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Ramsey numbers

r(t) = minimum N so that every 2-coloring of the edges of Ky has a
monochromatic K;.

Theorem (Ramsey 1930, Erd8s-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, r(t) < 4%

For a lower bound we need a construction: a coloring of E(Ky) with
no monochromatic K;.

Theorem (Erddés 1947)
r(t) > 22,

Proof: Let N = 2/2. Consider a random two-coloring of E(Ky).
. N 1) to—1?
E[#monochromatic Ky = ; 272 < N'2720 =1,

So there exists a coloring of E(Ky) with < 1 monochromatic K;.
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r(t;g) = min. N so that any g-coloring of E(Ky) has monochromatic K;
Erdés-Szekeres (1935), Erdés (1947):

Va'<r(tq)<q®

t
Product coloring trick: r(t;q) > 2L7)2 ~ (2%) :

t—o(t)
Conlon-Ferber (2021): r(t;q) > (2%+C> ? .

1\ t—o(t)
W. (2021): (5q) > (2¥4) -
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Forx,y € Fy, letx-y = S, xiyi. We define a graph G; as follows.
Let Vi = {x € [} : x has an even number of 1s} = {x € F} : x - x = 0}.
Forx,y € V4, make xy adjacentifx-y = 1.

Fact 1: G; contains no K; (for t even). i 1100
Fact 2: G, has at most 25 +o(t")
independent sets of size < t. 1010
We color the edges of G; green.

0101 1001

Letp = 2-57°0), and keep each vertex of G; with probability p.

Color all remaining pairs red or blue at random.
E[#red or blue K] < 28¢ . pt. 21-() ~ (2*%f 28t 2*“) = 1.

No green K; by Fact 1, so r(t;3) > N ~ p|V;| = 25t-°0)
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More colors

If g — 1is a prime power, then one can do the same thing over [F_1.

One obtains
3

) > (2Hg - i)

t
This only beats the earlier bound r(t;q) > (Z%L%J) forqg € {3,4}.

For g > 4, Conlon and Ferber use the product coloring.
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A new approach for more colors

Overlay two random copies of G; in green

and .

The expected number of sets of size t
independent in both copies is < 27t +o(t"),
(Because a t-set is independent in either

copy with probability < 2=3t'=0(®) )

Keep each vertex with probability p (chosen later).
Color all remaining pairs red or blue at random.

1 t t
E[#red or blue K] < 2% . pt - 21-0) (p I 2’%t) .
Pick p = 2#1°() to obtain r(t;4) > N ~ p|V| = 2&t=o®),

How are we picking p > 1???
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Random homomorphisms to the rescue

Let p be any positive real number, and let N = p|V4|.
Pick a uniformly random function f: [N] — V;.

0000
1111 g 1100
0011 1010
0101 1001
1010 0011 0101 0101 0011 0110 0101 111 1010 oooo 0101 0110

Connect vertices in [N] if their labels are adjacent in G; to get Ge.
Ifp <1, G; looks like keeping vertices from G; with probability p.
If p > 1, itlooks like a random blowup.

Fact 1: 6: contains no K;.

Fact 2: E[#independent sets of size t in 237] <p'- 237

So the above argument works for any p, if interpreted correctly.
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Proof: Letp = (2%‘%) ,let N = p|V4|, and pick g — 2 random

functions [N] — V4. Overlay the resulting graphs G for the first qg-2
colors, then color the remaining pairs red or blue at random.

Theorem (Sawin 2022)

rit;q) > <2O<383796q70,267592)t_o(t).

Proof: No reason to use G;! Any graph G with no K; and few
independent sets of size < t can be plugged into the random
homomorphism machinery.

A better choice is G(n, p) with p = 0.454997 and n = p~/2,



Thank you!



