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1 Introduction

Given positive integers t1, . . . , t`, let r(t1, . . . , t`) denote the Ramsey number of t1, . . . , t`,
namely the least integer N such that every `-coloring of the edges of KN contains a copy of
Kti in color i for some i ∈ [`]. In case t1 = · · · = t` = t, then we write r(t; `) := r(t, . . . , t) to
denote the `-color Ramsey number of t.

Obtaining good upper and lower bounds on r(t; `) is a central question in Ramsey theory,
and despite more than 80 years of effort, still not much is known. For upper bounds, the
best result is still essentially that given by the Erdős–Szekeres argument from 1935.

Theorem 1.1. r(t; `) ≤ `t` for any integers t, `.

Proof. Fix an `-coloring of E(KN). For any vertex v1, at least N/` of the edges incident
with v1 have the same color, say c1. Discard all other vertices. For any remaining vertex
v2 6= v1, at least (N/`)/` of the remaining incident edges to v2 have the same color, say c2.
Continue in the same way, generating a sequence of vertices v1, . . . , vk and colors c1, . . . , ck.
Note that since we cut down by a factor of at most 1/` the number of vertices at each
step, we must have k ≥ log`N . Moreover, by the pigeonhole principle, at least k/` of the
colors c1, . . . , ck are the same color. But the vertices corresponding to these k/` identical
colors form a monochromatic clique of size t ≥ k/` ≥ (log`N)/`. Rearranging shows that
N ≤ `t`.

In fact, by tracking the recursion in this argument more carefully, one finds that

r(t1, . . . , t`) ≤
(
t1 + · · ·+ t` − `
t1 − 1, . . . , t` − 1

)
,

and this multinomial coefficient is always smaller (by a lower-order term) than `t`. Slight
further improvements to this bound follow from Conlon’s approach to diagonal Ramsey
numbers, but `t` is still roughly the best upper bound we have.

For lower bounds, the simplest thing to do is to consider a uniformly random `-coloring
of KN . A simple union bound then shows that we may take N ≈ `t/2 and have no monochro-
matic clique of order t, implying that r(t; `) & `t/2. While this is essentially the best bound
we know for 2 colors, there is a simple trick, usually attributed to Lefmann, which does
better for more colors.

Lemma 1.2 (Product coloring). For any integers t, `1, `2,

r(t; `1 + `2)− 1 ≥ (r(t; `1)− 1)(r(t; `2)− 1).

Proof. Fix colorings on N1 := r(t; `1)− 1 and N2 := r(t; `2 − 1) vertices with no monochro-
matic Kt. We form a coloring on N1N2 vertices by blowing up each of the N1 vertices in the
first coloring to N2 new vertices, and putting a copy of the second coloring in each blowup
part. Equivalently, we make our vertex set be [N1]× [N2], and color edges lexicographically
according to the two colorings on [N1], [N2]. Then it is immediate that this coloring has no
monochromatic Kt, implying that r(t; `1 + `2)− 1 ≥ N1N2.
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Plugging in the bound r(t; 2) > 2t/2, we find that r(t; `) ≥ 2t`/4, since we can take an
(`/2)-fold product coloring. Putting this together, we find that

2t`/4 ≤ r(t; `) ≤ `t` = 2t` log `.

There are two interesting parameter regimes, and the above indicates what the major prob-
lems in each are. First, let us suppose that t is fixed and `→∞. Then we find that r(t; `)
is between 2Ω(`) and 2O(` log `), i.e. between exponential and super-exponential in `. It is a
major open problem to determine whether the truth is exponential or super-exponential.
Even in the simplest case, of t = 3, our knowledge is very limited, and Erdős offered $100 to
determine whether r(3; `) is exponential or super-exponential. The current best bounds are

1073`/6 ≈ 3.199` ≤ r(3; `) ≤
(
e− e−1 + 3

2

)
`! ≈ 2.675`!.

The question of whether r(t; `) is exponential or super-exponential in ` is closely related to
a number of other questions in graph theory and other fields of math. One of my favorite
interpretations has to do with the Shannon capacity of graphs, which is a very mysterious
quantity: it was a major achievement when Lovász determined the Shannon capacity of C5,
and the Shannon capacity of any longer odd cycle is still unknown. There is a sequence of
inequalities

α(G) ≤ Θ(G) ≤ ϑ(G) ≤ χf (G) ≤ χ(G),

where α is the independence number, Θ is the Shannon capacity, ϑ is the Lovász theta
function, χf is the fractional chromatic number, χ is the chromatic number, and G is the
complement graph of G. For almost every pair of quantities in this chain of inequalities, it is
known that the larger cannot be bounded as a function of the smaller. The unique exception
is the pair α and Θ, where we can’t decide whether the Shannon capacity is bounded as a
function of the independence number. However, it turns out that for any α ≥ 2,

lim
`→∞

r(α + 1; `)1/` = max
G:α(G)=α

Θ(G).

Thus, determining whether r(t; `) is exponential or super-exponential is equivalent to deter-
mining whether Θ can be bounded as a function of α.

The other parameter regime is where `, the number of colors, is fixed, but t→∞. Here
even for ` = 2 our knowledge is very limited, stuck at the simple bounds 2t/2 ≤ r(t; 2) ≤ 22t,
other than lower-order improvements. Similarly, by the above, we know that for each fixed
`, the value of r(t; `) is exponential in t as t → ∞, so the main question in this regime is
to determine the correct exponential constant. The goal of this talk to is to tell you about
some improvements, due to Conlon and Ferber [2], to the exponential constant of r(t; `) for
fixed ` ≥ 3 and t→∞.

Conlon and Ferber’s construction mixes algebraic and probabilistic approaches, a tech-
nique that seems to be increasingly important in extremal combinatorics. Before describing
their construction, I’ll begin by discussing some earlier work which is either thematically or
technically related, as a way of building up some of the main ideas.
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2 Random subgraphs, random blowups, and random

homomorphisms

Let’s suppose we wish to prove a lower bound on the two-color Ramsey number r(s, t). If
we can find a graph G that has no clique of order s and no independent set of order t, then
we’ve found such a lower bound: r(s, t) is greater than the number of vertices of G. But
since finding such graphs is hard, it would be nice to be able to lower-bound r(s, t) by finding
a graph G with some weaker property.

It turns out that this is possible. Suppose we now have a graph G with no Ks, but let’s
not assume that it has no independent sets of order t. Instead, let’s suppose that G has
“few” independent sets of order t. Concretely, assume that G has at most M t independent
sets of order t, for some parameter M (note that it is natural to parametrize things in this
way, since there are exponentially many t-sets of vertices in G). It turns out that as long
as M is not too big, we can use this G to get a good lower bound on r(s, t), by random
sampling.

Lemma 2.1 (Random sampling). Let G be a Ks-free graph on N vertices, and suppose that
G has at most M t independent sets of order t. Then

r(s, t) ≥ N

4M
.

Proof. We will randomly sample a subgraph H of G, by keeping each vertex of G indepen-
dently with probability p, to be chosen later. Since G is Ks-free, its subgraph H is Ks-free
as well. Additionally, each independent set of order t in G will survive in H with probability
pt. So the expected number of independent sets of order t in H is at most ptM t = (pM)t.
By choosing p = 1/(2M), this number is less than 1/2, so the probability that H has no
independent set of order t is at least 1/2. Additionally, with high probability, H has at least
pN/2 vertices, by the Chernoff bound1. So we find that with positive probability, H is a
graph on at least N/(4M) vertices with no Ks or Kt, proving that r(s, t) ≥ N/(4M), as
claimed.

Though the idea in Lemma 2.1 is simple and was known for a long time, it gained recent
prominence due to work of Mubayi and Verstraëte [4]. Recall that Erdős and Szekeres proved
that r(s, t) ≤ ts−1 for fixed s ≥ 3 and t→∞.

Corollary 2.2 (Mubayi–Verstraëte). Fix s ≥ 3. Suppose that for every t, there exists a
Ks-free graph on N = t2s−3+o(1) vertices with at most M t independent sets of order t, where
M = ts−2+o(1). Then

r(s, t) ≥ N

4M
= ts−1−o(1),

which is asymptotically tight as t→∞.

1Strictly speaking, we’d have to assume that e.g. N > 10M for this step to work. But given that the
lemma statement is uninteresting if M and N have the same order, let’s not worry about this technicality.
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Of course, as I’ve stated it, this does not seem like a particularly impressive result, since
the assumptions are weird and unnatural. However, the reason this result is so important
is due to a lemma of Alon and Rödl [1], as well as another observation of Mubayi and
Verstraëte. Without getting into it, it turns out that an optimally pseudorandom Ks-free
graph satisfies the assumptions of Corollary 2.2. Such graphs are known to exist for s = 3,
and it is a major open problem to prove that they exist for all s ≥ 4. However, with this
observation, one sees that the Mubayi–Verstraëte result says that finding such graphs for
s ≥ 4 would also determine the asymptotic order of r(s, t) as t→∞.

In order to extend these ideas further, it will be convenient to take a different perspective
on Lemma 2.1. Specifically, rather than keeping each vertex of G with probability p, we
will pick a random function from a set of pN vertices to V (G), and “pull back” the graph
structure. Of course, if p � 1, then this random function will have no collisions with high
probability, and so we will exactly get the random induced subgraph we got before, except
that we’ll have exactly pN vertices (rather than a binomial distribution on the number of
vertices), but this difference is immaterial. The reason for taking this change of perspective
is that it is much more amenable to using more than two colors: we can just pick a more
random functions and overlay them, as we’ll soon see.

Concretely, suppose that G is a Ks-free graph on N vertices with at most M t independent
sets of order at most2 t. Let n = pN for some parameter p, and pick a uniformly random
function f : [n] → V (G). Define a graph H on vertex set [n] by setting {u, v} ∈ E(H)
if {f(u), f(v)} ∈ E(G); note that in particular we only connect u and v if f(u) 6= f(v),
which implies that H is also Ks-free. Then for any given set T ⊂ [n] of order |T | = t, the
probability that its image under f lies in a given subset of V (G) is at most (t/N)t. Thus,
the probability that T is independent in H is at most (tM/N)t. As there are

(
n
t

)
choices for

this T , we see by the union bound that

Pr(H has an independent set of order t) ≤
(
n

t

)(
tM

N

)t
≤
(
epN

t

tM

N

)t
= (epM)t,

and we can recover the result of Lemma 2.1 by setting p = 1/(2eM).
However, as indicated above, the power of this perspective is that it easily extends to

more colors. Indeed, suppose that we instead pick independent uniformly random functions
f1, . . . , fr : [n] → V (G). We color the edges of Kn in r + 1 colors, as follows. If there is
some i ∈ [r] such that {fi(u), fi(v)} ∈ E(G), then we color {u, v} by the minimum such
i. If not, we color {u, v} by color r + 1. Then each of the first r colors is Ks-free, by
the above. Additionally, the probability that some fixed t-set T is monochromatic in the
last color is at most (tM/N)rt, since we have a probability (tM/N)t for each function fi,
and these probabilities are independent. Therefore, by the union bound, we find that the

2Note that we’ve slightly strengthened this assumption, bounding the number of independent sets of order
at most t. As it turns out, this is usually OK: many techniques that bound the number of independent sets
of order exactly t will also work here, including the Alon–Rödl technique mentioned above.
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probability that the last color has a clique of order t is at most(
n

t

)(
tM

N

)rt
≤
(
ptrM r

N r−1

)t
. (1)

We conclude the following generalization of Lemma 2.1.

Lemma 2.3 (Random homomorphisms). Let G be a Ks-free graph on N vertices, and
suppose that G has at most M t independent sets of order at most t. Then

r(s, . . . , s︸ ︷︷ ︸
r times

, t) ≥ N r

2trM r
.

Proof. We set p = N r−1/(2trM r), so that the quantity in equation (1) is less than 1. Then
we see that the coloring described above has no Ks in the first r colors, and no Kt in the
final color, and has n = pN vertices.

Of course, even this isn’t the most general form of this lemma that we could prove, since
there’s no real reason to have f1, . . . , fr all have the same codomain. Thus, as in [3], we can
use this idea to obtain lower bounds on many off-diagonal multicolor Ramsey numbers.

The crucial thing to observe about Lemma 2.3 is that p is not a probability, and in
particular, it does not need to be less than 1! If p > 1, then n = pN will be larger than N ,
and the functions f1, . . . , fr will no longer be making random subgraphs of G. Instead, they
will be forming random blowups of G, and thus the coloring we use in Lemma 2.3 is gotten
by randomly overlaying r random blowups of G, and then coloring all uncolored edges with
the final color. This idea of overlaying random blowups to obtain lower bounds on multicolor
Ramsey numbers goes back to Alon and Rödl [1], though they didn’t use the perspective of
random homomorphisms. The observation that the Alon–Rödl approach and the Mubayi–
Verstraëte approach are both instances of the same general technique is due to Xiaoyu He,
and our paper [3] uses this observation to combine the Alon–Rödl and Mubayi–Verstraëte
approaches and obtain unified bounds on multicolor Ramsey numbers, at least under the
assumption that there exist optimal Ks-free pseudorandom graphs. In my opinion, the fact
that random induced subgraphs and random blowups are “the same thing” is a very powerful
observation, and it’s the main message I’d like to get across today.

3 The Conlon–Ferber argument (and beyond)

The Conlon–Ferber construction can be broken up into two parts. The first is a simple but
powerful generalization of Lemmas 2.1 and 2.3, which is that by adding one more random
color, we are able to significantly reduce the size of monochromatic cliques that occur. Then
the second step is finding an appropriate graph G to apply this strengthened lemma to. Let’s
discuss each step in turn.
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For the first step, in Lemma 2.3, we gave all remaining edges the same color, and then
used a simple union bound to estimate the probability of a monochromatic Kt. The Conlon–
Ferber idea is to actually use two colors for these remaining edges, choosing randomly for
each edge. Since we know that random colorings generally have small monochromatic cliques,
it stands to reason that doing this will improve the lower bound on the Ramsey number. Of
course, doing this is costly, in the sense that we have to add a new color, so we are obtaining
a strengthened bound on a different Ramsey number. The precise statement, implicit in
[2, 5], is as follows.

Lemma 3.1. Let G be a Ks-free graph on N vertices, and suppose that G has at most M t

independent sets of order at most t. Then

r(s, . . . , s︸ ︷︷ ︸
r times

, t, t) ≥ 2t/2N r

4trM r
.

Proof. As indicated above, we pick a parameter p, set n = pN , and choose r random functions
f1, . . . , fr : [n]→ V (G). We color E(Kn) by assigning the first r colors as before, with {u, v}
getting color i only if {fi(u), fi(v)} ∈ E(G). For the uncolored edges, we assign one of the
colors r + 1, r + 2 uniformly at random, independently for each uncolored edge. Then as
above, we know that the first r colors are Ks-free. For the final two colors, let’s estimate the
probability that a t-set T ⊂ [n] is monochromatic. For T to be monochromatic, it must first
not contain any edges of the first r colors, which we know happens with probability at most

(tM/N)rt. Then, there is a probability 21−(t
2) that all the pairs of T get assigned the same

color among {r + 1, r + 2}. Putting this all together with the union bound, we see that the
probability that Kn has a monochromatic Kt in one of the last two colors is at most(

n

t

)
21−(t

2)
(
tM

N

)rt
≤
(
pN · 21− t

2 · t
rM r

N r

)t
=

(
p

2trM r

2t/2N r−1

)t
.

So if we take p = 2t/2N r−1/(4trM r), this probability will be less than 1, and we’ll obtain a
coloring with no Ks in the first r colors and no Kt in the final two colors. This gives that

r(s, . . . , s︸ ︷︷ ︸
r times

, t, t) ≥ n = pN =
2t/2N r

4trM r
.

Now, for the second step of the Conlon–Ferber argument, we need to find a graph which
has no small cliques and few small independent sets, for an appropriate choice of “small”
and “few”. They used the following graph.

Definition 3.2. Let t be even and let V ⊂ Ft2 be the subspace of all vectors of even Hamming
weight. We define a graph G0 with vertex set V by letting {u, v} ∈ E(G0) if u · v = 1, where
u · v =

∑t
i=1 uivi denotes the scalar product over F2. Note that G0 has N = |V | = 2t−1

vertices.
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The two properties we need of G0 are the content of the next two lemmas.

Lemma 3.3. G0 is Kt-free.

Proof. This is essentially the Oddtown theorem. We claim that every clique of even order
in G0 must consist of linearly independent vectors. Indeed, suppose that m is even and that
v1, . . . , vm form a clique in G0. Suppose we had a linear relation

∑
αivi = 0. Note that by

the definition of V , we have vi · vi = 0 for all i, while vi · vj = 1 for i 6= j, since these vectors
form a clique in G0. So taking the scalar product of the linear relation with each vj in turn,
we find that

0 = vj ·

(
m∑
i=1

αivi

)
=
∑

1≤i≤m
i 6=j

αi =

(
m∑
i=1

αi

)
− αj.

Adding these equations over all j ∈ [m] shows that

m∑
j=1

αj = m
m∑
i=1

αi =⇒ (m− 1)
m∑
i=1

αi = 0.

Since m is even, m−1 is invertible over F2, so we conclude that
∑
αi = 0. But αj =

∑
αi for

all j, so we conclude that all the αj are 0, implying that v1, . . . , vm are linearly independent.
Since we assumed that t is even, this implies that any Kt in G must consist of linearly

independent vectors. But dimV = t− 1, so this is impossible.

Lemma 3.4. G0 has at most 2
5t2

8
+o(t2) independent sets of order at most t.

Proof. For an independet set T in G0, let its rank be the number of linearly independent
vectors in it, or equivalently the dimension of its span. For 0 ≤ r ≤ m ≤ t, we will upper-
bound the number of independent sets of order m and rank r, and then add this up over all
r to obtain an upper bound on the total number of independent sets of order at most t.

So let {v1, . . . , vm} be an independent set of rank r. We may assume without loss of
generality that the first r vectors are linearly independent. We have 2t−1 choices for v1, since
dimV = t− 1. Next, v2 must be linearly independent of v1, so we have at most 2t−2 choices
for it, and similarly we have at most 2t−i choices for vi. However, once i > r, vi must be
in the span of v1, . . . , vr, which is an r-dimensional space, so we have at most 2r choices for
these vectors. In all, we find that the number of independent sets of order m and rank r is
at most (

r∏
i=1

2t−i

)
2r(m−r) ≤ 22tr−(r+1

2 )−r2 ≤ 22tr− 3r2

2 , (2)

using that m ≤ t. It is straightforward to see that this quantity is maximized when r = 2t/3,
and in Conlon and Ferber’s original version, they used this bound. However, one can improve
on this by noting that the rank of any independent set is at most t/2. Indeed, the span of any
independent set is a subspace W ⊂ Ft2 with the property that w1 ·w2 = 0 for all w1, w2 ∈ W .
This implies that W ⊆ W⊥. But we also have that dimW + dimW⊥ = t, which implies
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that dimW ≤ t/2. Thus, the quantity in equation (2) is maximized when r = t/2, and we
conclude that the total number of independent sets of order at most t is at most

t

2

[
22tr− 3r2

2

]
r=t/2

= 2
5t2

8
+o(t2).

We now have all the pieces and can put them together.

Theorem 3.5 (Conlon–Ferber [2], W. [5]). For any fixed ` ≥ 2,

r(t; `) ≥
(

2
3`
8
− 1

4

)t−o(t)
.

Proof. Let t be a large even number. By Lemma 3.3, G0 is Kt-free and has N = 2t−1 vertices.
By Lemma 3.4, G0 has at most M t independent sets of order at most t, where M = 2

5t
8

+o(t).
So by applying Lemma 3.1 with r = `− 2, we find that

r(t; `) ≥ 2t/2N `−2

4t`−2M `−2
=

(
2

1
2 · 2`−2

2
5
8

(`−2)

)t−o(t)

=
(

2
3
8

(`−2)+ 1
2

)t−o(t)
=
(

2
3`
8
− 1

4

)t−o(t)
.

Remark. Conlon and Ferber actually only obtained this bound for ` = 3, but didn’t use
the random homomorphism trick. For more colors, they instead applied a different coloring
to a variant of the graph G0. Specifically, they repeated the construction of G0, but over
some other field Fq. They then used q − 1 colors to color most of the edges, giving {u, v}
color i if u · v = i for i 6= 0. Finally, they colored all remaining edges with two more colors
randomly, and took a random subgaph. While this works for all prime q, it ends up giving
the best bounds for q = 2 and q = 3, and they obtained bounds for more colors by using
Lefmann’s product coloring trick. As it turns out, the random homomorphism framework
obtains better bounds for this problem, and means that one doesn’t have to use product
colorings at all.
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