962, Burr-Rosta 1980)

For any H, a random coloring minimizes the number of monochromatic copies of H.

Theorem (Fox 2008)

If H has chromatic number k and $\gg k^2$ edges, the Turán coloring beats the random coloring.

Theorem (Fox-W. 2023)

If $H = K_k + many$ pendant edges, the Turán coloring minimizes the number of monochromatic copies of H.

Open problem: Which coloring minimizes the number of K_4 ?

Behemoths

Sea monsters

Introduction: behemoths of Ramsey theory

Ghosts of graph Ramsey theory

Sea monsters and Ramsey multiplicity

Shapeshifters and oriented Ramsey numbers

Sea monsters

Shapeshifters

Shapeshifters

The Ramsey number r(t) is the minimum N such that every 2-edge-coloring of K_N contains a monochromatic K_t .

 $2^{t/2} < r(t) < 3.993^t$.

The Ramsey number r(t) is the minimum N such that every 2-edge-coloring of K_N contains a monochromatic K_t .

 $2^{t/2} < r(t) < 3.993^t.$

The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every edge orientation of K_N contains a transitive K_t .

The Ramsey number r(t) is the minimum N such that every 2-edge-coloring of K_N contains a monochromatic K_t .

 $2^{t/2} < r(t) < 3.993^t.$

The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_t .

The Ramsey number r(t) is the minimum N such that every 2-edge-coloring of K_N contains a monochromatic K_t .

 $2^{t/2} < r(t) < 3.993^t.$

The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_t .

$$2^{t/2} < \vec{r}(t) < 2^t$$
.

The Ramsey number r(t) is the minimum N such that every 2-edge-coloring of K_N contains a monochromatic K_t .

 $2^{t/2} < r(t) < 3.993^t$.

The Ramsey number r(H) of a graph H is the minimum N such that every 2-coloring of $E(K_N)$ contains a monochromatic copy of H.

The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_t .

$$2^{t/2} < \vec{r}(t) < 2^t$$
.

The Ramsey number r(t) is the minimum N such that every 2-edge-coloring of K_N contains a monochromatic K_t .

 $2^{t/2} < r(t) < 3.993^t$.

The Ramsey number r(H) of a graph H is the minimum N such that every 2-coloring of $E(K_N)$ contains a monochromatic copy of H.

The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_t .

 $2^{t/2} < \vec{r}(t) < 2^t.$

The oriented Ramsey number $\vec{r}(H)$ of an acyclic digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

The Ramsey number r(t) is the minimum N such that every 2-edge-coloring of K_N contains a monochromatic K_t .

 $2^{t/2} < r(t) < 3.993^t$.

The Ramsey number r(H) of a graph H is the minimum N such that every 2-coloring of $E(K_N)$ contains a monochromatic copy of H.

Chvátal-Rödl-Szemerédi-Trotter (1983): If *H* has *t* vertices and maximum degree Δ , then $r(H) = O_{\Delta}(t)$. The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_t .

 $2^{t/2} < \vec{r}(t) < 2^t.$

The oriented Ramsey number $\vec{r}(H)$ of an acyclic digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

The Ramsey number r(t) is the minimum N such that every 2-edge-coloring of K_N contains a monochromatic K_t .

 $2^{t/2} < r(t) < 3.993^t$.

The Ramsey number r(H) of a graph H is the minimum N such that every 2-coloring of $E(K_N)$ contains a monochromatic copy of H.

Chvátal-Rödl-Szemerédi-Trotter (1983): If *H* has *t* vertices and maximum degree Δ , then $r(H) = O_{\Delta}(t)$. The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_t .

 $2^{t/2} < \vec{r}(t) < 2^t.$

The oriented Ramsey number $\vec{r}(H)$ of an acyclic digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Bucić-Letzter-Sudakov (2019): If *H* has *t* vertices and maximum degree Δ , is it true that $\vec{r}(H) = O_{\Delta}(t)$?

The Ramsey number r(t) is the minimum N such that every 2-edge-coloring of K_N contains a monochromatic K_t .

 $2^{t/2} < r(t) < 3.993^t$.

The Ramsey number r(H) of a graph H is the minimum N such that every 2-coloring of $E(K_N)$ contains a monochromatic copy of H.

Chvátal-Rödl-Szemerédi-Trotter (1983): If *H* has *t* vertices and maximum degree Δ , then $r(H) = O_{\Delta}(t)$. The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_t .

 $2^{t/2} < \vec{r}(t) < 2^t.$

The oriented Ramsey number $\vec{r}(H)$ of an acyclic digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Bucić-Letzter-Sudakov (2019): If *H* has *t* vertices and maximum degree Δ , is it true that $\vec{r}(H) = O_{\Delta}(t)$?

Theorem (Fox-He-W. 2022)

No! For any C > 0, there exist bounded-degree H with $\vec{r}(H) > t^C$.

Behemoths

Theorem (Fox-He-W. 2022)

For any C > 0, there exist bounded-degree H with $\vec{r}(H) > t^{C}$.

Theorem (Fox-He-W. 2022)

For any C > 0, there exist bounded-degree H with $\vec{r}(H) > t^{C}$.

Theorem (Fox-He-W. 2022)

 $\vec{r}(H)$ is "small" if H has "few edge length scales".

Theorem (Fox-He-W. 2022)

For any C > 0, there exist bounded-degree H with $\vec{r}(H) > t^C$.

Theorem (Fox-He-W. 2022)

 $\vec{r}(H)$ is "small" if H has "few edge length scales".

Theorem (Fox-He-W. 2022)

For any C > 0, there exist bounded-degree H with $\vec{r}(H) > t^C$.

Theorem (Fox-He-W. 2022)

 $\vec{r}(H)$ is "small" if H has "few edge length scales".

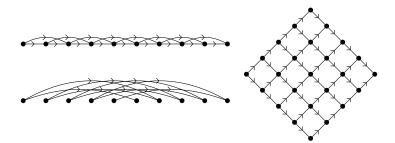
Shapeshifters

Theorem (Fox-He-W. 2022)

For any C > 0, there exist bounded-degree H with $\vec{r}(H) > t^{C}$.

Theorem (Fox-He-W. 2022)

 $\vec{r}(H)$ is "small" if H has "few edge length scales".

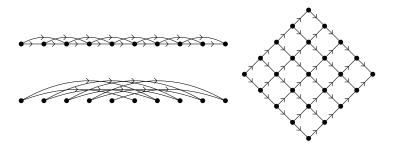


Theorem (Fox-He-W. 2022)

For any C > 0, there exist bounded-degree H with $\vec{r}(H) > t^C$.

Theorem (Fox-He-W. 2022)

 $\vec{r}(H)$ is "small" if H has "few edge length scales".



The digraphs for which $\vec{r}(H)$ is "large" are shapeshifters: they have many edges at every length scale, despite having bounded degree.

Behemoths

Sea monsters

Shapeshifters

Thank you!