Lower bounds for multicolor Ramsey numbers

Yuval Wigderson

SIAM Conference on Discrete Mathematics

$$
\text { June 15, } 2022
$$

Ramsey numbers

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Theorem (Ramsey 1930, Erdős-Szekeres 1935) $r(t)$ exists (i.e. is finite). In fact, $r(t)<4^{t}$.

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Theorem (Ramsey 1930, Erdős-Szekeres 1935) $r(t)$ exists (i.e. is finite). In fact, $r(t)<4^{t}$.

For a lower bound we need a construction: a coloring of $E\left(K_{N}\right)$ with no monochromatic K_{t}.

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Theorem (Ramsey 1930, Erdős-Szekeres 1935)
$r(t)$ exists (i.e. is finite). In fact, $r(t)<4^{t}$.
For a lower bound we need a construction: a coloring of $E\left(K_{N}\right)$ with no monochromatic K_{t}.
Theorem (Erdős 1947)

$$
r(t)>2^{t / 2}
$$

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Theorem (Ramsey 1930, Erdős-Szekeres 1935) $r(t)$ exists (i.e. is finite). In fact, $r(t)<4^{t}$.

For a lower bound we need a construction: a coloring of $E\left(K_{N}\right)$ with no monochromatic K_{t}.

Theorem (Erdős 1947)

$$
r(t)>2^{t / 2}
$$

Proof: Let $N=2^{t / 2}$. Consider a random two-coloring of $E\left(K_{N}\right)$.

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Theorem (Ramsey 1930, Erdős-Szekeres 1935)
$r(t)$ exists (i.e. is finite). In fact, $r(t)<4^{t}$.
For a lower bound we need a construction: a coloring of $E\left(K_{N}\right)$ with no monochromatic K_{t}.

Theorem (Erdős 1947)

$$
r(t)>2^{t / 2}
$$

Proof: Let $N=2^{t / 2}$. Consider a random two-coloring of $E\left(K_{N}\right)$.
$\mathbb{E}\left[\#\right.$ monochromatic $\left.K_{t}\right]$

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Theorem (Ramsey 1930, Erdős-Szekeres 1935) $r(t)$ exists (i.e. is finite). In fact, $r(t)<4^{t}$.

For a lower bound we need a construction: a coloring of $E\left(K_{N}\right)$ with no monochromatic K_{t}.

Theorem (Erdős 1947)

$$
r(t)>2^{t / 2}
$$

Proof: Let $N=2^{t / 2}$. Consider a random two-coloring of $E\left(K_{N}\right)$.

$$
\mathbb{E}\left[\# \text { monochromatic } K_{t}\right]=\binom{N}{t} 2^{1-\binom{t}{2}}
$$

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Theorem (Ramsey 1930, Erdős-Szekeres 1935)
$r(t)$ exists (i.e. is finite). In fact, $r(t)<4^{t}$.
For a lower bound we need a construction: a coloring of $E\left(K_{N}\right)$ with no monochromatic K_{t}.

Theorem (Erdős 1947)

$$
r(t)>2^{t / 2}
$$

Proof: Let $N=2^{t / 2}$. Consider a random two-coloring of $E\left(K_{N}\right)$.

$$
\mathbb{E}\left[\# \text { monochromatic } K_{t}\right]=\binom{N}{t} 2^{1-\binom{t}{2}}<N^{t} 2^{-\frac{1}{2} t^{2}}
$$

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Theorem (Ramsey 1930, Erdős-Szekeres 1935)
$r(t)$ exists (i.e. is finite). In fact, $r(t)<4^{t}$.
For a lower bound we need a construction: a coloring of $E\left(K_{N}\right)$ with no monochromatic K_{t}.

Theorem (Erdős 1947)

$$
r(t)>2^{t / 2}
$$

Proof: Let $N=2^{t / 2}$. Consider a random two-coloring of $E\left(K_{N}\right)$.

$$
\mathbb{E}\left[\# \text { monochromatic } K_{t}\right]=\binom{N}{t} 2^{1-\binom{t}{2}}<N^{t} 2^{-\frac{1}{2} t^{2}}=1
$$

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Theorem (Ramsey 1930, Erdős-Szekeres 1935)
$r(t)$ exists (i.e. is finite). In fact, $r(t)<4^{t}$.
For a lower bound we need a construction: a coloring of $E\left(K_{N}\right)$ with no monochromatic K_{t}.

Theorem (Erdős 1947)

$$
r(t)>2^{t / 2}
$$

Proof: Let $N=2^{t / 2}$. Consider a random two-coloring of $E\left(K_{N}\right)$.

$$
\mathbb{E}\left[\# \text { monochromatic } K_{t}\right]=\binom{N}{t} 2^{1-\binom{t}{2}}<N^{t} 2^{-\frac{1}{2} t^{2}}=1 .
$$

So there exists a coloring of $E\left(K_{N}\right)$ with <1 monochromatic K_{t}.

Multicolor Ramsey numbers

$r(t)=\min . N$ so that any 2-coloring of $E\left(K_{N}\right)$ has monochromatic K_{t} Erdős-Szekeres (1935), Erdős (1947):

$$
\sqrt{2}^{t}<r(t)<2^{2 t}
$$

Multicolor Ramsey numbers

$r(t ; q)=\min . N$ so that any q-coloring of $E\left(K_{N}\right)$ has monochromatic K_{t} Erdős-Szekeres (1935), Erdős (1947):

$$
\sqrt{2}^{t}<r(t)<2^{2 t}
$$

Multicolor Ramsey numbers

$r(t ; q)=\min . N$ so that any q-coloring of $E\left(K_{N}\right)$ has monochromatic K_{t} Erdős-Szekeres (1935), Erdős (1947):

$$
\sqrt{q}^{t}<r(t ; q)<q^{q t}
$$

Multicolor Ramsey numbers

$r(t ; q)=\min . N$ so that any q-coloring of $E\left(K_{N}\right)$ has monochromatic K_{t} Erdős-Szekeres (1935), Erdős (1947):

$$
\sqrt{q}^{t}<r(t ; q)<q^{q t}
$$

Product coloring trick: $r(t ; q)>2^{\left\lfloor\frac{q}{2} \frac{t}{2}\right.} \approx\left(2^{\frac{q}{4}}\right)^{t}$.

Multicolor Ramsey numbers

$r(t ; q)=\min . N$ so that any q-coloring of $E\left(K_{N}\right)$ has monochromatic K_{t} Erdős-Szekeres (1935), Erdős (1947):

$$
\sqrt{q}^{t}<r(t ; q)<q^{q t}
$$

Product coloring trick: $r(t ; q)>2^{\left\lfloor\frac{q}{2}\right)^{\frac{t}{2}}} \approx\left(2^{\frac{q}{4}}\right)^{t}$.

Multicolor Ramsey numbers

$r(t ; q)=\min . N$ so that any q－coloring of $E\left(K_{N}\right)$ has monochromatic K_{t} Erdős－Szekeres（1935），Erdős（1947）：

$$
\sqrt{q}^{t}<r(t ; q)<q^{q t}
$$

Product coloring trick：$r(t ; q)>2^{\left\lfloor\frac{q}{2}\right\rfloor \frac{t}{2}} \approx\left(2^{\frac{q}{4}}\right)^{t}$ ．

Multicolor Ramsey numbers

$r(t ; q)=\min . N$ so that any q-coloring of $E\left(K_{N}\right)$ has monochromatic K_{t} Erdős-Szekeres (1935), Erdős (1947):

$$
\sqrt{q}^{t}<r(t ; q)<q^{q t}
$$

Product coloring trick: $r(t ; q)>2^{\left\lfloor\frac{q}{2}\right\rfloor \frac{t}{2}} \approx\left(2^{\frac{q}{4}}\right)^{t}$.

Conlon-Ferber (2021): $r(t ; q)>\left(2 \frac{7 q}{24}+C\right)^{t-o(t)}$.

Multicolor Ramsey numbers

$r(t ; q)=\min . N$ so that any q-coloring of $E\left(K_{N}\right)$ has monochromatic K_{t} Erdős-Szekeres (1935), Erdős (1947):

$$
\sqrt{q}^{t}<r(t ; q)<q^{q t}
$$

Product coloring trick: $r(t ; q)>2^{\left\lfloor\frac{q}{2}\right\rfloor \frac{t}{2}} \approx\left(2^{\frac{q}{4}}\right)^{t}$.

W. (2021): $r(t ; q)>\left(2^{\frac{3 q}{8}-\frac{1}{4}}\right)^{t-o(t)}$.

The Conlon-Ferber construction

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.
Let $V_{t}=\left\{x \in \mathbb{F}_{2}^{t}: x\right.$ has an even number of 1 s$\}=\left\{x \in \mathbb{F}_{2}^{t}: x \cdot x=0\right\}$.

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.
Let $V_{t}=\left\{x \in \mathbb{F}_{2}^{t}: x\right.$ has an even number of 1 s$\}=\left\{x \in \mathbb{F}_{2}^{t}: x \cdot x=0\right\}$.
For $x, y \in V_{t}$, make $x y$ adjacent if $x \cdot y=1$.

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.
Let $V_{t}=\left\{x \in \mathbb{F}_{2}^{t}: x\right.$ has an even number of 1 s$\}=\left\{x \in \mathbb{F}_{2}^{t}: x \cdot x=0\right\}$.
For $x, y \in V_{t}$, make $x y$ adjacent if $x \cdot y=1$.

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.
Let $V_{t}=\left\{x \in \mathbb{F}_{2}^{t}: x\right.$ has an even number of 1 s$\}=\left\{x \in \mathbb{F}_{2}^{t}: x \cdot x=0\right\}$.
For $x, y \in V_{t}$, make $x y$ adjacent if $x \cdot y=1$.
Fact 1: G_{t} contains no K_{t} (for t even).

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.
Let $V_{t}=\left\{x \in \mathbb{F}_{2}^{t}: x\right.$ has an even number of 1 s$\}=\left\{x \in \mathbb{F}_{2}^{t}: x \cdot x=0\right\}$.
For $x, y \in V_{t}$, make $x y$ adjacent if $x \cdot y=1$.
Fact 1: G_{t} contains no K_{t} (for t even).
Fact 2: G_{t} has at most $2 \frac{5}{8} t^{2}+o\left(t^{2}\right)$ independent sets of size $\leq t$.

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.
Let $V_{t}=\left\{x \in \mathbb{F}_{2}^{t}: x\right.$ has an even number of 1 s$\}=\left\{x \in \mathbb{F}_{2}^{t}: x \cdot x=0\right\}$.
For $x, y \in V_{t}$, make $x y$ adjacent if $x \cdot y=1$.

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.
Let $V_{t}=\left\{x \in \mathbb{F}_{2}^{t}: x\right.$ has an even number of 1 s$\}=\left\{x \in \mathbb{F}_{2}^{t}: x \cdot x=0\right\}$.
For $x, y \in V_{t}$, make $x y$ adjacent if $x \cdot y=1$.
Fact 1: G_{t} contains no K_{t} (for t even).
Fact 2: G_{t} has at most $2 \frac{5}{8} t^{2}+o\left(t^{2}\right)$ independent sets of size $\leq t$. We color the edges of G_{t} green.

Let $p=2^{-\frac{1}{8} t-o(t)}$, and keep each vertex of G_{t} with probability p.

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.
Let $V_{t}=\left\{x \in \mathbb{F}_{2}^{t}: x\right.$ has an even number of 1 s$\}=\left\{x \in \mathbb{F}_{2}^{t}: x \cdot x=0\right\}$.
For $x, y \in V_{t}$, make $x y$ adjacent if $x \cdot y=1$.
Fact 1: G_{t} contains no K_{t} (for t even).
Fact 2: G_{t} has at most $2 \frac{5}{8} t^{2}+o\left(t^{2}\right)$ independent sets of size $\leq t$.
We color the edges of G_{t} green.

Let $p=2^{-\frac{1}{8} t-o(t)}$, and keep each vertex of G_{t} with probability p.

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.
Let $V_{t}=\left\{x \in \mathbb{F}_{2}^{t}: x\right.$ has an even number of 1 s$\}=\left\{x \in \mathbb{F}_{2}^{t}: x \cdot x=0\right\}$.
For $x, y \in V_{t}$, make $x y$ adjacent if $x \cdot y=1$.
Fact 1: G_{t} contains no K_{t} (for t even).
Fact 2: G_{t} has at most $2 \frac{5}{8} t^{2}+o\left(t^{2}\right)$
independent sets of size $\leq t$.
We color the edges of G_{t} green.

Let $p=2^{-\frac{1}{8} t-o(t)}$, and keep each vertex of G_{t} with probability p.
Color all remaining pairs red or blue at random.

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.
Let $V_{t}=\left\{x \in \mathbb{F}_{2}^{t}: x\right.$ has an even number of 1 s$\}=\left\{x \in \mathbb{F}_{2}^{t}: x \cdot x=0\right\}$.
For $x, y \in V_{t}$, make $x y$ adjacent if $x \cdot y=1$.
Fact 1: G_{t} contains no K_{t} (for t even).
Fact 2: G_{t} has at most $2 \frac{5}{8} t^{2}+o\left(t^{2}\right)$
independent sets of size $\leq t$.
We color the edges of G_{t} green.

Let $p=2^{-\frac{1}{8} t-o(t)}$, and keep each vertex of G_{t} with probability p.
Color all remaining pairs red or blue at random.

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.
Let $V_{t}=\left\{x \in \mathbb{F}_{2}^{t}: x\right.$ has an even number of 1 s$\}=\left\{x \in \mathbb{F}_{2}^{t}: x \cdot x=0\right\}$.
For $x, y \in V_{t}$, make $x y$ adjacent if $x \cdot y=1$.
Fact 1: G_{t} contains no K_{t} (for t even).
Fact 2: G_{t} has at most $2 \frac{5}{8} t^{2}+o\left(t^{2}\right)$
independent sets of size $\leq t$.
We color the edges of G_{t} green.

Let $p=2^{-\frac{1}{8} t-o(t)}$, and keep each vertex of G_{t} with probability p.
Color all remaining pairs red or blue at random.
$\mathbb{E}\left[\right.$ \#red or blue $\left.K_{t}\right]$

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.
Let $V_{t}=\left\{x \in \mathbb{F}_{2}^{t}: x\right.$ has an even number of 1 s$\}=\left\{x \in \mathbb{F}_{2}^{t}: x \cdot x=0\right\}$.
For $x, y \in V_{t}$, make $x y$ adjacent if $x \cdot y=1$.
Fact 1: G_{t} contains no K_{t} (for t even).
Fact 2: G_{t} has at most $2 \frac{5}{8} t^{2}+o\left(t^{2}\right)$
independent sets of size $\leq t$.
We color the edges of G_{t} green.

Let $p=2^{-\frac{1}{8} t-o(t)}$, and keep each vertex of G_{t} with probability p.
Color all remaining pairs red or blue at random.
$\mathbb{E}\left[\right.$ \#red or blue $\left.K_{t}\right] \lesssim 2^{\frac{5}{8} t^{2}} \cdot p^{t} \cdot 2^{1-\binom{t}{2}}$

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.
Let $V_{t}=\left\{x \in \mathbb{F}_{2}^{t}: x\right.$ has an even number of 1 s$\}=\left\{x \in \mathbb{F}_{2}^{t}: x \cdot x=0\right\}$.
For $x, y \in V_{t}$, make $x y$ adjacent if $x \cdot y=1$.
Fact 1: G_{t} contains no K_{t} (for t even).
Fact 2: G_{t} has at most $2 \frac{5}{8} t^{2}+o\left(t^{2}\right)$
independent sets of size $\leq t$.
We color the edges of G_{t} green.

Let $p=2^{-\frac{1}{8} t-o(t)}$, and keep each vertex of G_{t} with probability p.
Color all remaining pairs red or blue at random.

$$
\mathbb{E}\left[\# \text { red or blue } K_{t}\right] \lesssim 2^{\frac{5}{8} t^{2}} \cdot p^{t} \cdot 2^{1-\left(\frac{t}{2}\right)} \approx\left(2^{-\frac{1}{8} t} \cdot 2^{\frac{5}{8} t} \cdot 2^{-\frac{1}{2} t}\right)^{t}=1 .
$$

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.
Let $V_{t}=\left\{x \in \mathbb{F}_{2}^{t}: x\right.$ has an even number of 1 s$\}=\left\{x \in \mathbb{F}_{2}^{t}: x \cdot x=0\right\}$.
For $x, y \in V_{t}$, make $x y$ adjacent if $x \cdot y=1$.
Fact 1: G_{t} contains no K_{t} (for t even).
Fact 2: G_{t} has at most $2 \frac{5}{8} t^{2}+o\left(t^{2}\right)$ independent sets of size $\leq t$.
We color the edges of G_{t} green.

Let $p=2^{-\frac{1}{8} t-o(t)}$, and keep each vertex of G_{t} with probability p.
Color all remaining pairs red or blue at random.

$$
\mathbb{E}\left[\# \text { red or blue } K_{t}\right] \lesssim 2^{\frac{5}{8} t^{2}} \cdot p^{t} \cdot 2^{1-\binom{t}{2}} \approx\left(2^{-\frac{1}{8} t} \cdot 2^{\frac{5}{8} t} \cdot 2^{-\frac{1}{2} t}\right)^{t}=1
$$

No green K_{t} by Fact 1 , so $r(t ; 3)>N \approx p\left|V_{t}\right|=2^{\frac{7}{8} t-o(t)}$.

More colors

More colors

If q - 1 is a prime power, then one can do the same thing over \mathbb{F}_{q-1}. One obtains

$$
r(t ; q)>\left(2^{\frac{1}{2}}(q-1)^{\frac{3}{8}}\right)^{t-o(t)}
$$

More colors

If $q-1$ is a prime power, then one can do the same thing over \mathbb{F}_{q-1}. One obtains

$$
r(t ; q)>\left(2^{\frac{1}{2}}(q-1)^{\frac{3}{8}}\right)^{t-o(t)}
$$

This only beats the earlier bound $r(t ; q)>\left(2^{\frac{1}{2}\left\lfloor\frac{q}{2}\right\rfloor}\right)^{t}$ for $q \in\{3,4\}$.

More colors

If $q-1$ is a prime power, then one can do the same thing over \mathbb{F}_{q-1}. One obtains

$$
r(t ; q)>\left(2^{\frac{1}{2}}(q-1)^{\frac{3}{8}}\right)^{t-o(t)}
$$

This only beats the earlier bound $r(t ; q)>\left(2^{\frac{1}{2}\left\lfloor\frac{q}{2}\right\rfloor}\right)^{t}$ for $q \in\{3,4\}$.
For $q>4$, Conlon and Ferber use the product coloring.

A new approach for more colors

A new approach for more colors

Overlay two random copies of G_{t} in green and yellow.

A new approach for more colors

Overlay two random copies of G_{t} in green and yellow.

A new approach for more colors

Overlay two random copies of G_{t} in green and yellow.

A new approach for more colors

Overlay two random copies of G_{t} in green and yellow.
The expected number of sets of size t independent in both copies is $\leq 2 \frac{1}{4} t^{2}+o\left(t^{2}\right)$. (Because a t-set is independent in either copy with probability $\leq 2^{-\frac{3}{8} t^{2}-o\left(t^{2}\right)}$.)

A new approach for more colors

Overlay two random copies of G_{t} in green and yellow.
The expected number of sets of size t independent in both copies is $\leq 2 \frac{1}{4} t^{2}+o\left(t^{2}\right)$. (Because a t-set is independent in either copy with probability $\leq 2^{-\frac{3}{8} t^{2}-o\left(t^{2}\right)}$.)

Keep each vertex with probability p (chosen later).

A new approach for more colors

Overlay two random copies of G_{t} in green and yellow.
The expected number of sets of size t independent in both copies is $\leq 2 \frac{1}{4} t^{2}+o\left(t^{2}\right)$. (Because a t-set is independent in either copy with probability $\leq 2^{-\frac{3}{8} t^{2}-o\left(t^{2}\right)}$.)

Keep each vertex with probability p (chosen later).
Color all remaining pairs red or blue at random.

A new approach for more colors

Overlay two random copies of G_{t} in green and yellow.
The expected number of sets of size t independent in both copies is $\leq 2 \frac{1}{4} t^{2}+o\left(t^{2}\right)$. (Because a t-set is independent in either copy with probability $\leq 2^{-\frac{3}{8} t^{2}-o\left(t^{2}\right)}$.)

Keep each vertex with probability p (chosen later).
Color all remaining pairs red or blue at random.

$$
\mathbb{E}\left[\# \text { red or blue } K_{t}\right] \lesssim 2^{\frac{1}{4} t^{2}} \cdot p^{t} \cdot 2^{1-\binom{t}{2}} \approx\left(p \cdot 2^{\frac{1}{4} t} \cdot 2^{-\frac{1}{2} t}\right)^{t} .
$$

A new approach for more colors

Overlay two random copies of G_{t} in green and yellow.
The expected number of sets of size t independent in both copies is $\leq 2 \frac{1}{4} t^{2}+o\left(t^{2}\right)$. (Because a t-set is independent in either copy with probability $\leq 2^{-\frac{3}{8} t^{2}-o\left(t^{2}\right)}$.)

Keep each vertex with probability p (chosen later).
Color all remaining pairs red or blue at random.

$$
\mathbb{E}\left[\# \text { red or blue } K_{t}\right] \lesssim 2^{\frac{1}{4} t^{2}} \cdot p^{t} \cdot 2^{1-\binom{t}{2}} \approx\left(p \cdot 2^{\frac{1}{4} t} \cdot 2^{-\frac{1}{2} t}\right)^{t} \text {. }
$$

Pick $p=2^{\frac{1}{4} t-o(t)}$ to obtain $r(t ; 4)>N \approx p\left|V_{t}\right|=2^{\frac{5}{4} t-o(t)}$.

A new approach for more colors

Overlay two random copies of G_{t} in green and yellow.
The expected number of sets of size t independent in both copies is $\leq 2 \frac{1}{4} t^{2}+o\left(t^{2}\right)$. (Because a t-set is independent in either copy with probability $\leq 2^{-\frac{3}{8} t^{2}-o\left(t^{2}\right)}$.)

Keep each vertex with probability p (chosen later).
Color all remaining pairs red or blue at random.

$$
\mathbb{E}\left[\# \text { red or blue } K_{t}\right] \lesssim 2^{\frac{1}{4} t^{2}} \cdot p^{t} \cdot 2^{1-\binom{t}{2}} \approx\left(p \cdot 2^{\frac{1}{4} t} \cdot 2^{-\frac{1}{2} t}\right)^{t} \text {. }
$$

Pick $p=2^{\frac{1}{4} t-o(t)}$ to obtain $r(t ; 4)>N \approx p\left|V_{t}\right|=2^{\frac{5}{4} t-o(t)}$.
How are we picking $p>1$???

Random homomorphisms to the rescue

Let p be any positive real number, and let $N=p\left|V_{t}\right|$.

Random homomorphisms to the rescue

Let p be any positive real number, and let $N=p\left|V_{t}\right|$.

Random homomorphisms to the rescue

Let p be any positive real number, and let $N=p\left|V_{t}\right|$.
Pick a uniformly random function $f:[N] \rightarrow V_{t}$.

Random homomorphisms to the rescue

Let p be any positive real number, and let $N=p\left|V_{t}\right|$.
Pick a uniformly random function $f:[N] \rightarrow V_{t}$.

Connect vertices in $[N]$ if their labels are adjacent in G_{t} to get $\widetilde{G_{t}}$.

Random homomorphisms to the rescue

Let p be any positive real number, and let $N=p\left|V_{t}\right|$.
Pick a uniformly random function $f:[N] \rightarrow V_{t}$.

Connect vertices in $[N]$ if their labels are adjacent in G_{t} to get $\widetilde{G_{t}}$. If $p \ll 1, \widetilde{G_{t}}$ looks like keeping vertices from G_{t} with probability p. If $p \gg 1$, it looks like a random blowup.

Random homomorphisms to the rescue

Let p be any positive real number, and let $N=p\left|V_{t}\right|$.
Pick a uniformly random function $f:[N] \rightarrow V_{t}$.

Connect vertices in $[N]$ if their labels are adjacent in G_{t} to get $\widetilde{G_{t}}$. If $p \ll 1, \widetilde{G_{t}}$ looks like keeping vertices from G_{t} with probability p. If $p \gg 1$, it looks like a random blowup.
Fact 1: $\widetilde{G_{t}}$ contains no K_{t}.

Random homomorphisms to the rescue

Let p be any positive real number, and let $N=p\left|V_{t}\right|$.
Pick a uniformly random function $f:[N] \rightarrow V_{t}$.

Connect vertices in $[N]$ if their labels are adjacent in G_{t} to get $\widetilde{G_{t}}$. If $p \ll 1, \widetilde{G_{t}}$ looks like keeping vertices from G_{t} with probability p.
If $p \gg 1$, it looks like a random blowup.
Fact 1: $\widetilde{G_{t}}$ contains no K_{t}.
Fact 2: $\mathbb{E}\left[\#\right.$ independent sets of size t in $\left.\widetilde{G_{t}}\right] \lesssim p^{t} \cdot 22^{\frac{5}{8} t^{2}}$.

Random homomorphisms to the rescue

Let p be any positive real number, and let $N=p\left|V_{t}\right|$.
Pick a uniformly random function $f:[N] \rightarrow V_{t}$.

Connect vertices in $[N]$ if their labels are adjacent in G_{t} to get $\widetilde{G_{t}}$. If $p \ll 1, \widetilde{G_{t}}$ looks like keeping vertices from G_{t} with probability p.
If $p \gg 1$, it looks like a random blowup.
Fact 1: \widetilde{G}_{t} contains no K_{t}.
Fact 2: $\mathbb{E}\left[\#\right.$ independent sets of size t in $\left.\widetilde{G_{t}}\right] \lesssim p^{t} \cdot 22^{\frac{5}{8} t^{2}}$.
So the above argument works for any p, if interpreted correctly.

Putting it all together

Theorem (W. 2021)

$$
r(t ; q)>\left(2^{\frac{3 q}{8}-\frac{1}{4}}\right)^{t-o(t)}
$$

Putting it all together

Theorem (W. 2021)

$$
r(t ; q)>\left(2^{\frac{3 q}{8}-\frac{1}{4}}\right)^{t-o(t)}
$$

Proof: Let $p=\left(2^{\frac{3 q}{8}-\frac{5}{4}}\right)^{t-o(t)}$, let $N=p\left|V_{t}\right|$, and pick $q-2$ random
functions $[N] \rightarrow V_{t}$. Overlay the resulting graphs $\widetilde{G_{t}}$ for the first $q-2$
colors, then color the remaining pairs red or blue at random.

Putting it all together

Theorem (W. 2021)

$$
r(t ; q)>\left(2^{\frac{3 q}{8}-\frac{1}{4}}\right)^{t-o(t)}
$$

Proof: Let $p=\left(2^{\frac{3 q}{8}-\frac{5}{4}}\right)^{t-o(t)}$, let $N=p\left|V_{t}\right|$, and pick $q-2$ random functions $[N] \rightarrow V_{t}$. Overlay the resulting graphs $\widetilde{G_{t}}$ for the first $q-2$ colors, then color the remaining pairs red or blue at random.
Theorem (Sawin 2022)

$$
r(t ; q)>\left(2^{0.383796 q-0.267592}\right)^{t-o(t)}
$$

Putting it all together

Theorem (W. 2021)

$$
r(t ; q)>\left(2^{\frac{3 q}{8}-\frac{1}{4}}\right)^{t-o(t)}
$$

Proof: Let $p=\left(2^{\frac{3 q}{8}-\frac{5}{4}}\right)^{t-o(t)}$, let $N=p\left|V_{t}\right|$, and pick $q-2$ random
functions $[N] \rightarrow V_{t}$. Overlay the resulting graphs $\widetilde{G_{t}}$ for the first $q-2$ colors, then color the remaining pairs red or blue at random.
Theorem (Sawin 2022)

$$
r(t ; q)>\left(2^{0.383796 q-0.267592}\right)^{t-o(t)}
$$

Proof: No reason to use G_{t} ! Any graph G with no K_{t} and few independent sets of size $\leq t$ can be plugged into the random homomorphism machinery.

Putting it all together

Theorem (W. 2021)

$$
r(t ; q)>\left(2^{\frac{3 q}{8}-\frac{1}{4}}\right)^{t-o(t)}
$$

Proof: Let $p=\left(2^{\frac{3 q}{8}-\frac{5}{4}}\right)^{t-o(t)}$, let $N=p\left|V_{t}\right|$, and pick $q-2$ random
functions $[N] \rightarrow V_{t}$. Overlay the resulting graphs $\widetilde{G_{t}}$ for the first $q-2$ colors, then color the remaining pairs red or blue at random.
Theorem (Sawin 2022)

$$
r(t ; q)>\left(2^{0.383796 q-0.267592}\right)^{t-o(t)}
$$

Proof: No reason to use G_{t} ! Any graph G with no K_{t} and few independent sets of size $\leq t$ can be plugged into the random homomorphism machinery.
A better choice is $G(n, p)$ with $p=0.454997$ and $n=p^{-t / 2}$.

Thank you!

