Lower bounds for multicolor Ramsey numbers

Yuval Wigderson

SIAM Conference on Discrete Mathematics June 15, 2022

r(t) =minimum N so that every 2-coloring of the edges of K_N has a monochromatic K_t .

r(t) = minimum N so that every 2-coloring of the edges of K_N has a monochromatic K_t .

Theorem (Ramsey 1930, Erdős-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, $r(t) < 4^t$.

r(t) = minimum N so that every 2-coloring of the edges of K_N has a monochromatic K_t .

Theorem (Ramsey 1930, Erdős-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, $r(t) < 4^t$.

For a lower bound we need a construction: a coloring of $E(K_N)$ with no monochromatic K_t .

r(t) = minimum N so that every 2-coloring of the edges of K_N has a monochromatic K_t .

Theorem (Ramsey 1930, Erdős-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, $r(t) < 4^t$.

For a lower bound we need a construction: a coloring of $E(K_N)$ with no monochromatic K_t .

Theorem (Erdős 1947)

 $r(t)>2^{t/2}.$

r(t) = minimum N so that every 2-coloring of the edges of K_N has a monochromatic K_t .

Theorem (Ramsey 1930, Erdős-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, $r(t) < 4^t$.

For a lower bound we need a construction: a coloring of $E(K_N)$ with no monochromatic K_t .

Theorem (Erdős 1947)

 $r(t)>2^{t/2}.$

r(t) = minimum N so that every 2-coloring of the edges of K_N has a monochromatic K_t .

Theorem (Ramsey 1930, Erdős-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, $r(t) < 4^t$.

For a lower bound we need a construction: a coloring of $E(K_N)$ with no monochromatic K_t .

Theorem (Erdős 1947)

 $r(t)>2^{t/2}.$

Proof: Let $N = 2^{t/2}$. Consider a random two-coloring of $E(K_N)$.

 $\mathbb{E}[\#$ monochromatic $K_t]$

r(t) = minimum N so that every 2-coloring of the edges of K_N has a monochromatic K_t .

Theorem (Ramsey 1930, Erdős-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, $r(t) < 4^t$.

For a lower bound we need a construction: a coloring of $E(K_N)$ with no monochromatic K_t .

Theorem (Erdős 1947)

 $r(t)>2^{t/2}.$

$$\mathbb{E}[\#\text{monochromatic } K_t] = \binom{N}{t} 2^{1 - \binom{t}{2}}$$

r(t) = minimum N so that every 2-coloring of the edges of K_N has a monochromatic K_t .

Theorem (Ramsey 1930, Erdős-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, $r(t) < 4^t$.

For a lower bound we need a construction: a coloring of $E(K_N)$ with no monochromatic K_t .

Theorem (Erdős 1947)

 $r(t)>2^{t/2}.$

$$\mathbb{E}[\#\text{monochromatic } K_t] = \binom{N}{t} 2^{1 - \binom{t}{2}} < N^t 2^{-\frac{1}{2}t^2}$$

r(t) = minimum N so that every 2-coloring of the edges of K_N has a monochromatic K_t .

Theorem (Ramsey 1930, Erdős-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, $r(t) < 4^t$.

For a lower bound we need a construction: a coloring of $E(K_N)$ with no monochromatic K_t .

Theorem (Erdős 1947)

 $r(t)>2^{t/2}.$

$$\mathbb{E}[\#\text{monochromatic } \mathcal{K}_t] = \binom{N}{t} 2^{1 - \binom{t}{2}} < N^t 2^{-\frac{1}{2}t^2} = 1.$$

r(t) = minimum N so that every 2-coloring of the edges of K_N has a monochromatic K_t .

Theorem (Ramsey 1930, Erdős-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, $r(t) < 4^t$.

For a lower bound we need a construction: a coloring of $E(K_N)$ with no monochromatic K_t .

Theorem (Erdős 1947)

 $r(t)>2^{t/2}.$

Proof: Let $N = 2^{t/2}$. Consider a random two-coloring of $E(K_N)$.

$$\mathbb{E}[\#\text{monochromatic } \mathcal{K}_t] = \binom{N}{t} 2^{1 - \binom{t}{2}} < N^t 2^{-\frac{1}{2}t^2} = 1.$$

So there exists a coloring of $E(K_N)$ with < 1 monochromatic K_t .

 $r(t) = \min N$ so that any 2-coloring of $E(K_N)$ has monochromatic K_t Erdős-Szekeres (1935), Erdős (1947):

 $\sqrt{2}^{t} < r(t) < 2^{2t}$

 $r(t;q) = \min N$ so that any q-coloring of $E(K_N)$ has monochromatic K_t Erdős-Szekeres (1935), Erdős (1947):

 $\sqrt{2}^{t} < r(t) < 2^{2t}$

 $r(t;q) = \min N$ so that any q-coloring of $E(K_N)$ has monochromatic K_t Erdős-Szekeres (1935), Erdős (1947):

 $\sqrt{q}^t < r(t;q) < q^{qt}$

 $r(t;q) = \min N$ so that any q-coloring of $E(K_N)$ has monochromatic K_t Erdős-Szekeres (1935), Erdős (1947):

 $\sqrt{q}^t < r(t;q) < q^{qt}$

Product coloring trick: $r(t;q) > 2^{\lfloor \frac{q}{2} \rfloor \frac{t}{2}} \approx \left(2^{\frac{q}{4}}\right)^t$.

 $r(t;q) = \min N$ so that any q-coloring of $E(K_N)$ has monochromatic K_t Erdős-Szekeres (1935), Erdős (1947):

 $\sqrt{q}^t < r(t;q) < q^{qt}$

Product coloring trick: $r(t;q) > 2^{\lfloor \frac{q}{2} \rfloor \frac{t}{2}} \approx \left(2^{\frac{q}{4}}\right)^{t}$.

 $r(t;q) = \min N$ so that any q-coloring of $E(K_N)$ has monochromatic K_t Erdős-Szekeres (1935), Erdős (1947):

 $\sqrt{q}^t < r(t;q) < q^{qt}$

Product coloring trick: $r(t;q) > 2^{\lfloor \frac{q}{2} \rfloor \frac{t}{2}} \approx \left(2^{\frac{q}{4}}\right)^t$.

 $r(t;q) = \min N$ so that any q-coloring of $E(K_N)$ has monochromatic K_t Erdős-Szekeres (1935), Erdős (1947):

 $\sqrt{q}^t < r(t;q) < q^{qt}$

Product coloring trick: $r(t;q) > 2^{\lfloor \frac{q}{2} \rfloor \frac{t}{2}} \approx \left(2^{\frac{q}{4}}\right)^{t}$.

 $r(t;q) = \min N$ so that any q-coloring of $E(K_N)$ has monochromatic K_t Erdős-Szekeres (1935), Erdős (1947):

 $\sqrt{q}^t < r(t;q) < q^{qt}$

Product coloring trick: $r(t;q) > 2^{\lfloor \frac{q}{2} \rfloor \frac{t}{2}} \approx \left(2^{\frac{q}{4}}\right)^{t}$.

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows.

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows. Let $V_t = \{x \in \mathbb{F}_2^t : x \text{ has an even number of } 1s\} = \{x \in \mathbb{F}_2^t : x \cdot x = 0\}.$

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows. Let $V_t = \{x \in \mathbb{F}_2^t : x \text{ has an even number of } 1s\} = \{x \in \mathbb{F}_2^t : x \cdot x = 0\}$. For $x, y \in V_t$, make xy adjacent if $x \cdot y = 1$.

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows. Let $V_t = \{x \in \mathbb{F}_2^t : x \text{ has an even number of } 1s\} = \{x \in \mathbb{F}_2^t : x \cdot x = 0\}$. For $x, y \in V_t$, make xy adjacent if $x \cdot y = 1$.

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows. Let $V_t = \{x \in \mathbb{F}_2^t : x \text{ has an even number of } 1s\} = \{x \in \mathbb{F}_2^t : x \cdot x = 0\}$. For $x, y \in V_t$, make xy adjacent if $x \cdot y = 1$.

Fact 1: G_t contains no K_t (for t even).

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows. Let $V_t = \{x \in \mathbb{F}_2^t : x \text{ has an even number of } 1s\} = \{x \in \mathbb{F}_2^t : x \cdot x = 0\}$. For $x, y \in V_t$, make xy adjacent if $x \cdot y = 1$.

Fact 1: G_t contains no K_t (for t even). **Fact 2:** G_t has at most $2^{\frac{5}{8}t^2 + o(t^2)}$ independent sets of size $\leq t$.

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows. Let $V_t = \{x \in \mathbb{F}_2^t : x \text{ has an even number of } 1s\} = \{x \in \mathbb{F}_2^t : x \cdot x = 0\}$. For $x, y \in V_t$, make xy adjacent if $x \cdot y = 1$.

Fact 1: G_t contains no K_t (for t even). **Fact 2:** G_t has at most $2\frac{5}{8}t^2 + o(t^2)$ independent sets of size $\leq t$. We color the edges of G_t green.

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows. Let $V_t = \{x \in \mathbb{F}_2^t : x \text{ has an even number of } 1s\} = \{x \in \mathbb{F}_2^t : x \cdot x = 0\}$. For $x, y \in V_t$, make xy adjacent if $x \cdot y = 1$.

Fact 1: G_t contains no K_t (for t even). **Fact 2:** G_t has at most $2\frac{5}{8}t^2 + o(t^2)$ independent sets of size $\leq t$. We color the edges of G_t green.

Let $p = 2^{-\frac{1}{8}t-o(t)}$, and keep each vertex of G_t with probability p.

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows. Let $V_t = \{x \in \mathbb{F}_2^t : x \text{ has an even number of } 1s\} = \{x \in \mathbb{F}_2^t : x \cdot x = 0\}$. For $x, y \in V_t$, make xy adjacent if $x \cdot y = 1$.

Fact 1: G_t contains no K_t (for t even). **Fact 2:** G_t has at most $2\frac{5}{8}t^2 + o(t^2)$ independent sets of size $\leq t$. We color the edges of G_t green.

Let $p = 2^{-\frac{1}{8}t-o(t)}$, and keep each vertex of G_t with probability p.

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows. Let $V_t = \{x \in \mathbb{F}_2^t : x \text{ has an even number of } 1s\} = \{x \in \mathbb{F}_2^t : x \cdot x = 0\}$. For $x, y \in V_t$, make xy adjacent if $x \cdot y = 1$.

Fact 1: G_t contains no K_t (for t even). **Fact 2:** G_t has at most $2\frac{5}{8}t^2 + o(t^2)$ independent sets of size $\leq t$. We color the edges of G_t green.

Let $p = 2^{-\frac{1}{8}t-o(t)}$, and keep each vertex of G_t with probability p. Color all remaining pairs red or blue at random.

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows. Let $V_t = \{x \in \mathbb{F}_2^t : x \text{ has an even number of } 1s\} = \{x \in \mathbb{F}_2^t : x \cdot x = 0\}$. For $x, y \in V_t$, make xy adjacent if $x \cdot y = 1$.

Fact 1: G_t contains no K_t (for t even). **Fact 2:** G_t has at most $2\frac{5}{8}t^2 + o(t^2)$ independent sets of size $\leq t$. We color the edges of G_t green.

Let $p = 2^{-\frac{1}{8}t-o(t)}$, and keep each vertex of G_t with probability p. Color all remaining pairs red or blue at random.

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows. Let $V_t = \{x \in \mathbb{F}_2^t : x \text{ has an even number of } 1s\} = \{x \in \mathbb{F}_2^t : x \cdot x = 0\}$. For $x, y \in V_t$, make xy adjacent if $x \cdot y = 1$.

Fact 1: G_t contains no K_t (for t even). **Fact 2:** G_t has at most $2\frac{5}{8}t^2 + o(t^2)$ independent sets of size $\leq t$. We color the edges of G_t green.

Let $p = 2^{-\frac{1}{8}t-o(t)}$, and keep each vertex of G_t with probability p. Color all remaining pairs red or blue at random.

 $\mathbb{E}[\#$ red or blue $K_t]$

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows. Let $V_t = \{x \in \mathbb{F}_2^t : x \text{ has an even number of } 1s\} = \{x \in \mathbb{F}_2^t : x \cdot x = 0\}$. For $x, y \in V_t$, make xy adjacent if $x \cdot y = 1$.

Fact 1: G_t contains no K_t (for t even). **Fact 2:** G_t has at most $2\frac{5}{8}t^2 + o(t^2)$ independent sets of size $\leq t$. We color the edges of G_t green.

Let $p = 2^{-\frac{1}{8}t-o(t)}$, and keep each vertex of G_t with probability p. Color all remaining pairs red or blue at random.

 $\mathbb{E}[\#\text{red or blue } K_t] \lesssim 2^{\frac{5}{8}t^2} \cdot p^t \cdot 2^{1-\binom{t}{2}}$

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows. Let $V_t = \{x \in \mathbb{F}_2^t : x \text{ has an even number of } 1s\} = \{x \in \mathbb{F}_2^t : x \cdot x = 0\}$. For $x, y \in V_t$, make xy adjacent if $x \cdot y = 1$.

Fact 1: G_t contains no K_t (for t even). **Fact 2:** G_t has at most $2\frac{5}{8}t^2 + o(t^2)$ independent sets of size $\leq t$. We color the edges of G_t green.

Let $p = 2^{-\frac{1}{8}t-o(t)}$, and keep each vertex of G_t with probability p. Color all remaining pairs red or blue at random.

$$\mathbb{E}[\#\text{red or blue } K_t] \lesssim 2^{\frac{5}{8}t^2} \cdot p^t \cdot 2^{1 - \binom{t}{2}} \approx \left(2^{-\frac{1}{8}t} \cdot 2^{\frac{5}{8}t} \cdot 2^{-\frac{1}{2}t}\right)^t = 1.$$

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows. Let $V_t = \{x \in \mathbb{F}_2^t : x \text{ has an even number of } 1s\} = \{x \in \mathbb{F}_2^t : x \cdot x = 0\}$. For $x, y \in V_t$, make xy adjacent if $x \cdot y = 1$.

Fact 1: G_t contains no K_t (for t even). **Fact 2:** G_t has at most $2\frac{5}{8}t^2 + o(t^2)$ independent sets of size $\leq t$. We color the edges of G_t green.

Let $p = 2^{-\frac{1}{8}t-o(t)}$, and keep each vertex of G_t with probability p. Color all remaining pairs red or blue at random.

$$\mathbb{E}[\#\text{red or blue } K_t] \lesssim 2^{\frac{5}{8}t^2} \cdot p^t \cdot 2^{1-\binom{t}{2}} \approx \left(2^{-\frac{1}{8}t} \cdot 2^{\frac{5}{8}t} \cdot 2^{-\frac{1}{2}t}\right)^t = 1.$$

No green K_t by Fact 1, so $r(t;3) > N \approx p|V_t| = 2^{\frac{7}{8}t - o(t)}$.

More colors

If q-1 is a prime power, then one can do the same thing over \mathbb{F}_{q-1} . One obtains

$$r(t;q) > \left(2^{\frac{1}{2}}(q-1)^{\frac{3}{8}}\right)^{t-o(t)}.$$

If q-1 is a prime power, then one can do the same thing over \mathbb{F}_{q-1} . One obtains

$$r(t;q) > \left(2^{\frac{1}{2}}(q-1)^{\frac{3}{8}}\right)^{t-o(t)}.$$

This only beats the earlier bound $r(t;q) > \left(2^{\frac{1}{2} \lfloor \frac{q}{2} \rfloor}\right)^t$ for $q \in \{3, 4\}$.

If q-1 is a prime power, then one can do the same thing over \mathbb{F}_{q-1} . One obtains

$$r(t;q) > \left(2^{\frac{1}{2}}(q-1)^{\frac{3}{8}}\right)^{t-o(t)}.$$

This only beats the earlier bound $r(t;q) > \left(2^{\frac{1}{2} \lfloor \frac{q}{2} \rfloor}\right)^t$ for $q \in \{3, 4\}$.

For q > 4, Conlon and Ferber use the product coloring.

Overlay two random copies of G_t in green and yellow.

Overlay two random copies of G_t in green and yellow.

Overlay two random copies of G_t in green and yellow.

Overlay two random copies of G_t in green and yellow.

The expected number of sets of size tindependent in both copies is $\leq 2^{\frac{1}{4}t^2 + o(t^2)}$. (Because a *t*-set is independent in either copy with probability $\leq 2^{-\frac{3}{8}t^2 - o(t^2)}$.)

Overlay two random copies of G_t in green and yellow.

The expected number of sets of size tindependent in both copies is $\leq 2^{\frac{1}{4}t^2 + o(t^2)}$. (Because a *t*-set is independent in either copy with probability $\leq 2^{-\frac{3}{8}t^2 - o(t^2)}$.)

Keep each vertex with probability *p* (chosen later).

Overlay two random copies of G_t in green and yellow.

The expected number of sets of size tindependent in both copies is $\leq 2^{\frac{1}{4}t^2 + o(t^2)}$. (Because a *t*-set is independent in either copy with probability $\leq 2^{-\frac{3}{8}t^2 - o(t^2)}$.)

Keep each vertex with probability p (chosen later).

Color all remaining pairs red or blue at random.

Overlay two random copies of G_t in green and yellow.

The expected number of sets of size tindependent in both copies is $\leq 2^{\frac{1}{4}t^2 + o(t^2)}$. (Because a *t*-set is independent in either copy with probability $\leq 2^{-\frac{3}{8}t^2 - o(t^2)}$.)

Keep each vertex with probability *p* (chosen later). Color all remaining pairs red or blue at random.

$$\mathbb{E}[\#\text{red or blue } K_t] \lesssim 2^{\frac{1}{4}t^2} \cdot p^t \cdot 2^{1-\binom{t}{2}} \approx \left(p \cdot 2^{\frac{1}{4}t} \cdot 2^{-\frac{1}{2}t}\right)^t.$$

Overlay two random copies of G_t in green and yellow.

The expected number of sets of size tindependent in both copies is $\leq 2^{\frac{1}{4}t^2 + o(t^2)}$. (Because a *t*-set is independent in either copy with probability $\leq 2^{-\frac{3}{8}t^2 - o(t^2)}$.)

Keep each vertex with probability *p* (chosen later). Color all remaining pairs red or blue at random.

$$\mathbb{E}[\#\text{red or blue } K_t] \lesssim 2^{\frac{1}{4}t^2} \cdot p^t \cdot 2^{1-\binom{t}{2}} \approx \left(p \cdot 2^{\frac{1}{4}t} \cdot 2^{-\frac{1}{2}t}\right)^t.$$

Pick $p = 2^{\frac{1}{4}t - o(t)}$ to obtain $r(t; 4) > N \approx p|V_t| = 2^{\frac{5}{4}t - o(t)}$.

Overlay two random copies of G_t in green and yellow.

The expected number of sets of size tindependent in both copies is $\leq 2^{\frac{1}{4}t^2 + o(t^2)}$. (Because a *t*-set is independent in either copy with probability $\leq 2^{-\frac{3}{8}t^2 - o(t^2)}$.)

Keep each vertex with probability *p* (chosen later). Color all remaining pairs red or blue at random.

$$\mathbb{E}[\#\text{red or blue } K_t] \lesssim 2^{\frac{1}{4}t^2} \cdot p^t \cdot 2^{1-\binom{t}{2}} \approx \left(p \cdot 2^{\frac{1}{4}t} \cdot 2^{-\frac{1}{2}t}\right)^t.$$

Pick $p = 2^{\frac{1}{4}t - o(t)}$ to obtain $r(t; 4) > N \approx p|V_t| = 2^{\frac{5}{4}t - o(t)}$.

How are we picking p > 1???

Let *p* be any positive real number, and let $N = p|V_t|$.

Let *p* be any positive real number, and let $N = p|V_t|$.

Let *p* be any positive real number, and let $N = p|V_t|$. Pick a uniformly random function $f: [N] \rightarrow V_t$.

Let *p* be any positive real number, and let $N = p|V_t|$. Pick a uniformly random function $f : [N] \rightarrow V_t$.

Connect vertices in [N] if their labels are adjacent in G_t to get $\widetilde{G_t}$.

Let p be any positive real number, and let $N = p|V_t|$. Pick a uniformly random function $f: [N] \rightarrow V_t$.

Connect vertices in [N] if their labels are adjacent in G_t to get G_t . If $p \ll 1$, $\widetilde{G_t}$ looks like keeping vertices from G_t with probability p. If $p \gg 1$, it looks like a random blowup.

Let p be any positive real number, and let $N = p|V_t|$. Pick a uniformly random function $f: [N] \rightarrow V_t$.

Connect vertices in [N] if their labels are adjacent in G_t to get G_t . If $p \ll 1$, $\widetilde{G_t}$ looks like keeping vertices from G_t with probability p. If $p \gg 1$, it looks like a random blowup. **Fact 1:** $\widetilde{G_t}$ contains no K_t .

Let p be any positive real number, and let $N = p|V_t|$. Pick a uniformly random function $f: [N] \rightarrow V_t$.

Connect vertices in [N] if their labels are adjacent in G_t to get G_t . If $p \ll 1$, $\widetilde{G_t}$ looks like keeping vertices from G_t with probability p. If $p \gg 1$, it looks like a random blowup.

Fact 1: $\widetilde{G_t}$ contains no K_t .

Fact 2: $\mathbb{E}[\#$ independent sets of size t in $\widetilde{G_t}] \leq p^t \cdot 2^{\frac{5}{8}t^2}$.

Let p be any positive real number, and let $N = p|V_t|$. Pick a uniformly random function $f: [N] \rightarrow V_t$.

Connect vertices in [N] if their labels are adjacent in G_t to get G_t . If $p \ll 1$, $\widetilde{G_t}$ looks like keeping vertices from G_t with probability p. If $p \gg 1$, it looks like a random blowup.

Fact 1: $\widetilde{G_t}$ contains no K_t .

Fact 2: $\mathbb{E}[\#$ independent sets of size t in $\widetilde{G_t}] \leq p^t \cdot 2^{\frac{5}{8}t^2}$.

So the above argument works for any *p*, if interpreted correctly.

Theorem (W. 2021)

$$r(t;q) > \left(2^{\frac{3q}{8}-\frac{1}{4}}\right)^{t-o(t)}$$

Theorem (W. 2021)

$$r(t;q) > \left(2^{\frac{3q}{8}-\frac{1}{4}}\right)^{t-o(t)}$$

Proof: Let $p = \left(2^{\frac{3q}{8} - \frac{5}{4}}\right)^{t-o(t)}$, let $N = p|V_t|$, and pick q - 2 random functions $[N] \to V_t$. Overlay the resulting graphs $\widetilde{G_t}$ for the first q - 2 colors, then color the remaining pairs red or blue at random.

Theorem (W. 2021)

$$r(t;q) > \left(2^{\frac{3q}{8}-\frac{1}{4}}\right)^{t-o(t)}$$

Proof: Let $p = \left(2^{\frac{3q}{8} - \frac{5}{4}}\right)^{t-o(t)}$, let $N = p|V_t|$, and pick q - 2 random functions $[N] \to V_t$. Overlay the resulting graphs $\widetilde{G_t}$ for the first q - 2 colors, then color the remaining pairs red or blue at random.

Theorem (Sawin 2022)

$$r(t;q) > \left(2^{0.383796q - 0.267592}\right)^{t - o(t)}$$

Theorem (W. 2021)

$$r(t;q) > \left(2^{\frac{3q}{8}-\frac{1}{4}}\right)^{t-o(t)}$$

Proof: Let $p = \left(2^{\frac{3q}{8} - \frac{5}{4}}\right)^{t-o(t)}$, let $N = p|V_t|$, and pick q - 2 random functions $[N] \to V_t$. Overlay the resulting graphs $\widetilde{G_t}$ for the first q - 2 colors, then color the remaining pairs red or blue at random.

Theorem (Sawin 2022)

$$r(t;q) > \left(2^{0.383796q - 0.267592}\right)^{t - o(t)}$$

Proof: No reason to use G_t ! Any graph G with no K_t and few independent sets of size $\leq t$ can be plugged into the random homomorphism machinery.

Theorem (W. 2021)

$$r(t;q) > \left(2^{\frac{3q}{8}-\frac{1}{4}}\right)^{t-o(t)}$$

Proof: Let $p = \left(2^{\frac{3q}{8} - \frac{5}{4}}\right)^{t-o(t)}$, let $N = p|V_t|$, and pick q - 2 random functions $[N] \to V_t$. Overlay the resulting graphs $\widetilde{G_t}$ for the first q - 2 colors, then color the remaining pairs red or blue at random.

Theorem (Sawin 2022)

$$r(t;q) > \left(2^{0.383796q - 0.267592}\right)^{t - o(t)}$$

Proof: No reason to use G_t ! Any graph G with no K_t and few independent sets of size $\leq t$ can be plugged into the random homomorphism machinery.

A better choice is G(n, p) with p = 0.454997 and $n = p^{-t/2}$.

Thank you!