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Ramsey numbers

r(t) =minimum N so that every 2-coloring of the edges of KN has a
monochromatic Kt.

Theorem (Ramsey 1930, Erdős–Szekeres 1935)
r(t) exists (i.e. is finite). In fact, r(t) < 4t.

For a lower bound we need a construction: a coloring of E(KN) with
no monochromatic Kt.

Theorem (Erdős 1947)
r(t) > 2t/2.

Proof: Let N = 2t/2. Consider a random two-coloring of E(KN).

𝔼[#monochromatic Kt] =

(N
t

)
21−( t

2) < Nt2− 1
2 t2 = 1.

So there exists a coloring of E(KN) with < 1 monochromatic Kt.
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Multicolor Ramsey numbers
r(t) =min.N so that any 2-coloring of E(KN) has monochromatic Kt
Erdős–Szekeres (1935), Erdős (1947):

√
2 t < r(t) < 22t

Product coloring trick: r(t;q) > 2⌊ q
2 ⌋ t

2 ≈
(
2 q

4
)t
.

Conlon–Ferber (2021): r(t;q) >
(
2 7q

24+C
)t−o(t)

.

W. (2021): r(t;q) >
(
2 3q

8 − 1
4
)t−o(t)

.



Multicolor Ramsey numbers
r(t;q) =min.N so that any q-coloring of E(KN) has monochromatic Kt
Erdős–Szekeres (1935), Erdős (1947):

√
2 t < r(t) < 22t

Product coloring trick: r(t;q) > 2⌊ q
2 ⌋ t

2 ≈
(
2 q

4
)t
.

Conlon–Ferber (2021): r(t;q) >
(
2 7q

24+C
)t−o(t)

.

W. (2021): r(t;q) >
(
2 3q

8 − 1
4
)t−o(t)

.



Multicolor Ramsey numbers
r(t;q) =min.N so that any q-coloring of E(KN) has monochromatic Kt
Erdős–Szekeres (1935), Erdős (1947):

√q t < r(t;q) < qqt

Product coloring trick: r(t;q) > 2⌊ q
2 ⌋ t

2 ≈
(
2 q

4
)t
.

Conlon–Ferber (2021): r(t;q) >
(
2 7q

24+C
)t−o(t)

.

W. (2021): r(t;q) >
(
2 3q

8 − 1
4
)t−o(t)

.



Multicolor Ramsey numbers
r(t;q) =min.N so that any q-coloring of E(KN) has monochromatic Kt
Erdős–Szekeres (1935), Erdős (1947):

√q t < r(t;q) < qqt

Product coloring trick: r(t;q) > 2⌊ q
2 ⌋ t

2 ≈
(
2 q

4
)t
.

Conlon–Ferber (2021): r(t;q) >
(
2 7q

24+C
)t−o(t)

.

W. (2021): r(t;q) >
(
2 3q

8 − 1
4
)t−o(t)

.



Multicolor Ramsey numbers
r(t;q) =min.N so that any q-coloring of E(KN) has monochromatic Kt
Erdős–Szekeres (1935), Erdős (1947):

√q t < r(t;q) < qqt

Product coloring trick: r(t;q) > 2⌊ q
2 ⌋ t

2 ≈
(
2 q

4
)t
.

Conlon–Ferber (2021): r(t;q) >
(
2 7q

24+C
)t−o(t)

.

W. (2021): r(t;q) >
(
2 3q

8 − 1
4
)t−o(t)

.



Multicolor Ramsey numbers
r(t;q) =min.N so that any q-coloring of E(KN) has monochromatic Kt
Erdős–Szekeres (1935), Erdős (1947):

√q t < r(t;q) < qqt

Product coloring trick: r(t;q) > 2⌊ q
2 ⌋ t

2 ≈
(
2 q

4
)t
.

Conlon–Ferber (2021): r(t;q) >
(
2 7q

24+C
)t−o(t)

.

W. (2021): r(t;q) >
(
2 3q

8 − 1
4
)t−o(t)

.



Multicolor Ramsey numbers
r(t;q) =min.N so that any q-coloring of E(KN) has monochromatic Kt
Erdős–Szekeres (1935), Erdős (1947):

√q t < r(t;q) < qqt

Product coloring trick: r(t;q) > 2⌊ q
2 ⌋ t

2 ≈
(
2 q

4
)t
.

Conlon–Ferber (2021): r(t;q) >
(
2 7q

24+C
)t−o(t)

.

W. (2021): r(t;q) >
(
2 3q

8 − 1
4
)t−o(t)

.



Multicolor Ramsey numbers
r(t;q) =min.N so that any q-coloring of E(KN) has monochromatic Kt
Erdős–Szekeres (1935), Erdős (1947):

√q t < r(t;q) < qqt

Product coloring trick: r(t;q) > 2⌊ q
2 ⌋ t

2 ≈
(
2 q

4
)t
.

Conlon–Ferber (2021): r(t;q) >
(
2 7q

24+C
)t−o(t)

.

W. (2021): r(t;q) >
(
2 3q

8 − 1
4
)t−o(t)

.



The Conlon–Ferber construction

For x, y ∈ 𝔽t
2, let x · y =

∑t
i=1 xiyi. We define a graph Gt as follows.

Let Vt = {x ∈ 𝔽t
2 : x has an even number of 1s} = {x ∈ 𝔽t

2 : x · x = 0}.
For x, y ∈ Vt, make xy adjacent if x · y = 1.

Fact 1: Gt contains no Kt (for t even).
Fact 2: Gt has at most 2 5

8 t2+o(t2)

independent sets of size ≤ t.
We color the edges of Gt green.

0000
1100

1010

1001
0110

0101

0011

1111

Let p = 2− 1
8 t−o(t), and keep each vertex of Gt with probability p.

Color all remaining pairs red or blue at random.
𝔼[#red or blue Kt]

≲ 2 5
8 t2 · pt · 21−( t

2) ≈
(
2− 1

8 t · 2 5
8 t · 2− 1

2 t
)t

= 1.

No green Kt by Fact 1, so r(t;3) > N ≈ p|Vt| = 2 7
8 t−o(t).
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More colors

If q− 1 is a prime power, then one can do the same thing over 𝔽q−1.
One obtains

r(t;q) >
(
2 1

2 (q − 1) 3
8
)t−o(t)

.

This only beats the earlier bound r(t;q) >
(
2 1

2 ⌊ q
2 ⌋

)t
for q ∈ {3,4}.

For q > 4, Conlon and Ferber use the product coloring.
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A new approach for more colors

Overlay two random copies of Gt in green
and yellow.

The expected number of sets of size t
independent in both copies is ≤ 2 1

4 t2+o(t2).
(Because a t-set is independent in either
copy with probability ≤ 2− 3

8 t2−o(t2).)

Keep each vertex with probability p (chosen later).
Color all remaining pairs red or blue at random.

𝔼[#red or blue Kt] ≲ 2 1
4 t2 · pt · 21−( t

2) ≈
(
p · 2 1

4 t · 2− 1
2 t

)t
.

Pick p = 2 1
4 t−o(t) to obtain r(t;4) > N ≈ p|Vt| = 2 5

4 t−o(t).

How are we picking p > 1???
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Random homomorphisms to the rescue
Let p be any positive real number, and let N = p|Vt|.

Pick a uniformly random function f : [N] → Vt.

0000
1100

1010

1001
0110

0101

0011

1111

1010 0011 0101 0101 0011 0110 0101 1111 1010 0000 0101

Connect vertices in [N] if their labels are adjacent in Gt to get G̃t.

If p ≪ 1, G̃t looks like keeping vertices from Gt with probability p.
If p ≫ 1, it looks like a random blowup.
Fact 1: G̃t contains no Kt.
Fact 2: 𝔼[#independent sets of size t in G̃t] ≲ pt · 2 5

8 t2 .
So the above argument works for any p, if interpreted correctly.
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Putting it all together
Theorem (W. 2021)

r(t;q) >
(
2 3q

8 − 1
4
)t−o(t)

.

Proof: Let p =
(
2 3q

8 − 5
4
)t−o(t)

, let N = p|Vt|, and pick q − 2 random
functions [N] → Vt. Overlay the resulting graphs G̃t for the first q − 2
colors, then color the remaining pairs red or blue at random.

Theorem (Sawin 2022)

r(t;q) >
(
20.383796q−0.267592

)t−o(t)
.

Proof: No reason to use Gt! Any graph G with no Kt and few
independent sets of size ≤ t can be plugged into the random
homomorphism machinery.
A better choice is G(n,p) with p = 0.454997 and n = p−t/2.
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Thank you!


