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Abstract

A weakly optimal Ks-free (n, d, λ)-graph is a d-regular Ks-free graph on n ver-
tices with d = Θ(n1−α) and spectral expansion λ = Θ(n1−(s−1)α), for some fixed
α > 0. Such a graph is called optimal if additionally α = 1

2s−3 . We prove that if
s1, . . . , sk > 3 are fixed positive integers and weakly optimal Ksi-free pseudorandom
graphs exist for each 1 6 i 6 k, then the multicolor Ramsey numbers satisfy

Ω
( tS+1

log2S t

)
6 r(s1, . . . , sk, t) 6 O

( tS+1

logS t

)
,

as t→∞, where S =
∑k

i=1(si−2). This generalizes previous results of Mubayi and
Verstraëte, who proved the case k = 1, and Alon and Rödl, who proved the case
s1 = · · · = sk = 3. Both previous results used the existence of optimal rather than
weakly optimal Ksi-free graphs.

Mathematics Subject Classifications: 05C55, 05D10

1 Introduction

The central object of study in Ramsey theory is the Ramsey number r(s1, . . . , sk), which is
defined to be the smallest posititive integer N such that in any k-coloring of the complete
graph KN , there is a monochromatic Ksi of some color i ∈ {1, . . . , k}.
∗Supported by NSF Graduate Research Fellowship DGE-1656518.
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In the case k = 2, the order of growth of r(3, t) as t→∞ was determined to be

r(3, t) = Θ
( t2

log t

)
by Ajtai, Komlós, and Szemerédi [1] and Kim [8]. It is one of the central open problems
in Ramsey theory to generalize these bounds and determine the growth rates of r(s, t)
for all fixed s > 3 and t → ∞. Unfortunately, when s > 4 even the polynomial order of
r(s, t) is not known, and the best known bounds are

Ω
( t

s+1
2

(log t)
s+1
2
− 1

s−2

)
6 r(s, t) 6 O

( ts−1

logs−2 t

)
.

The lower bound is due to Bohman and Keevash [7], while the upper bound is again due
to Ajtai, Komlós, and Szemerédi [1].

Recently, Mubayi and Verstraëte [10] connected the growth rate of r(s, t) to a problem
in the theory of pseudorandom graphs. Recall that an (n, d, λ)-graph is a d-regular graph
on n vertices such that all of its nontrivial eigenvalues have absolute value at most λ.

Definition 1. A family of weakly optimal Ks-free (n, d, λ)-graphs is a collection of Ks-free

(ni, di, λi)-graphs for which di = Θ(n1−α
i ) and λi = Θ(n

1−(s−1)α
i ) as ni → ∞, for some

fixed α > 0. We call α the parameter of weak optimality. If, moreover, λi = Θ(
√
di) (so

that α = 1
2s−3), then this family is said to be optimal.

Note that α and the implicit constants may not depend on i. Informally, we say that
weakly optimal Ks-free (n, d, λ)-graphs exist if there exists a family of weakly optimal
Ks-free (n, d, λ)-graphs, for some fixed α > 0. Note that the t-blowup of an (n, d, λ)-
graph is an (nt, dt, λt)-graph with the same clique number; thus, the existence of optimal
Ks-free (n, d, λ)-graphs implies the existence of weakly optimal Ks-free (n, d, λ)-graphs
for all 0 < α 6 1

2s−3 (this fact was observed already by Krivelevich, Sudakov, and Szabó
[9] when s = 3). Because of this, the existence of weakly optimal Ks-free (n, d, λ)-graphs
is indeed weaker than the existence of optimal ones.

Sudakov, Szabó, and Vu [11] conjectured the existence of optimal Ks-free (n, d, λ)-
graphs for all s > 3 and all n; such graphs where constructed by Alon [2] in the case
s = 3 but the conjecture remains open for s > 4 (see [6] for the best known construction
for s > 5, which agrees with Alon’s bound for s = 4). Conditional on this conjecture,
Mubayi and Verstraëte showed that r(s, t) grows like ts−1 up to polylogarithmic factors.

Theorem 2. (Mubayi and Verstraëte [10].) If optimal Ks-free (n, d, λ)-graphs exist for
all n, then

Ω
( ts−1

log2s−4 t

)
6 r(s, t) 6 O

( ts−1

logs−2 t

)
,

where the implicit constants may depend only on s.

Theorem 2 relies heavily on a lemma of Alon and Rödl [4], which was originally used
to prove the following bound on the multicolor Ramsey number rk(s, t) := r(s, . . . , s, t)
where s appears k times.
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Theorem 3. (Alon and Rödl [4].) For all k > 1,

Ω
( tk+1

log2k t

)
6 rk(3, t) 6 O

( tk+1

logk t

)
,

where the implicit constants may depend only on k.

Note that Theorem 3 depends on the existence of optimal K3-free (n, d, λ)-graphs,
which were constructed by Alon [2].

Our main result is the following natural common generalization of Theorems 2 and 3,
which also replaces the assumption of optimality by that of weak optimality.

Theorem 4. If s1, . . . , sk > 3, S =
∑k

i=1(si − 2), and for each 1 6 i 6 k there exist
weakly optimal Ksi-free (n, d, λ)-graphs for all n, then

Ω
( tS+1

log2S t

)
6 r(s1, . . . , sk, t) 6 O

( tS+1

logS t

)
, (1)

where the implicit constants may depend only on S and the weak optimality parameters
α1, . . . , αk.

Like Theorems 2 and 3, Theorem 4 is a consequence of a lemma of Alon and Rödl [4]
which shows that an (n, d, λ)-graph has few independent sets of order just over n/d. We
will need the following slightly stronger version, which is proved in exactly the same way.

Lemma 5. If G is an (n, d, λ)-graph and t > 2n log2 n
d

, then the number of t-tuples
(v1, . . . , vt) ∈ V (G)t of vertices of G, no pair of which are adjacent, is at most(4enλ

d

)t
.

In the next section we prove the lower bound in Theorem 4. The proofs of Lemma 5 and
the upper bound in Theorem 4 are relatively standard and are confined to the appendix.

2 The Proof

The main difficulty in applying Lemma 5 to construct Ramsey graphs is rescaling a given
(n, d, λ)-graph to have the appropriate number of vertices. The proofs of Theorems 2
and 3 each provide half the picture. In the proof of Theorem 2, a Ks-free (n, d, λ)-graph
is scaled down to a smaller Ks-free graph with no independent sets of size t by sampling a
random induced subgraph. In the proof of Theorem 3, a K3-free (n, d, λ)-graph is scaled
up to a larger K3-free graph with few independent sets by performing a balanced blowup.

The natural common generalization of these two constructions is a random blowup;
using random blowups, we will be able to scale the weakly optimal Ks-free (n, d, λ)-graphs
to Ks-free graphs of any size with few independent sets. Define it(G) to be the number
of independent sets of order t in G.
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Lemma 6. If there exists a Ks-free (n, d, λ)-graph G and t > 2n log2 n
d

, then for every N
there exists a Ks-free graph G(N) on N vertices with

it(G(N)) 6
( 2e2λN

n log2 n

)t
.

Proof. We will define G(N) as follows. Pick a uniform random map f : [N ] → G, and
let G(N) be the graph on [N ] whose edges are exactly the pairs (i, j) that map to edges
in G. Since G is Ks-free, so is G(N). It suffices to prove the desired upper bound on
E[it(G(N))].

By Lemma 5 (proved in Appendix A) and linearity of expectation,

E[it(G(N))] =

(
N

t

)
Pr[f([t]) is an independent set]

=

(
N

t

)(4eλn
d

)t
nt

,

since f([t]) is a uniform random t-tuple in V (G)t. Bounding
(
N
t

)
6
(
eN
t

)t
, we find that

with positive probability,

it(G(N)) 6
(eN
t

)t(4eλ

d

)t
6
( 2e2λN

n log2 n

)t
since t > 2n log2 n

d
.

We are ready to prove the main result. The upper bound is proved in Appendix B.

Proof of the lower bound in Theorem 4. Henceforth all implicit constants are allowed to
depend on S =

∑k
i=1(si−2) and on the weak optimality parameters α1, . . . , αk. Let Gi be

a weakly optimal Ksi-free (ni, di, λi)-graph, where di = Θ(n1−αi
i ) and λi = Θ(n

1−(si−1)αi

i ).
As these are assumed to exist for all ni, we pick

ni = Θ
(( t

log2 t

)1/αi
)

so that with di = Θ(n1−αi
i ), the bound t > 2ni log

2 ni

di
holds. Take

N = Θ
( tS+1

log2S t

)
,

the implicit constant to be chosen later. Rescaling each Gi to a Gi(N) on N vertices
satisfying Lemma 6, we get k graphs Gi(N) on the same vertex set [N ] such that Gi(N)
is Ksi-free and

it(Gi(N)) 6
( 2e2λiN

ni log2 ni

)t
. (2)
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We define a random (k+ 1)-coloring of
(
[N ]
2

)
so that in each of the first k colors, the edges

form a subgraph of Gi(N). To do so, simply take a uniform random vertex permutation
of Gi(N) as the edges in the i-th color; when multiple colors are given to the same edge,
break ties arbitrarily. All remaining edges are given color k + 1.

This (k + 1)-colored graph has no monochromatic Ksi in any of the first k colors. It
remains to show that with positive probability, it has no Kt in the last color. Indeed,
the probability that a given set I of order t induces a Kt in the last color is exactly the
product

k∏
i=1

it(Gi(N))(
N
t

) ,

since I must be an independent set in each of the first k colors. By (2), we have that

k∏
i=1

it(Gi(N))(
N
t

) 6
k∏
i=1

( 2e2λiN

ni log2 ni

)t
/
(N
t

)t
6

k∏
i=1

(Cλi/di)
t

for an absolute constant C > 0. With our choices of λi and di,

λi
di

= Θ
(
n
−αi(si−2)
i

)
= Θ

((
t

log2 t

)−(si−2))
.

By taking a union bound over all I, the probability that there exists a Kt in the last color
is at most (

N

t

) k∏
i=1

O
(( t

log2 t

)−(si−2))t
6 O

(N
t

( t

log2 t

)−S)t
< 1

for the appropriate choice of the constant in the definition of N . This completes the
proof.
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A Proof of Lemma 5

We give a short proof of Lemma 5 using the Expander Mixing Lemma (see e.g. [5,
Corollary 9.2.5]).

Lemma 7. (Expander Mixing Lemma.) If G is an (n, d, λ)-graph and S, T ⊆ V (G), then

|e(S, T )− d

n
|S||T || < λ

√
|S||T |.

Here e(S, T ) denotes the number of ordered pairs (s, t) ∈ S × T which are edges of G.

Proof of Lemma 5. We count the number of ways to pick v1, . . . , vt one-by-one. Let Sk
be the set of all vertices with no edges to v1, . . . , vk−1 (including v1, . . . , vk−1), and let
Tk = {v ∈ Sk : |N(v) ∩ Sk| < d

2n
|Sk|}. Thus, Sk is the set of all valid candidates for vk,

and Tk is the subset of valid candidates for which Sk+1 is not much smaller than Sk. In
particular, every time we choose vk ∈ Sk\Tk, we find that

|Sk+1| 6 (1− d

2n
)|Sk| < e−

d
2n |Sk|,

so since |S0| = n, the total number of k for which vk can be chosen from Sk\Tk is bounded
by t′ = 2n

d
log n.

On the other hand, by the definition of Tk we have e(Sk, Tk) <
d
2n
|Sk||Tk|, and so

applying Lemma 7 we get
d

2n
|Sk||Tk| < λ

√
|Sk||Tk|.
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In particular, since Tk ⊆ Sk, we have

|Tk| <
2nλ

d
.

Thus, the total number of sequences v1, . . . , vt where all pairs are not adjacent is
bounded by (

t

t′

)
nt
′
(2nλ

d

)t
,

since we can choose the t′ steps on which vk ∈ Sk\Tk in
(
t
t′

)
ways, the number of such

choices is bounded by n on each step, and in all the other steps the number of choices for
vk is at most |Tk| < 2nλ

d
. Bounding

(
t
t′

)
< 2t and nt

′
< nt/ logn = et, we obtain a bound of(4enλ

d

)t
,

as claimed.

B The upper bound in Theorem 4

Alon and Rödl [4] proved the upper bound in (1) when s1 = s2 = · · · = sk = 3, and our
proof is a generalization of theirs.

Proof of the upper bound in Theorem 4. We fix k and induct on S. The base case S =
1 is just r(2, 2, . . . , 2, 3, t) = O(t2/ log t) for any number of 2’s, by Ajtai, Komlós and
Szemerédi [1]. Assume by induction that there exist absolute constants CS′ > 0 for all
S ′ < S such that for all vectors (s1, . . . , sk) with si > 2 and

∑k
i=1(si − 2) = S ′,

r(s1, . . . , sk, t) 6 nS′ :=
CS′t

S′+1

logS
′
t
.

Now let nS = CSt
S+1/ logS t for some CS to be determined, and suppose we are given

a (k + 1)-coloring of KnS
such that there is no monochromatic Ksi of color i, nor a

monochromatic Kt of color k+ 1. Define T to be the spanning subgraph of KnS
obtained

by taking only the edges of the first k colors. If D is the maximum degree in T , then

D < knS−1, (3)

If (3) is false, then there is a vertex v ∈ V (T ) and some color i 6 k such that v is incident
to at least

nS−1 > r(s1, . . . , si − 1, . . . , sk, t)

edges of color i. The induced subgraph on the set of vertices connected to v by color
i must not contain a monochromatic clique Ksj of any color j 6= i, so there will be a
Ksi−1 of color i inside. But then this forms a Ksi of color i together with v, which is a
contradiction. This proves inequality (3).
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Next, let D′ denote the maximum number of edges in some neighborhood NT (v) of a
vertex in T . We show

D′ < k2DnS−2. (4)

Suppose otherwise, and let v be the vertex with the most edges in its neighborhood. If
u ∈ NT (v), define dv(u) as the number of common neighbors w ∈ NT (v) ∩ NT (u) for
which either uv, uw, vw are all the same color, or uw and vw are different colors. Each
edge uw ∈ NT (v) contributes either once or twice to the sum of the dv(u), so∑

u∈NT (v)

dv(u) > k2DnS−2.

In particular, there is some u for which dv(u) > k2nS−2. We can categorize the vertices
w of NT (v) counted in dv(u) by the pair of colors of uw and vw, and find that there exists
colors i, j (not necessarily different) and a set W of nS−2 vertices such that for every
w ∈ W , uw is of color i and vw is of color j. If i 6= j, this implies a contradiction from
the fact that

|W | > nS−2 > r(s1, . . . , si − 1, . . . , sj − 1, . . . , sk, t).

Otherwise, if i = j, then by the definition of dv(u) it must be that uv is of color i as well,
and so we also get a contradiction since

|W | > nS−2 > r(s1, . . . , si − 2, . . . , sk, t).

This proves (4). It is a corollary of a result of Alon, Krivelevich, and Sudakov [3]
that if a graph has maximum degree D and every neighborhood has at most D′ = D2

f

edges, then its independence number is at least Ω(n log f
D

). In particular, we see that the
independence number of T is at least

Ω
(nS log t

D

)
,

since (4) implies D′ = O(D2 log t/t). On the other hand, an independent set in T forms
a monochromatic clique in KnS

of color k + 1, so

t > Ω
(nS log t

D

)
,

which shows that

nS < O
( Dt

log t

)
= O

(CS−1tS+1

logS t

)
.

Picking CS sufficiently large in terms of CS−1, this gives the desired contradiction.
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