1. Using the same technique as we used to prove the Cauchy-Davenport Theorem and the ErdősHeilbronn Conjecture, prove the following: if $A, B \subseteq \mathbb{Z}_{p}$, then

$$
|\{a+b: a \in A, b \in B, a b \neq 1\}| \geq \min \{p,|A|+|B|-3\}
$$

Additionally, prove that this bound is best possible for any choice of $|A|$ and $|B|$.
2. In class, we saw that there are two fundamentally different ways to cover all but one of the vertices of the hypercube $\{0,1\}^{n}$ using exactly n hyperplanes: one method covers based on the number of coordinates equal to 1 in each vertex, and another method covers using hyperplanes orthogonal to the axes.
Similarly, find two fundamentally different ways to cut all the edges of the hypercube using exactly n hyperplanes. Can you prove that n is the best possible?
3. Generalize the Erdős-Heilbronn Conjecture we proved in class, as follows. For any set $A \subseteq \mathbb{Z}_{p}$, and any $s \in \mathbb{N}$, let $s \odot A$ denote the set of all sums of s distinct elements of A. Prove that

$$
|s \odot A| \geq \min \left\{p, s|A|-s^{2}+1\right\}
$$

