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Abstract

For a field F and integers d and k, a set A ⊆ Fd is called k-nearly orthogonal if its members
are non-self-orthogonal and every k + 1 vectors ofA include an orthogonal pair. We prove that
for every prime p there exists some δ = δ(p) > 0, such that for every field F of characteristic p
and for all integers k ≥ 2 and d ≥ k, there exists a k-nearly orthogonal set of at least dδ·k/ log k

vectors of Fd. The size of the set is optimal up to the log k term in the exponent. We further
prove two extensions of this result. In the first, we provide a large setA of non-self-orthogonal
vectors of Fd such that for every two subsets of A of size k + 1 each, some vector of one of
the subsets is orthogonal to some vector of the other. In the second extension, every k + 1
vectors of the produced set A include `+ 1 pairwise orthogonal vectors for an arbitrary fixed
integer 1 ≤ ` ≤ k. The proofs involve probabilistic and spectral arguments and the hypergraph
container method.

1 Introduction

For a field F and an integer d, two vectors u, v ∈ Fd are called orthogonal if they satisfy 〈u, v〉 = 0
with respect to the standard inner product defined by 〈u, v〉 = ∑d

i=1 ui · vi. A vector u ∈ Fd is
called self-orthogonal if 〈u, u〉 = 0, and it is called non-self-orthogonal otherwise. For integers
k and ` with k ≥ `, a set A ⊆ Fd is said to be (k, `)-nearly orthogonal if its vectors are non-
self-orthogonal and any set of k + 1 members of A includes ` + 1 pairwise orthogonal vectors.
Let α(d, k, `, F) denote the largest possible size of a (k, `)-nearly orthogonal subset of Fd. For the
special case of ` = 1, we refer to a (k, 1)-nearly orthogonal set as k-nearly orthogonal, and we let
α(d, k, F) = α(d, k, 1, F). Note that for a field F and an integer d, α(d, 1, F) is the largest possible
size of a set of non-self-orthogonal vectors in Fd that are pairwise orthogonal, hence α(d, 1, F) = d.

A simple upper bound on α(d, k, F) stems from Ramsey theory. To see this, consider a k-nearly
orthogonal set A ⊆ Fd, and let G denote the graph on the vertex set A, in which two vertices are
adjacent if and only if their vectors are orthogonal. Since the vectors of A are non-self-orthogonal
and lie in Fd, the graph G has no clique of size d + 1. Since every k + 1 members of A include
an orthogonal pair, the graph G has no independent set of size k + 1. It thus follows that the
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size of A is smaller than the Ramsey number R(d + 1, k + 1). Using the upper bound on Ramsey
numbers of Erdős and Szekeres [12], it follows that α(d, k, F) < (d+k

k ), so in particular, we have
α(d, k, F) ≤ O(dk) for every fixed integer k. A poly-logarithmic improvement follows from the
upper bound on Ramsey numbers due to Ajtai, Komlós, and Szemerédi [1].

The problem of determining the values of α(d, k, F) where F is the real field R was suggested
by Erdős in the late eighties (see [16]). By considering a set that consists of the vectors of k pairwise
disjoint orthogonal bases of Rd, it follows that α(d, k, R) ≥ k · d. Rosenfeld [17] proved that this
bound is tight for k = 2, and Füredi and Stanley [13] showed that α(4, 5, R) ≥ 24, which implies
that it is not tight in general. They further showed that for every fixed integers d and `, the limit of
α(d, k, `, R)/k with k tending to infinity exists and grows exponentially in d. Alon and Szegedy [4]
proved that for every integer ` ≥ 1 there exists a constant δ = δ(`) > 0, such that for all integers
d and k ≥ ` with k ≥ 3, it holds that

α(d, k, `, R) ≥ dδ·log k/ log log k, (1)

where here and throughout the paper, all logarithms are in base 2. On the upper bound side, Balla,
Letzter, and Sudakov [6] proved that α(d, k, R) ≤ O(d(k+1)/3) for every fixed integer k, improving
on the O(dk) bound that follows from the Erdős–Szekeres bound. Yet, the known lower and upper
bounds on α(d, k, R) for general values of d and k are rather far apart.

In a recent paper, Balla [5] considered a bipartite variant of the notion of nearly orthogonal
sets, giving rise to the following definition. For a field F and integers d and k, let β(d, k, F) denote
the largest possible size of a set A ⊆ Fd of non-self-orthogonal vectors, such that for every two
(not necessarily disjoint) sets A1, A2 ⊆ A of size k+ 1 each, there exist vectors v1 ∈ A1 and v2 ∈ A2

with 〈v1, v2〉 = 0. Since such a setA is k-nearly orthogonal, it follows that α(d, k, F) ≥ β(d, k, F). It
was proved in [5] that there exists a constant δ > 0, such that for all integers d and k ≥ 3, it holds
that β(d, k, R) ≥ dδ·log k/ log log k. This strengthens the result given in (1) for the case ` = 1.

The study of nearly orthogonal sets over finite fields was proposed by Codenotti, Pudlák, and
Resta [11]. Motivated by questions in circuit complexity, they explored the quantity α(d, 2, F2),
which in turn, attracted further attention in the area of information theory (see, e.g., [8, 9, 10]). In
striking contrast to the real field [17], it was shown in [14] that there exists a constant δ > 0 such
that α(d, 2, F2) ≥ d1+δ for infinitely many integers d. It was recently shown in [10] that for every
prime p there exists a constant δ = δ(p) > 0, such that for every field F of characteristic p and for
all integers k ≥ 2 and d ≥ k1/(p−1), it holds that β(d, k, F) ≥ dδ·k1/(p−1)/ log k. In particular, for the
binary field, it follows that α(d, k, F2) ≥ β(d, k, F2) ≥ dΩ(k/ log k), and this is tight up to the log k
term in the exponent.

1.1 Our Contribution

In the present paper, we prove lower bounds on α(d, k, `, F) and β(d, k, F) for fields F of finite
characteristic. The following theorem improves the aforementioned result of [10] for all fields of
finite characteristic at least 3.

Theorem 1.1. For every prime p, there exists a constant δ = δ(p) > 0, such that for every field F of
characteristic p and for all integers k ≥ 2 and d ≥ k, it holds that

β(d, k, F) ≥ dδ·k/ log k.
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Note that the condition d ≥ k in Theorem 1.1 is essential, in the sense that for arbitrary integers d
and k, the bound guaranteed by the theorem might exceed the number of vectors in Fd.

Recalling that α(d, k, F) ≥ β(d, k, F), Theorem 1.1 implies that for every prime p, there exists a
constant δ = δ(p) > 0, such that for every field F of characteristic p and for all integers k ≥ 2 and
d ≥ k, it holds that α(d, k, F) ≥ dδ·k/ log k. The following theorem extends this implication to the
quantities α(d, k, `, F) for an arbitrary fixed integer ` ≥ 1.

Theorem 1.2. For every prime p and every integer ` ≥ 1, there exists a constant δ = δ(p, `) > 0, such
that for every field F of characteristic p and for all integers k ≥ 2 and d ≥ k ≥ `, it holds that

α(d, k, `, F) ≥ dδ·k/ log k.

The proofs of Theorems 1.1 and 1.2 rely on the probabilistic approach of Alon and Szegedy [4]
in their construction of large nearly orthogonal sets over the reals (see also [5, 10]). The main novel
ingredients, which might be of independent interest, are estimations for the number of subgraphs
of certain types in pseudo-random graphs (specifically, regular graphs with small absolute val-
ues of non-trivial eigenvalues). For Theorem 1.1, we prove an upper bound on the number of
bounded-size bi-independent sets, i.e., pairs of sets of vertices with no edge connecting a vertex
of one set to a vertex of the other (see Theorem 2.4). The proof of this result adapts a technique
of Alon and Rödl [3] for counting independent sets in pseudo-random graphs. For Theorem 1.2,
we prove an upper bound on the number of bounded-size subgraphs that contain no copy of
some arbitrary fixed graph (see Theorem 2.6). The proof incorporates the hypergraph container
method, developed independently by Balogh, Morris, and Samotij [7] and by Saxton and Thoma-
son [18], and a result of Alon on the number of copies of a fixed graph in pseudo-random graphs
(see [15]). To establish Theorems 1.1 and 1.2, we apply these results to an appropriate family of
graphs, termed orthogonality graphs and studied in [2, 20], and combine the obtained bounds
with the technique of [4]. In fact, for convenience of presentation, we prove the existence of a set
of vectors that simultaneously yields the bounds stated in both theorems (see Theorem 3.1 and the
paragraph that follows it).

We finally mention that our results provide, for every field F of finite characteristic, k-nearly
orthogonal sets over F whose size is optimal up to the log k term in the exponent. As noted earlier,
over the real field, the gap between the known lower and upper bounds is more pronounced. It
would be interesting to narrow the gaps in both cases.

2 Counting Subgraphs of Pseudo-random Graphs

In this section, we prove our results on counting subgraphs of pseudo-random graphs. We start
with a brief introduction to the concept of (n, d, λ)-graphs.

2.1 Pseudo-random Graphs

An (n, d, λ)-graph is a d-regular graph on n vertices, such that the absolute value of every eigen-
value of its adjacency matrix, besides the largest one, is at most λ. Throughout the paper, the
graphs may have loops, at most one at each vertex, where a loop contributes 1 to the degree of
its vertex. It is well known that (n, d, λ)-graphs with λ significantly smaller than d enjoy strong
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pseudo-random properties and behave, in various senses, like a random graph on n vertices and
edge probability d/n. For a thorough introduction to the topic, the reader is referred to [15].

We state below two results on (n, d, λ)-graphs. The first is the following lemma given in [3].

Lemma 2.1 ([3, Lemma 2.2]). Let G = (V, E) be an (n, d, λ)-graph, and let B ⊆ V be a set of vertices.
Define

C =
{

u ∈ V
∣∣∣ |N(u) ∩ B| ≤ d

2n
· |B|

}
,

where N(u) denotes the set of neighbors of u in G (including u itself, if there is a loop at u). Then

|B| · |C| ≤
(2λn

d

)2
.

The second result that we state here was proved by Alon (see [15]). Here, for a graph F, we
denote the maximum degree of F by ∆(F), the automorphism group of F by Aut(F), and the
number of its edges by e(F). For a graph G and a subset U of its vertex set, G[U] stands for the
subgraph of G induced by U.

Theorem 2.2 ([15, Theorem 4.10]). Let G = (V, E) be an (n, d, λ)-graph with, say, d ≤ 0.9 · n. Let F be
a fixed graph on ` vertices, and let u ≤ n satisfy u = ω(λ · ( n

d )
∆(F)). Then, for every set U ⊆ V of size u,

the number of (not necessarily induced) copies of F in G[U] is (1 + o(1)) · u`

|Aut(F)| · (
d
n )

e(F).

Remark 2.3. Strictly speaking, G represents in Theorem 2.2 an infinite sequence (Gn) of graphs, where Gn

has n vertices for each n, and the o(·) and ω(·) notations are used with respect to n that tends to infinity.
The same convention will be used in Theorem 2.6.

2.2 Bi-independent Sets

We prove the following bipartite analogue of a result of Alon and Rödl [3].

Theorem 2.4. Let G = (V, E) be an (n, d, λ)-graph, and let s = 2n log n
d . Then for every integer k ≥ s,

the number of pairs (U1, U2) of (not necessarily disjoint) subsets of V with |U1| = |U2| = k, such that no
edge of G connects a vertex of U1 to a vertex of U2, is at most

1
k!
· n2s ·

(2λn
d

)2·(k−s)
.

Proof: Consider the sequences u1, v1, u2, v2, . . . , uk, vk of 2k vertices of G, such that the vertices
u1, . . . , uk are distinct, the vertices v1, . . . , vk are distinct, and no edge of G connects a vertex of
{u1, . . . , uk} to a vertex of {v1, . . . , vk}. Such a sequence can be chosen in k iterations, where the ith
iteration, 0 ≤ i < k, is dedicated to choosing ui+1 and vi+1. Let B0 = V, and for each i ∈ [k− 1],
let Bi denote the set of all vertices of G that are not adjacent to any of the vertices of {u1, . . . , ui}.
We further define

Ci =
{

u ∈ V
∣∣∣ |N(u) ∩ Bi| ≤

d
2n
· |Bi|

}
and apply Lemma 2.1 to obtain that |Bi| · |Ci| ≤ ( 2λn

d )2.
Suppose that we have already chosen the first 2i vertices u1, v1, . . . , ui, vi, and consider the

choice of ui+1 and vi+1. Since vi+1 is not allowed to be adjacent to the vertices of {u1, . . . , ui}, it
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must be chosen from Bi. Further, if ui+1 is not chosen from Ci, then |N(ui+1) ∩ Bi| > d
2n · |Bi|,

and thus |Bi+1| < (1− d
2n ) · |Bi|. Therefore, for at most s = 2n log n

d of the indices i, it holds that
ui+1 /∈ Ci. On the other hand, if ui+1 is chosen from Ci, then the number of possibilities to choose
ui+1 and vi+1 is at most |Bi| · |Ci| ≤ ( 2λn

d )2. It thus follows that the number of ways to choose the
sequence u1, v1, . . . , uk, vk does not exceed(

k
s

)
· n2s ·

(2λn
d

)2·(k−s)
.

Indeed, there are (k
s) ways to choose s indices covering all the indices i with ui+1 /∈ Ci, and for each

such index, there are at most n2 ways to choose ui+1 and vi+1. As shown above, for each of the
remaining k− s indices i, there are at most ( 2λn

d )2 ways to choose ui+1 and vi+1. We finally divide
the obtained bound by (k!)2, to avoid counting the permutations of the vertices of {u1, . . . , uk} and
of {v1, . . . , vk}. This yields the desired bound and completes the proof.

We derive the following corollary.

Corollary 2.5. Let G = (V, E) be an (n, d, λ)-graph, and let s = 2n log n
d . Then for every integer k, the

number of pairs (U1, U2) of (not necessarily disjoint) subsets of V with |U1| ≤ k and |U2| ≤ k, such that
no edge of G connects a vertex of U1 to a vertex of U2, is at most

(k + 1)2 ·max
(

n,
(2λn

d

)2
)s+k

.

Proof: For a given integer k and for arbitrary integers 0 ≤ k1, k2 ≤ k, consider the pairs (U1, U2)

of subsets of V with |U1| = k1 and |U2| = k2, such that no edge of G connects a vertex of U1 to a
vertex of U2. Suppose without loss of generality that k1 ≤ k2. If k1 < s, then the number of these
pairs is clearly bounded by nk1+k2 < ns+k. Otherwise, by Theorem 2.4, there are at most

n2s ·
(2λn

d

)2·(k1−s)

ways to choose k1 vertices for each of U1 and U2, and there are at most nk2−k1 ways to choose
additional k2 − k1 vertices for U2. Therefore, the number of pairs in this case does not exceed

n2s ·
(2λn

d

)2·(k1−s)
· nk2−k1 ≤ max

(
n,
(2λn

d

)2
)2s+(k1−s)+(k2−k1)

≤ max
(

n,
(2λn

d

)2
)s+k

.

The proof is completed by considering all the possible values of the integers k1 and k2.

2.3 F-free Subgraphs

For a graph F, a graph is called F-free if it contains no (not necessarily induced) copy of F. We
prove the following theorem (see Remark 2.3).

Theorem 2.6. Let G = (V, E) be an (n, d, λ)-graph with, say, d ≤ 0.9 · n. Suppose that n = Θ(d) and
n = ω(λ). Then, for every fixed graph F and for all integers k ≤ n, the number of sets U ⊆ V of size at
most k for which G[U] is F-free is at most

2O(log n·log( n
λ )) · λk.
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The Container Method. In what follows, we present a statement of the container method, as
given by Saxton and Thomason in [19]. We start with some notations. For an integer ` ≥ 2, let H
be an `-uniform hypergraph on the vertex set V. Let P(V) denote the power set of V, and let e(H)

denote the number of hyperedges in H. For a set U ⊆ V, let H[U] denote the sub-hypergraph of
H induced by U. The set U is called an independent set of H if e(H[U]) = 0. For a set σ ⊆ V of
size |σ| ≤ `, let d(σ) denote the number of hyperedges in H that contain σ. For each 2 ≤ j ≤ ` and
for every vertex v ∈ V, let d(j)(v) denote the maximum of d(σ) over all sets σ ⊆ V with |σ| = j
and v ∈ σ. It clearly holds that d(j)(v) ≤ |V|`−j. For each 2 ≤ j ≤ ` and for any real τ > 0, we
define δj(H, τ) = 1

τ j−1·`·e(H)
·∑v∈V d(j)(v) and δ(H, τ) = 2(

`
2)−1 ·∑`

j=2 2−(
j−1

2 ) · δj(H, τ).
The following theorem forms a simplified version of [19, Theorem 5.1].

Theorem 2.7 ([19]). For a fixed integer ` ≥ 2, let H be an `-uniform hypergraph on the vertex set V, and
let e0 be an integer satisfying e0 ≤ e(H). Let τ : P(V)→ R+ be a function such that for every set U ⊆ V
with e(H[U]) ≥ e0, it holds that

τ(U) <
1
2

and δ(H[U], τ(U)) ≤ 1
12 · `!

.

Define
f0 = max{−|U| · τ(U) · log τ(U) | U ⊆ V, e(H[U]) ≥ e0}.

Then there exists a collection C ⊆ P(V), such that

1. every independent set of H is contained in some set of C,

2. e(H[C]) ≤ e0 for each C ∈ C, and

3. log |C| ≤ O( f0 · log( e(H)
e0

)).

Equipped with Theorem 2.7, we are ready to prove Theorem 2.6.

Proof of Theorem 2.6: Fix a graph F on ` vertices, and let H denote the `-uniform hypergraph
on the vertex set of G, where a set U of ` vertices forms a hyperedge in H if and only if G[U]

contains a copy of F. By Theorem 2.2, using n = Θ(d) and n = ω(λ), the number of hyperedges
of H satisfies e(H) = Θ(n`). For a given integer k ≤ n, our goal is to prove that the number of
independent sets in H of size at most k is bounded by 2O(log n·log( n

λ )) · λk. Notice that it suffices to
prove such a bound on the number of independent sets in H of size exactly k.

We apply the container method, described in Theorem 2.7. Define, say, e0 = λ` · log( n
λ ), and

notice that the assumption n = ω(λ) implies that e0 = ω(λ`). For a set U ⊆ V of size u, consider
the hypergraph H[U], denote m = e(H[U]), and suppose that m ≥ e0. This obviously implies that
u ≥ e1/`

0 = ω(λ), hence using n = Θ(d), we can apply Theorem 2.2 to obtain that m = Θ(u`). For
each 2 ≤ j ≤ `, every vertex v ∈ U satisfies in H[U] that d(j)(v) ≤ u`−j, hence for any τ > 0,

δj(H[U], τ) ≤ u · u`−j

τ j−1 · ` ·m
≤ O

(
1

(τ · u)j−1

)
.

Setting τ(U) = a
u for a sufficiently large constant a, it holds that

δ(H[U], τ(U)) ≤ O
( `

∑
j=2

δj(H[U], τ(U))
)
≤ 1

12 · `!
.
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For a growing n, using u = ω(λ), it further follows that τ(U) < 1/2. We also observe that
the quantity f0 from Theorem 2.7 satisfies f0 ≤ O(log n). Indeed, for every set U ⊆ V, our
definition of τ implies that −|U| · τ(U) · log τ(U) ≤ O(log |U|) ≤ O(log n). We finally notice,
using e(H) = Θ(n`) and e0 ≥ λ`, that log( e(H)

e0
) ≤ O(log( n

λ )).
Now, we derive from Theorem 2.7 that there exists a collection C ⊆ P(V), such that

1. every independent set of H is contained in some set of C,

2. e(H[C]) ≤ e0 for each C ∈ C, and

3. log |C| ≤ O( f0 · log( e(H)
e0

)) ≤ O(log n · log( n
λ )).

By Theorem 2.2, there exists a constant c0, such that every set U ⊆ V with |U| > c0 · e1/`
0 = ω(λ)

satisfies e(H[U]) = Θ(|U|`) > e0. Hence, Item 2 above implies that |C| ≤ c0 · e1/`
0 for each C ∈ C.

It therefore follows from Item 1 that the number of independent sets of H of size k does not exceed

|C| ·
(

c0 · e1/`
0

k

)
≤ 2O(log n·log( n

λ )) ·
( c0 · e1/`

0 · e
k

)k

≤ 2O(log n·log( n
λ )) · λk ·

( c0 · log1/`( n
λ ) · e

k

)k

≤ 2O(log n·log( n
λ )) · λk.

Here, the first inequality follows by Item 3 and the inequality (n
k) ≤ ( n·e

k )k, and the second by the

definition of e0. For the third inequality, notice that the term (
c0·log1/`( n

λ )·e
k )k is bounded from above

by 1 for k ≥ c0 · log1/`( n
λ ) · e, and by 2O(log n·log( n

λ )) for any other k. This completes the proof.

3 Nearly Orthogonal Sets over Finite Fields

In this section, we establish the following theorem.

Theorem 3.1. For every prime p and every integer ` ≥ 2, there exists a constant δ = δ(p, `) > 0, such
that for every field F of characteristic p and for all integers k ≥ 2 and d ≥ k ≥ `, the following holds. There
exists a set A of at least dδ·k/ log k non-self-orthogonal vectors of Fd, such that

1. every set A ⊆ A with |A| = k includes ` pairwise orthogonal vectors, and

2. for every two sets A1, A2 ⊆ A with |A1| = |A2| = 2k− 1, there exist vectors v1 ∈ A1 and v2 ∈ A2

with 〈v1, v2〉 = 0.

We observe that Theorem 3.1 yields Theorems 1.1 and 1.2. Indeed, for Theorem 1.1, apply
the theorem with k being b k

2c + 1 and with ` = 1 to obtain, using Item 2, the desired bound on
β(d, k, F) for an appropriate δ = δ(p). For Theorem 1.2, apply the theorem with k and ` being
k + 1 and `+ 1 respectively to obtain, using Item 1, the desired bound on α(d, k, `, F).

Towards the proof of Theorem 3.1, we apply the results from the previous section to a family
of graphs, defined next.

7



3.1 The Orthogonality Graph

For a prime p, let Fp denote the field of order p. For a prime p and an integer t, let G(p, t) de-
note the graph whose vertices are all the nonzero vectors in Ft

p, where two such (not necessarily
distinct) vectors are adjacent if and only if they are orthogonal. The second largest eigenvalue of
G(p, t) was determined in [2, 20], as stated below.

Proposition 3.2 ([2, 20]). For every prime p and every integer t, the graph G(p, t) is an (n, d, λ)-graph
for

n = pt − 1, d = pt−1 − 1, and λ = (p− 1) · pt/2−1.

By applying Corollary 2.5 to the graph G(p, t), we obtain the following result.

Theorem 3.3. For every prime p, there exists a constant c = c(p), such that for all integers t and k, the
number of pairs (C1, C2) of subsets of Ft

p \ {0} with |C1| ≤ k and |C2| ≤ k, such that 〈v1, v2〉 6= 0 for all
v1 ∈ C1 and v2 ∈ C2, is at most 2c·(t2+k) · pt·k.

Proof: Fix a prime p, and let t and k be some integers. By Proposition 3.2, the graph G(p, t) is an
(n, d, λ)-graph for n = pt − 1, d = pt−1 − 1, and λ = (p− 1) · pt/2−1 ≤ pt/2. Letting s = 2n log n

d , it
holds that s = Θ(t), and it is not difficult to verify that ( 2λn

d )2 ≥ n. By Corollary 2.5, the number of
pairs (C1, C2) of sets of vertices of G(p, t) with |C1| ≤ k and |C2| ≤ k, such that no edge connects a
vertex of C1 to a vertex of C2, is at most

(k + 1)2 ·
(2λn

d

)2·(s+k)
= (k + 1)2 ·

(2n
d

)2·(s+k)
· λ2s · λ2k

≤ 2O(k) · 2O(s+k) · 2O(s·t) · pt·k ≤ 2O(t2+k) · pt·k.

By the definition of the graph G(p, t), the proof is completed.

By applying Theorem 2.6 to the graph G(p, t), we obtain the following result.

Theorem 3.4. For every prime p and every integer ` ≥ 2, there exists a constant c = c(p, `), such that for
all integers t and k, the number of subsets of Ft

p \ {0} of size at most k that include no ` pairwise orthogonal
vectors is at most 2c·t2 · pt·k/2.

Proof: Fix a prime p and an integer ` ≥ 2, and let t and k be some integers. It may be assumed
that t is sufficiently large, because if t is bounded by some constant, then so is k, and the statement
of the theorem trivially holds with an appropriate constant c. By Proposition 3.2, the graph G(p, t)
is an (n, d, λ)-graph for n = pt − 1, d = pt−1 − 1, and λ = (p − 1) · pt/2−1 ≤ pt/2. Note that
d ≤ 0.9 · n, and that for a growing t, we have n = Θ(d) and n = ω(λ). Applying Theorem 2.6 with
F being the complete graph K` of order `, we obtain that the number of sets of at most k vertices
of G(p, t) with no copy of K` is at most

2O(log2 n) · λk ≤ 2O(t2) · pt·k/2.

By the definition of the graph G(p, t), the proof is completed.
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3.2 Proof of Theorem 3.1

Before turning to the proof of Theorem 3.1, let us collect a few notations and facts about the tensor
product operation on vectors, which plays a central role in the argument. For a field F and integers
t1, t2, the tensor product w = u⊗ v of two vectors u ∈ Ft1 and v ∈ Ft2 is defined as the vector in
Ft1·t2 , whose coordinates are indexed by the pairs (i1, i2) with i1 ∈ [t1] and i2 ∈ [t2], defined by
w(i1,i2) = ui1 · vi2 . Note that for integers t and m and for given vectors v1, . . . , vm ∈ Ft, the vector
v1 ⊗ · · · ⊗ vm lies in Ftm

and consists of all the tm possible products of m values, one from each
vector vj with j ∈ [m]. It is well known and easy to verify that for vectors u1, . . . , um ∈ Ft and
v1, . . . , vm ∈ Ft, the two vectors u = u1 ⊗ · · · ⊗ um and v = v1 ⊗ · · · ⊗ vm satisfy

〈u, v〉 =
m

∏
j=1
〈uj, vj〉. (2)

Proof of Theorem 3.1: Let p be a fixed prime, and let ` ≥ 2 be a fixed integer. It suffices to prove
the result for the field Fp of order p, because it forms a sub-field of every field of characteristic p.
For integers t and m, let Q ⊆ (Ft

p)
m denote the collection of all m-tuples of non-self-orthogonal

vectors of Ft
p. Notice that the number of non-self-orthogonal vectors in Ft

p is at least pt−1, because
any choice for the first t − 1 entries of a vector in Ft

p can be extended to a non-self-orthogonal
vector by choosing for its last entry either 0 or 1. This implies that |Q| ≥ pm·(t−1).

We apply the probabilistic method. For an integer n, letZ = (z1, . . . , zn) be a random sequence
of n elements chosen uniformly and independently from Q, and letA ⊆ Ftm

p be the set of all m-fold
tensor products of the m-tuples of Z , that is, the vectors v1 ⊗ · · · ⊗ vm for which zi = (v1, . . . , vm)

for some i ∈ [n]. The vectors of A are non-self-orthogonal, because for every (v1, . . . , vm) ∈ Q,
it follows from (2) that the vector v = v1 ⊗ · · · ⊗ vm satisfies 〈v, v〉 = ∏m

i=1 〈vi, vi〉 6= 0. We will
show that for a given integer k and for an appropriate choice of the integers t, m, and n, the set A
satisfies with positive probability the properties declared in the theorem.

Let C1 denote the collection of all subsets of Ft
p \ {0} of size at most k that include no ` pairwise

orthogonal vectors. Consider the collection

B1 = {C(1) × C(2) × · · · × C(m) | C(j) ∈ C1 for all j ∈ [m]}.

Notice that each set B ∈ B1 consists of at most km m-tuples of vectors in Ft
p. Let E1 denote the

event that some set of B1 includes at least k elements of the sequence Z . More formally, we define
E1 as the event that there exist sets B ∈ B1 and I ⊆ [n] with |I| = k, such that {zi | i ∈ I} ⊆ B. By
the union bound, it follows that

Pr [E1] ≤ |B1| ·
(

n
k

)
·
(

km

|Q|

)k

≤ |B1| ·
(

n · km

pm·(t−1)

)k

. (3)

Let C2 denote the collection of all pairs (C1, C2) of subsets of Ft
p \ {0} of size at most k, such

that no vector of C1 is orthogonal to a vector of C2. Consider the collection B2 of all pairs (B1, B2)

of the form

B1 = C(1)
1 × C(2)

1 × · · · × C(m)
1 and B2 = C(1)

2 × C(2)
2 × · · · × C(m)

2 , (4)
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where (C(1)
1 , C(1)

2 ), (C(2)
1 , C(2)

2 ), . . . , (C(m)
1 , C(m)

2 ) are m pairs of the collection C2. As before, each B1

and B2 consists of at most km m-tuples of vectors in Ft
p. Let E2 denote the event that there exist a

pair (B1, B2) ∈ B2 and disjoint sets I1, I2 ⊆ [n] with |I1| = |I2| = k, such that {zi | i ∈ I1} ⊆ B1 and
{zi | i ∈ I2} ⊆ B2. By the union bound, it follows that

Pr [E2] ≤ |B2| ·
(

n
k

)2

·
(

km

|Q|

)2k

≤ |B2| ·
(

n · km

pm·(t−1)

)2k

. (5)

Let us set the parameters of the construction, ensuring that the event E1 ∨ E2 occurs with prob-
ability smaller than 1. Let d and k be two integers satisfying d ≥ k ≥ `. We may assume, whenever
needed, that k is sufficiently large, because constant values of k can be handled by an appropriate
choice of the constant δ from the assertion of the theorem, using the d vectors of the standard basis
of Fd

p. By Theorems 3.4 and 3.3, there exists a constant c ≥ 1, such that |C1| ≤ 2c·t2 · pt·k/2 and

|C2| ≤ 2c·(t2+k) · pt·k, implying that

|B1| = |C1|m ≤ 2cm·t2 · pmtk/2 and |B2| = |C2|m ≤ 2cm·(t2+k) · pmtk. (6)

Let t be the largest integer satisfying, say, k ≥ 5c · t, and let m be the largest integer satisfying
d ≥ tm. By the assumption d ≥ k, we have m ≥ 1. Set n = bpm·t/4c. Combining (3) and (6), we
obtain that

Pr [E1] ≤ 2cm·t2 · pmtk/2 ·
(

n · km

pm·(t−1)

)k

≤ 2cm·t2 ·
(

km

pm·(t/4−1)

)k

≤
(

2t/5 · 5c(t + 1)
pt/4−1

)mk

<
1
2

,

where the second inequality holds by our choice of n, the third by our choice of t, and the fourth
by the assumption that k (and thus t) is sufficiently large. By a similar calculation, combining (5)
and (6), we obtain that

Pr [E2] ≤ 2cm·(t2+k) · pmtk ·
(

n · km

pm·(t−1)

)2k

≤ 22cm·t2 ·
(

km

pm·(t/4−1)

)2k

<
1
2

,

where for the second inequality we further use the inequality k ≤ t2, which holds assuming that k
is sufficiently large. It thus follows, by the union bound, that the probability that the event E1 ∨ E2

occurs is smaller than 1. This implies that there exists a choice for the sequence Z for which the
event E1 ∨ E2 does not occur. We fix such a choice for Z and consider the corresponding set A.

We show now that the set A satisfies the required properties. We start by proving that every
set A ⊆ A with |A| = k includes ` pairwise orthogonal vectors. To do so, we show that for every
set I ⊆ [n] with |I| = k, the m-fold tensor products associated with the m-tuples of {zi | i ∈ I}
include ` pairwise orthogonal vectors. So assume for contradiction that there exists a set I ⊆ [n]
with |I| = k that does not satisfy this property. For each j ∈ [m], let C(j) denote the set of the jth
projections of the tuples of {zi | i ∈ I}, and notice that |C(j)| ≤ k. Using the property of tensor
product given in (2), it follows that C(j) does not include ` pairwise orthogonal vectors. Therefore,
the set C(1)×C(2)× · · · ×C(m) lies in B1 and contains {zi | i ∈ I}. This contradicts the fact that the
event E1 does not occur for our choice of Z .

We next prove that for every two sets A1, A2 ⊆ A with |A1| = |A2| = 2k − 1, there exist
vectors v1 ∈ A1 and v2 ∈ A2 with 〈v1, v2〉 = 0. To see this, assume for contradiction that there
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exist two sets A1, A2 ⊆ A with |A1| = |A2| = 2k− 1, such that no vector of A1 is orthogonal to a
vector of A2. If |A1 ∩ A2| ≥ k, then there exists a set of k vectors of A with no orthogonal pair, in
contradiction to the property of A shown above. Otherwise, there exist disjoint sets A′1 ⊆ A1 \ A2

and A′2 ⊆ A2 \ A1 satisfying |A′1| = |A′2| = k. Let I1, I2 ⊆ [n] be sets with |I1| = |I2| = k, such that
the vectors of A′1 and A′2 are the m-fold tensor products associated with the m-tuples of {zi | i ∈ I1}
and {zi | i ∈ I2} respectively. Note that I1 and I2 are disjoint. For each j ∈ [m], let C(j)

1 and C(j)
2

denote the sets of the jth projections of the tuples of {zi | i ∈ I1} and {zi | i ∈ I2} respectively, and
notice that |C(j)

1 | ≤ k and |C(j)
2 | ≤ k. Using the property of tensor product given in (2), it follows

that no vector of C(j)
1 is orthogonal to a vector of C(j)

2 . Therefore, there exists a pair (B1, B2) ∈ B2,
defined as in (4), for which it holds that {zi | i ∈ I1} ⊆ B1 and {zi | i ∈ I2} ⊆ B2. This contradicts
the fact that the event E2 does not occur for our choice of Z .

We finally analyze the size of the collection A. Recall that the vectors of A are non-self-
orthogonal. It follows from the above discussion that no vector of A is associated with more
than k− 1 of the m-tuples of Z . This implies that

|A| ≥ n
k− 1

≥ pΩ(m·t) ≥ pΩ((log d)·t/(log t)) ≥ dΩ(t/ log t) ≥ dΩ(k/ log k),

where the multiplicative constants hidden by the Ω notation depend only on p and `. By adding
d− tm zero entries at the end of each vector ofA, we obtain the desired subset of Fd

p, and the proof
is completed.
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