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Dreadful was the din
Of hissing through the hall, thick swarming now
With complicated monsters head and tail

John Milton, Paradise Lost X.521–3
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What is Ramsey theory?

Theorem (“Folklore”)
Given N points, if half are colored red, then there are N/2 red points.
Theorem (Kővári–Sós–Turán 1954)
Given an N × N grid, if half the points are colored red, then there is a
logN × logN red subgrid.
Theorem (Szemerédi 1975, Gowers 2001)
Given N points, if half the points are colored red, then there are
log log log log logN evenly spaced red points.
Theorem (Furstenberg–Katznelson 1978,
Nagle–Rödl–Schacht–Skokan 2006, Gowers 2007)
Given an N × N grid, if half the points are colored red, then there is a√
A−1(N) ×

√
A−1(N) evenly spaced red subgrid.

Any large object contains a large structured subobject.
Such results exist for integers, graphs, posets, Banach spaces…
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What is Ramsey theory?

Given N points, if half are colored red, how many evenly spaced red
points can we find?
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Graph Ramsey theory

There is a 2-coloring of the edges of K5 with no monochromatic
triangle

…but every 2-coloring of the edges of K6 does have a
monochromatic triangle.
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Ramsey numbers
r(t) =minimum N so that every 2-coloring of the edges of KN has a
monochromatic Kt.

Theorem (Ramsey 1930, Erdős–Szekeres 1935)
r(t) exists (i.e. is finite). In fact, r(t) < 4t.

For a lower bound we need a construction: a coloring of KN with no
monochromatic Kt.

Theorem (Erdős 1947)
r(t) > 2t/2.

Proof: Let N = 2t/2. Consider a random two-coloring of E(KN).

𝔼[#monochromatic Kt] =
(N
t

)
21−( t2) < Nt2− 1

2 t2 = 1.

So there exists a coloring of E(KN) with < 1 monochromatic Kt.
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Ghosts
Theorem (Erdős 1947)
r(t) > 2t/2. In other words, if N = 2t/2, then there exists a coloring of
E(KN) with no monochromatic Kt.

The same proof shows that 99.99999% of the colorings of E(KN)
have no monochromatic Kt. Then where are they?

Open problem (Erdős)
Find an explicit coloring on N ≥ 1.0001t vertices with no
monochromatic Kt.

Such Ramsey colorings are ghosts. We know they must exist, but we
haven’t been able to find one!
Theorem (Li 2023)
There exists an explicit coloring on N ≥ 2t0.00001 vertices with no
monochromatic Kt.
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Bell, book, and candle
Theorem (Ramsey 1930): If N is sufficiently large, every coloring of
E(KN) contains a monochromatic Kt.

How can we prove this? How do we exorcise the ghosts?

Definition
The book graph B(k)

n consists of n copies of Kk+1 joined along a
common Kk.

...
...

Key observation: Finding a large monochromatic book in KN helps
us find a monochromatic Kt.
In the n “page” vertices, it suffices to find a red Kt or a blue Kt−k.
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Finding large books
Key observation: Finding a large monochromatic book in KN helps
us find a monochromatic Kt.

Theorem (Conlon 2019)
Every coloring of E(KN) contains a monochromatic B(k)

n with

n ≥ 2−kN − o(N)

(and this is asymptotically tight).

Theorem (Conlon–Fox–W. 2022)
Every coloring of E(KN) contains a monochromatic B(k)

n with

n ≥ 2−kN − Ok

( N
(log log logN)1/25

)
.

This result is still far too weak to improve the bound r(t) < 4t.
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(log log logN)1/25

)
.

This result is still far too weak to improve the bound r(t) < 4t.
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The book algorithm
Theorem (Erdős–Szekeres 1935, Erdős 1947)

2t/2 < r(t) < 4t.

Theorem (Campos–Griffiths–Morris–Sahasrabudhe 2023)
r(t) < 3.993t.

They introduced a “book algorithm” which can find some
appropriate monochromatic book.
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Densities
Theorem (Razborov 2008)
The lower envelope for edges vs. K3 is given by the function

y =
(t − 1)

!

(
t − 2

√
t(t − x(t+ 1))

) (
t+

√
t(t − x(t+ 1))

) 2

(t(t+ 1)) 2

(t − r+ 1)!

,

where t = ⌊ 1
1−x⌋.

Conjecture (Sidorenko 1993)
If H is bipartite, the lower envelope for edges vs. H is given by

y = xm,

where m = e(H).

“A random graph minimizes the number of copies of H, among all
graphs with the same number of edges.”
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Ramsey multiplicity
Conjecture (Sidorenko 1993)
For bipartite H, a random graph minimizes the number of H copies.

Can such a statement be true for general H?

Conjecture (Erdős 1962, Burr–Rosta 1980)
For any H, a random coloring minimizes the number of
monochromatic copies of H.

Theorem (Goodman 1959)
This is true for H = K3.

Theorem (Thomason 1989)
This is false for H = K4!
There exists a coloring of E(KN) with < 1

33
(N
4
)
monochromatic K4

(vs. 1
32

(N
4
)
in a random coloring).

m-fold cover of an orthogonal tower with maximal Witt index.
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A simpler monster

Conjecture (Erdős 1962, Burr–Rosta 1980)
For any H, a random coloring minimizes the number of
monochromatic copies of H.

Theorem (Fox 2008)
If H has chromatic number k and ≫ k2 edges,
the Turán coloring beats the random coloring.

k − 1 parts

Theorem (Fox–W. 2023)
If H = Kk +many pendant edges, the Turán
coloring minimizes the number of
monochromatic copies of H.

Open problem: Which coloring minimizes the number of K4?
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Ramsey numbers of graphs and digraphs

The Ramsey number r(t) is the
minimum N such that every
2-edge-coloring of KN contains
a monochromatic Kt.

2t/2 < r(t) < 3.993t.
The Ramsey number r(H) of a
graph H is the minimum N
such that every 2-coloring of
E(KN) contains a
monochromatic copy of H.
Chvátal–Rödl–Szemerédi–
Trotter (1983): If H has t
vertices and maximum degree
Δ, then r(H) = OΔ(t).

The oriented Ramsey number
r⃗(t) is the minimum N such that
every N-vertex tournament
contains a transitive Kt.

2t/2 < r⃗(t) < 2t.
The oriented Ramsey number
r⃗(H) of an acyclic digraph H is
the minimum N such that
every N-vertex tournament
contains a copy of H.
Bucić–Letzter–Sudakov (2019):
If H has t vertices and maximum
degree Δ, is it true that
r⃗(H) = OΔ(t)?

Theorem (Fox–He–W. 2022)
No! For any C > 0, there exist bounded-degree H with r⃗(H) > tC.
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graph H is the minimum N
such that every 2-coloring of
E(KN) contains a
monochromatic copy of H.
Chvátal–Rödl–Szemerédi–
Trotter (1983): If H has t
vertices and maximum degree
Δ, then r(H) = OΔ(t).

The oriented Ramsey number
r⃗(t) is the minimum N such that
every N-vertex tournament
contains a transitive Kt.

2t/2 < r⃗(t) < 2t.
The oriented Ramsey number
r⃗(H) of an acyclic digraph H is
the minimum N such that
every N-vertex tournament
contains a copy of H.

Bucić–Letzter–Sudakov (2019):
If H has t vertices and maximum
degree Δ, is it true that
r⃗(H) = OΔ(t)?
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Shapeshifters
Theorem (Fox–He–W. 2022)
For any C > 0, there exist bounded-degree H with r⃗(H) > tC.

Theorem (Fox–He–W. 2022)
r⃗(H) is “small” if H has “few edge length scales”.

The digraphs for which r⃗(H) is “large” are shapeshifters: they have
many edges at every length scale, despite having bounded degree.
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Thank you!
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