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Abstract

Given a vertex-ordered graph G, the ordered Ramsey number r<(G) is the minimum integer N
such that every 2-coloring of the edges of the complete ordered graph KN contains a monochromatic
ordered copy of G. Motivated by a similar question posed by Erdős and Graham in the unordered
setting, we study the problem of bounding the ordered Ramsey number of any ordered graph G with

m edges and no isolated vertices. We prove that r<(G) ≤ e10
9√m(log logm)3/2 for any such G, which

is tight up to the (log logm)3/2 factor in the exponent. As a corollary, we obtain the corresponding
bound for the oriented Ramsey number of a directed graph with m edges.

1 Introduction

For a graph G, the Ramsey number r(G) is the minimum integer N such that every 2-coloring of the
edges of the complete graph KN on N vertices contains a monochromatic copy of G. The existence of
these numbers was famously proved by Ramsey [26], while the first good quantitative bounds were proved
by Erdős and Szekeres [15]. Since then, the field of graph Ramsey theory has flourished, and determining
how r(G) depends on the graph G has become one of the most-studied questions in combinatorics.

Arguably, the most important question in the field is determining the Ramsey number r(Kn) of the
complete graph Kn on n vertices. Here, after almost a century of only minor improvements on the
standard bounds 2n/2 ≤ r(Kn) ≤ 4n, a significant breakthrough was recently achieved by Campos,
Griffiths, Morris and Sahasrabudhe [5] who showed an exponentially better upper bound of (4− ε)n for
some constant ε > 0, see also [2, 22].

Another prominent direction of study is to understand the Ramsey numbers of sparse graphs. In
1975, Burr and Erdős [4] conjectured that Ramsey numbers of graphs with bounded degeneracy are linear
in their number of vertices. In 1983, Chvátal, Rödl, Szemerédi and Trotter [6] proved a special case of
the conjecture, namely that bounded degree graphs have linear Ramsey numbers. However, proving
the Burr–Erdős conjecture in full generality was very challenging, and it was only resolved by Lee in
2017 [24].

A related question was posed by Erdős and Graham in 1973: among all graphs G on m edges, what
graph maximizes the Ramsey number? The intuition given by the above considerations is that one would
like to make G as dense as possible. In fact, Erdős and Graham [12] conjectured that among all graphs
with m =

(
n
2

)
edges and no isolated vertices it is the complete graph Kn that has the maximum Ramsey

number. This conjecture remains open, and is likely very difficult. Motivated by the lack of progress, in
the 1980’s Erdős [11] asked whether the Ramsey number of any such graph G is at least not much larger
that the Ramsey number of the complete graph of the same size. In other words, he conjectured that
there exists a constant c > 0 such that for any graph G with m edges and no isolated vertices we have
r(G) ≤ 2c

√
m. This conjecture was proved by Sudakov [30] in 2011.

In this paper, we will study the analogue of the above conjecture for ordered graphs. An ordered
graph G on n vertices is a graph whose vertices are labeled with {1, . . . , n}. We say that an ordered
graph G on [N ] contains a an ordered graph H on [n] if there exists a mapping ϕ : V (H) → V (G) such
that ϕ(i) < ϕ(j) for each 1 ≤ i < j ≤ n and (ϕ(i), ϕ(j)) ∈ E(G) whenever (i, j) ∈ E(H). For an ordered
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graph G we then define its ordered Ramsey number r<(H) as the minimum N such that any 2-coloring
of the complete ordered graph on [N ] contains a monochromatic copy of H.

The systematic study of ordered Ramsey numbers was initiated by Conlon, Fox, Lee and Sudakov [7]
and, independently, by Balko, Cibulka, Král and Kynčl [3]. Since then it has attracted a considerable
amount of interest (e.g. [3, 18, 19, 27]). In general, ordered Ramsey numbers can behave very differently
from their non-ordered counterparts. For example, the Burr–Erdős conjecture does not hold for ordered
graphs as there exist ordered matchings whose Ramsey number is superpolynomial in their number of
vertices [3, 7].

In this paper, we initiate the study of the analogue of the conjecture by Erdős for ordered graphs.

Question 1.1. Does there exist a constant c > 0 such that for any ordered graph H with m edges and
no isolated vertices it holds that r<(H) ≤ 2c

√
m?

We believe the answer to this question should indeed be positive. Our main result is a proof of a
slightly weaker bound, which differs from the conjectured truth by an additional (log logm)3/2 factor in
the exponent.

Theorem 1.2. Let H be an ordered graph with m edges and no isolated vertices. Then

r<(H) ≤ e10
9√m(log logm)3/2 .

In fact, we prove a somewhat stronger statement, namely an off-diagonal version of Theorem 1.2 in
which we may be searching for two different graphs in the two colors; see Theorem 2.1 for the precise
statement.

As a consequence of the off-diagonal result, we immediately get a corresponding theorem for directed
graphs. For an acyclic directed graph D, its oriented Ramsey number, denoted #»r (D), is the minimum
integer N such that every tournament on N vertices contains a copy of D. Let D+ and D− be ordered
graphs obtained by taking the underlying graph of D and the vertex ordering to be a topological sort
of D and its reverse, respectively. Fox, He and Wigderson [17] observed that #»r (D) ≤ r<(D

+, D−).
Theorem 2.1 thus implies the following:

Corollary 1.3. Let D be an acyclic directed graph with m edges and no isolated vertices. Then

#»r (D) ≤ e10
9√m(log logm)3/2 .

The study of oriented Ramsey numbers was initiated by Stearns in 1951 [29] and since then they have
been extensively studied in the literature (e.g. [9, 10, 17, 23, 25]). Recently, Fox, He and Wigderson [17]
showed that, as for the ordered graphs, the Burr–Erdős conjecture is not true in the oriented setting.
More precisely, they showed that for any ∆ and any n sufficiently large with respect to ∆, there exists

an acyclic digraph D on n vertices and with maximum degree ∆ such that #»r (D) ≥ nΩ(∆2/3/log5/3 ∆).
On the other hand, the best known upper bound for the oriented Ramsey number of a digraph D with
maximum degree ∆, also due to Fox–He–Wigderson [17], is #»r (D) ≤ nO∆(logn). Thus, there is a big gap
between the polynomial lower bound and the super-polynomial upper bound for any fixed ∆. Here we
show that under the weaker assumption that the underlying graph of G is d-degenerate for some constant
d ≥ 3, the oriented Ramsey number of G can indeed be super-polynomial.

Theorem 1.4. For any n there exists a digraph D whose underlying graph is 3-degenerate such that

#»r (D) ≥ nΩ( log n
log log n ).

The family of graphs we use to prove Theorem 1.4 can be viewed as a generalization of subdivisions

of tournaments. A 1-subdivision of a transitive tournament
−→
Kn on n vertices is the digraph obtained by

taking the set of base vertices {1, . . . , n} and for each pair i < j adding one additional vertex vij together
with edges ivij and vijj. Recently, oriented Ramsey numbers of 1-subdivisions of transitive tournaments
were studied by various researchers and it was finally proved by Draganić, Munhá Correia, Sudakov and
Yuster [10] that these numbers are linear in the order of the subdivision.

For our construction instead of pairs of vertices we consider triples. Our diagraph has a set of base
vertices {1, . . . , n} together with an additional vertex vijk and edges ivijk, vijkj and vijkk for every
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triple i < j < k. This digraph is clearly 3-degenerate. Somewhat surprisingly, going from pairs to triples
increases the oriented Ramsey of such subdivisions from linear to super-polynomial in the number of
their vertices. For more details, we refer the reader to Section 3.

The remainder of the paper is organized as follows. In Section 2 we first state the asymmetric version
of Theorem 1.2, and, after giving a proof outline, we prove this Theorem. In Section 3 we first define a
generalization of subdivisions of transitive tournaments and then, using them, we prove Theorem 1.4.

Notation and terminology: For an ordered graph G = G<, we use V (G) to denote its vertex set
and E(G) to denote it edge set. For A ⊆ V (G), we denote by G[A] the subgraph of G induced by A and

write eG(A) = |E(G[A])|. We define the density dG(A) of A as eG(A)

(|A|
2 )

. For the entire vertex set we write

d(G) as a shorthand for d(V (G)). For a pair of sets A,B ⊆ V (G), we write eG(A,B) for the number
of edges of G with one endpoint in A and the other in B. We define the density dG(A,B) between A

and B as eG(A,B)
|A|·|B| . We sometimes drop the subscript and write d(A) instead of dG(A) etc. if the oriented

graph is clear from the context. We write A < B if a < b for all a ∈ A and b ∈ B.
A monochromatic book in a coloring of E(G) is a pair A,B ⊆ V (G) such that all edges in G[A ∪ B]

with at least one endpoint in A have the same color. Books have been extensively studied in the Ramsey
theory literature (e.g [5, 8, 16, 28]) and have been an important ingredient in the recent improvements
on diagonal Ramsey numbers [5]. Throughout this paper, all logarithms are to the base e. We omit floor
and ceiling signs whenever they are not essential.

2 Proof of Theorem 1.2

Instead of proving Theorem 1.2, we will prove a more general, off-diagonal version of it. For two ordered
graphs H1, H2, we define r<(H1, H2) to be the minimum integer N such that in any red-blue edge-
coloring of the complete ordered graph on N vertices, there is a red copy of H1 or a blue copy of H2.
We prove the following which clearly implies Theorem 1.2 by taking H1 = H2 = H.

Theorem 2.1. Let H1, H2 be ordered graphs without isolated vertices and with m1,m2 edges, respectively.
Then

r<(H1, H2) ≤ e10
8(m1m2)

1/4(log log(m1+m2))
3/2

.

2.1 Proof outline

It is natural to attempt proving the above theorem using the approach developed by Sudakov [30] for
the unordered case, which builds on earlier work by Alon, Krivelevich, and Sudakov [1]. However, the
ordering of the vertices introduces inherent obstacles that prevent this approach from succeeding directly.
To overcome these challenges, we had to introduce new ideas, which we describe below.

To start, let us sketch the approach of finding a copy of an unordered graph H with m edges and
no isolated vertices in a coloring of a suitably large clique KN . We shall embed H in KN in two steps.
Let X ⊆ V (H) be the set of vertices of H with degree at least

√
m. Note that there are at most 2

√
m

such vertices and that the graph H ′ obtained from H by removing the vertices A has maximum degree
at most

√
m. To embed X and H ′ we want to find a large monochromatic book in G. Since in our case

|V (G)| ≥ 2c
√
m for suitably large c, we will be able to find a monochromatic, say red, book (A,B), such

that |B| ≥ 2
√
m and |Y | ≥ 2c

′√m for some large constant c′. This monochromatic book can be used to
embed H, by embedding the vertices A arbitrarily into X and finding a copy of H ′ in Y . Note that by
the choice of our sets X and Y , any red copy of H ′ together with the vertices A in X will give us a copy
of H.

It could happen that there is no red copy of H ′ in Y . In this case, using the greedy embedding
technique introduced by Erdős and Hajnal [13], and Graham, Rödl and Ruciński [20, 21], one can obtain
large disjoint sets L,R ⊆ Y such that most of the edges between L and R are blue. By recursively
applying this strategy now inside the sets L and R, we find a subset Y ′ ⊆ Y with very small red density.
The main insight in [30] is that we can now repeat the same argument on the coloring of the set Y ′.
Crucially, since its blue density is very large, a theorem of of Erdős and Szemerédi [14] implies that we
can find a monochromatic book (X2, Y2), in which |X2| is much larger than

√
m. Thus, we can embed
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more vertices into X2 and look for a monochromatic copy of H ′′ in Y2, where now we have a better
bound for the maximum degree of H ′′ compared to what we had for H ′. It can be shown that the set
Y2 is not much smaller than Y1, so by repeating this argument, we eventually find a copy of H at some
step, or else a monochromatic clique of size 2m, which certainly contains H.

Let us now return to our setting, where we want to embed an ordered H with m edges into a 2-
colored complete ordered graph on [N ]. Naively applying the same argument, we can again find a large
monochromatic book (X,Y ). We can even obtain some control over the ordering, e.g. ensuring that X
precedes Y in the ordering of [N ]. However, such a structure will most likely be useless for embedding
H. Indeed, the high-degree vertices of H do not need to appear consecutively in its given vertex order.
Thus, if we try to embed A into X, we can not expect to find any copy of H ′ in Y which together with
vertices in X extends to an ordered copy of H.

To overcome this issue, the key new idea is instead of finding a monochromatic pair (X,Y ) to find
a tuple (A,B0, . . . , B√

m) of disjoint sets of vertices in [N ] such that the following holds. First of all,
(A,B0 ∪B1 ∪ · · · ∪B√

m) is a monochromatic book. Secondly, we have |A| =
√
m and |Bi| ≥ b for all i,

for some large parameter b. Finally, denoting by v1, . . . , v√m the vertices of A under the ordering of [N ],
the ordering of the elements of A ∪B0 ∪ · · · ∪B√

m is of the form B0, v1, B1, v2, . . . , v√m, B√
m. That is,

all the vertices in B0 precede v1, which in turn precedes all the vertices in B1, and so forth. We call this
structure a (

√
m, b)-skeleton.

Having found such a monochromatic skeleton, say in red, we can now embed all the high-degree
vertices of H into A, and try to find the remaining part of the graph H ′ in B0 ∪ · · · ∪ B√

m in red, this
time making sure that each v ∈ V (H) lands in the correct Bi, so as to preserve its relative order with
respect to the high-degree vertices. In case we fail, using greedy embedding, we can find a disjoint pair
L,R such that most of the edges between L and R are blue. Analogously to the undirected case, we
wish to iterate inside L and R to find a set Y ′ ⊆ [N ] which is very dense in blue.

However, here comes the second main difference, which is also the reason for the additional (log logm)3/2

factor. In the unordered case, after having found a big book (X,Y ) and a dense pair L,R ⊆ Y , we can
simply reapply the greedy embedding argument inside L and R, while still using A to embed our high-
degree vertices. In the ordered case, however, this is not possible. Indeed, the sets L,R lie entirely within
some Bi, Bj , respectively, and hence we cannot simply embed all of H ′ inside one of these parts, as this
will not respect the order of the rest of the skeleton. We thus need to find new skeletons inside L and
inside R. This is very costly and therefore we cannot perform multiple iterations like in the undirected
case.

Luckily, we found a way to salvage the situation by performing only two iterations. In the first one,
finding the appropriate skeletons is still cheap, and, similarly to the unordered case, we can continue all
the way through until we find a subset W ⊆ V (G) which is dense in one of the colors. In the second
iteration, we then apply the Erdős–Szemerédi theorem [14] to find a larger skeleton in W . Using this
skeleton, we can find a pair L2, R2 ⊆ W such that a 1 − 1

10|V (H)| -fraction of the edges between them

has one of the colors. Finally, we inductively find one half of H in L2 and the other half of H in R2.
Given the high edge density between L2 and R2 in one of the colors, we can ensure that these two halves
combine to form a complete copy of H.

More specifically, we let N = 2C
√
m log log3/2 m for some large constant C. In the first iteration we

find a monochromatic, say red, (s, b)-skeleton (X,B0, . . . , Bs) where s =
√
m log logm and b ≥ N/2cs for

some constant c. We then embed s vertices into X, and inside B0 ∪ · · · ∪Bs, we try to find a red copy of
a graph H ′ which has maximum degree at most ∆ = 2m

s ≤ O(
√
m/ log logm). This copy should respect

the ordering given by [N ]. In case such a copy doesn’t exist, setting d = 1/ log2 m and using greedy
embedding, we find a pair (L,R) with red density at most d and with |L|, |R| of size roughly b · d∆. We
then rerun the entire argument inside both L and R. Doing O(log d−1) = O(log logm) such recursive
steps, we obtain a set W with density at most d in one of the colors and the size of this set is roughly

N · (2−sd∆)O(log logm) = 2C
′√m log log3/2 m.

Now, using the Erdős–Szemerédi theorem [14], inside W we find a monochromatic (s2, b2)-skeleton
with s2 roughly logN/d ≥

√
m log2 m and b2 still large. As before, we wish to greedily embed the

remaining part of the graph which now has maximum degree ∆2 = O(m/s2) = O(
√
m/ log2 m). By

setting d2 = 1/(10m), since d∆2
2 ≥ 2−

√
m, we obtain a large pair (L2, R2) with red, say, density at most

d2. Finally, we can inductively find either a red copy of H in L2, in which case we are done, or we can
find a blue copy H2 of half of H in L2. Since the red density is so small between L2 and R2, the common
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blue neighborhood of all the vertices of H2 is large in R2 so it remains to find there a blue copy of the
other half in blue or of the whole of H in red, which again follows by induction.

The proof is split into three subsections. In Subsection 2.2 we define skeletons and show how to find
them. Then, in Subsection 2.3, we use these skeletons and the greedy embedding strategy to find sparse
pairs and eventually sparse sets in the host graph. Finally, in Subsection 2.4, we combine these tools to
finish the proof of Theorem 2.1.

2.2 Finding large skeletons

The purpose of this subsection is to define formally skeletons and prove two lemmas which allow us
to find them in different situations. Skeletons are key new ingredient of our proof and play the same
role in the ordered setting that books played in the unordered one. We begin with the definition of an
(a, b)-skeleton.

Definition 2.2. Let a, b be positive integers and let G< be an ordered graph. Let B = {v1, . . . , va} ⊆
V (G<) and V0, . . . , Va ⊆ V (G<). We say that (B, V0, V1, . . . , Va) is an (a, b)-skeleton if

a) V0 < {v1} < V1 < {v2} < V2 < · · · < Va−1 < {va} < Va;

b) |Vi| ≥ b for all 0 ≤ i ≤ a;

c) G<[B] is a clique, and all vertices in B are adjacent to all vertices in V0 ∪ V1 ∪ · · · ∪ Va.

Now, we will show how to find such a skeleton in a suitable ordered graph G<. Namely, we will
require that for many subsets V ′ ⊆ V (G<) of a given size, the induced graph G<[V ] contains a clique of
size at least 4a+1. This condition then enables us to find an (a, b)-skeleton via a simple supersaturation
argument.

Lemma 2.3. Let N,n, a be positive integers satisfying N ≥ n ≥ 4a + 1. Let d ∈ [0, 1] and suppose
G = G< is an ordered graph on N vertices such that at least d

(
N
n

)
subsets of size n of V (G) contain a

clique of size 4a+ 1. Then G contains an (a, b)-skeleton with b = dN
n5 .

Proof. Let A ⊆ (V (G))4a+1 be the set of all tuples (v0, . . . , v4a) such that v0 < v1 < · · · < v4a and
G[{v0, . . . , v4a}] is a clique. We first lower-bound |A| by double counting. Observe that a fixed (4a+1)-
tuple X ∈ A is contained in at most

(
N−4a−1
n−4a−1

)
n-element subsets of V (G). Using the assumption, we

have

|A| ≥ d

(
N

n

)
/

(
N − 4a− 1

n− 4a− 1

)
≥ d

(
N

n

)4a+1

.

By the pigeonhole principle, there exist vertices u1 < u3 · · · < u4a−1 ∈ V (G) such that there are at least

|A|/N2a ≥ dN2a+1

n4a+1 tuples (v0, . . . , v4a) ∈ A with v1 = u1, v3 = u3, . . . , v4a−1 = u4a−1. Let A
′ denote the

set of all such (4a+ 1)-tuples.
For each i = 0, 2, 4, . . . , 4a let Vi be the set of all vertices x for which there is a (4a+ 1)-tuple in A′

containing x as the ith vertex. Note that |A′| ≤
∏2a

i=0 |V2i| and |Vi| ≤ N . Therefore, at least a+1 of the
sets Vi have size at least (

|A′|
Na+1

)1/a

≥
(

dNa

n4a+1

)1/a

≥ dN

n5
= b.

Therefore, we may choose even indices 0 ≤ i0 < i1 < · · · < ia ≤ 4a such that |Vik | ≥ b for each
k = 0, . . . , a. Let B = {ui0+1, ui1+1, . . . , uia−1+1.} We claim that (B, Vi0 , Vi1 , . . . , Via) is the desired
skeleton. Indeed, we have |Vij | ≥ b for all j ∈ [0, a] by definition. Furthermore, for each j ∈ [0, a] and
x ∈ Vij , there is a (4a+1)-tuple (v0, . . . , v4a) in A with v1 = u1, v3 = u3, . . . , v4a−1 = u4a−1 and vij = x.
This implies a) and c).

If one of the color classes is very sparse, using the Erdős–Szemerédi theorem [14], we may find
significantly larger skeletons. We first state the Erdős–Szemerédi theorem in the following form with
explicit quantitative dependencies.
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Lemma 2.4 (Erdős–Szemerédi, e.g. [31, Theorem 8.1.4]). Let ε > 0 and let n ≥ 1/ε be a positive integer.
If G is an n-vertex graph with d(G) ≤ ε, then G contains a clique or an independent set of size at least
a, where

a =
log n

100ε log 1
ε

.

Combining the previous two lemmas, we obtain the following.

Lemma 2.5. Let c > 0 and let a ≥ 10/c be a positive integer. Let G = G< be a complete ordered graph

on N ≥ e6000ac log(c
−1) vertices with an edge-partition G1 ∪ G2 such that d(G1) ≤ c. Then G1 or G2

contains an (a, b)-skeleton with

b = e−6000ac log(c−1) ·N.

Proof. Set n = e1000ac log(c
−1). Note that n ≥ 1/c by assumption on a and observe that by double counting

(or Markov’s inequality) for at least half of the subsets V ′ ⊆ V (G) of size n, we have dG1(V
′) ≤ 2c. By

Lemma 2.4 for each such set V ′, the induced subgraph G1[V
′] contains either a clique or an independent

set (which is a clique in G2[V
′]) of size 5a. Therefore, for some i ∈ {1, 2} for at least a 1/4-fraction of

the subsets V ′ ⊆ V (G) of size n the induced subgraph Gi[V
′] contains a clique of size 4a+1. By Lemma

2.3 with d = 1/4, there exists an (a, b)-skeleton in Gi, where

b ≥ dN

n5
≥ 1

4
e−5000ac log(c−1) ·N ≥ e−6000ac log(c−1) ·N,

as claimed.

2.3 Greedy embedding

In this section, we prove a greedy embedding lemma which roughly states the following. Let H and G
be ordered graphs and for every vertex vi of H let Vi be some large subset of the vertices of G. Then we
can either find an embedding ϕ of H into G such that ϕ(vi) ∈ Vi for all vertices vi of H, or we can find
a pair A,B ⊆ V (G) such that both |A| and |B| are large and the edge-density between A and B is very
low. The greedy embedding technique was originally developed for the unordered setting (see e.g. [21]),
and in the ordered setting, a similar lemma was proven in [7].

Lemma 2.6. Let 0 < c < 1 and let H be an ordered graph on n vertices, ordered v1, . . . , vn, with
maximum degree at most ∆. Additionally, let G be an ordered graph with disjoint non-empty subsets
of vertices V1, . . . , Vn such that |Vi| ≥ N for all i and V1 < V2 < · · · < Vn. Suppose there exists no
embedding ϕ of H into G such that for all i we have ϕ(vi) ∈ Vi. Then there exist A,B ⊆ V (G) such that
|A|, |B| ≥ (c∆/∆)N , A < B and d(A,B) ≤ c.

Proof. We will attempt to find such an embedding ϕ of H into G using the greedy embedding technique.
Since we are doomed to fail, this process will have to get stuck at some point, which will give us our
dense pair.

For 0 ≤ t < i ≤ n let Nt(vi) = NH(vi) ∩ {v1, . . . , vt}. We start by setting U
(0)
i = Vi for each

vi ∈ V (H) and inductively pick ϕ(vi) in the order v1, . . . , vn. At each step t, we will keep track of the

valid candidates U
(t)
i for the vertices where we can still put vi. We make sure that they satisfy the

following properties:

1. For each i, t ∈ [n] we have U
(t)
i ⊆ U

(t−1)
i ⊆ Vi,

2. For each 1 ≤ i ≤ t ≤ n we have U
(i)
i = {ϕ(vi)},

3. For every 0 ≤ t < i ≤ n we have |U (t)
i | ≥ c|Nt(vi)||Vi|, and

4. For every 1 ≤ i ≤ n and t, j ≥ i if vivj ∈ E(H) then ϕ(vi)x ∈ E(G) for every x ∈ U
(t)
j .

For t = 0, the conditions are clearly satisfied. Moreover, if we can find such sets all the way up to step
t = n, then we have found an embedding ϕ of H into G such that ϕ(vi) ∈ Vi for all i ∈ [n].
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We attempt to make each step in the following way. Suppose that we succesfully continued our

process until some step t − 1. We try to find a wt ∈ U
(t−1)
t such that for every i > t with vtvi ∈ E(H)

we have |NG(wt) ∩ U
(t−1)
i | ≥ c|U (t−1)

i |. Then, we can set ϕ(ut) = wt, U
(t)
t = {wt} and for i ̸= t

U
(t)
i =

{
U

(t−1)
i ∩NG(wt) if vtvi ∈ E(G),

U
(t−1)
i otherwise.

Then, for those i > t with vtvi ∈ E(G) we have |Nt(vi)| = |Nt−1(vi)|+ 1 and thus

|U (t)
i | ≥ c|U (t−1)

i | ≥ c|Nt(vi)||Vi|.

For the remaining choices of i we have |Nt(vi)| = |Nt−1(vi)| and thus also

|U (t)
i | = |U (t−1)

i | ≥ c|Nt(vi)||Vi|.

Since the new sets U
(t)
i clearly also satisfy the other properties, we could continue the process up through

step t.
Since the process cannot continue up through t = n, at some step 1 ≤ t < n we must have that for

each w ∈ U
(t)
t there exists some i such that vtvi ∈ E(H) but |NG(w) ∩ U

(t−1)
i | < c|U (t−1)

i |. Since vi has
at most ∆ neighbors, by the pigeonhole principle there exists some i such that vtvi ∈ E(H) and the set

A of all w ∈ U
(t−1)
t with less than c|U (t−1)

i | neighbors in U
(t−1)
i has size at least |A| ≥ |U (t−1)

t |/∆.

Now, set B = U
(t−1)
i and notice that d(A,B) ≤ c. Moreover, since for all j > t − 1 we have

|Nt−1(vj)| ≤ |NH(vj)| ≤ ∆ we get that

|A| ≥ c|Nt−1(vt)||Vt|/∆ ≥ (c∆/∆)N

and
|B| ≥ c|Nt−1(vi)||Vi| ≥ c∆N > (c∆/∆)N,

as desired.

If we are given a large skeleton, we apply the previous lemma. Doing so yields the following result.

Lemma 2.7. Let c ∈ (0, 1) and let a, b,m be positive integers satisfying b ≥ 2m2c−
2m
a . Let G = G<

be an ordered graph with an (a, b)-skeleton (F, V0, . . . , Va) and let H be an ordered graph with at most
m edges and no isolated vertices. If G contains no copy of H, then there exist A,B ⊆ V (G) such that

|A|, |B| ≥ c
2m
a · b

2m2 , A < B and d(A,B) ≤ c.

Proof. Let V (H) = {u1, . . . , un} such that the ordering of H is u1, . . . , un and note that n ≤ 2m since H
has no isolated vertices. Let 1 ≤ i1 < · · · < ia ≤ n be the indices of the a vertices of H with the largest
degree in H and let H ′

≺ = H \ {ui1 , . . . , uia}. Note that the ∆ := ∆(H ′) ≤ 2m
a .

For each j ∈ [0, a] we partition the set Vj equally into at most n sets V ′
ij+1 < · · · < V ′

ij+1−1, where,

for convenience, we set i0 = 0 and ia+1 = n+1. Note that for each i ∈ [n]\{i1, . . . , ia} we have |V ′
i | ≥ b

n .
Let F = {v1, . . . , va} such that v1 < · · · < va and suppose that we can find an embedding ϕ of H ′ into

G such that for each ui ∈ V (H ′) we have ϕ(ui) ∈ V ′
i . Then, by the definition of an (a, b)-skeleton, we can

set ϕ(uik) = vk for each k ∈ [a] to obtain an embedding of H into G. Thus, such an embedding ϕ cannot

exist. Therefore, by Lemma 2.6 there exist A,B ⊆ V (G) such that |A|, |B| ≥ (c∆/∆) b
n ≥ c

2m
a

b
2m2 ,

A < B and d(A,B) ≤ c.

Finally, we can find a skeleton, apply greedy embedding to find a sparse pair (A,B) and recursively
repeat the argument inside each of A and B to eventually obtain a sparse set.

Lemma 2.8. Let m1,m2 be positive integers with m1 ≥ max{m2, 100} and let c ∈ (0, 1/8). Let H1 and
H2 be ordered graphs with m1 and m2 edges, respectively, and no isolated vertices. Suppose that the edges
of the complete ordered graph G on N vertices are partitioned into two ordered graphs G1, G2. Suppose
Hi is not a subgraph of Gi, for i ∈ [2]. Then there exists an i ∈ [2] and a set set W ⊆ V (G) satisfying
dGi

[W ] ≤ c and

|W | ≥ exp

(
−500 log(c−1)

(
log(c−1)

√
m2

log logm1
+ log

(
2m1

m2

)√
m2 log logm1

))
·N.
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Proof. Let k2 =
√
m2 log logm1 and k1 = m1 · k2

m2
≥ k2. Observe that m1

k1
= m2

k2
=

√
m2

log logm1
. Moreover,

let

n = r(5k1, 5k2) ≤
(
5k1 + 5k2

5k2

)
≤

(
10k1
5k2

)
≤

(
6k1
k2

)5k2

≤ e30k2 log(
e·k1
k2

) ≤ e30
√
m2 log logm1 log(

e·m1
m2

).

The lemma easily follows from the following claim.

Claim 2.9. Set α =
(
c
8

)2√ m2
log log m1 /(8n5m2

1). Let h1, h2 be nonnegative integers and let X ⊆ V (G) be
a nonempty set of vertices. Then, for some i ∈ [2], there exists a set W ⊆ X of size at least αh1+h2 |X|
such that dGi [W ] ≤ 2−hi + c/2.

Before proving the claim, let us finish the proof of the lemma given Claim 2.9. By applying this claim
with h = h1 = h2 = ⌈log2(2/c)⌉ andX = V (G) we get an i ∈ [2] and a setW with dGi [W ] ≤ 2−h+c/2 ≤ c
and |W | ≥ α−2hN. It remains to verify that W is large enough. Note that

8n5m2
1 ≤ e

160
√
m2 log logm1 log

(
e·m1
m2

)
,

where we used that m1 ≥ 100. Therefore,

|W |/N ≥ α2h ≥ exp

(
−2 log(3c−1)

(
4 log(c−1)

√
m2

log logm1
+ 160

√
m2 log logm1 log

(
e ·m1

m2

)))
≥ exp

(
−500 log(c−1)

(
log(c−1)

√
m2

log logm1
+ log

(
e ·m1

m2

)√
m2 log logm1

))
,

as needed.

Proof of Claim 2.9. We will prove the statement by induction on h1 + h2. If hj = 0 for some j ∈ [2],
then the claim trivially holds by taking i = j and W = X. Now, assume h1, h2 > 0 and that the claim
holds for all h′

1 + h′
2 < h1 + h2. Furthermore, note that we may assume |X| ≥ α−(h1+h2), as otherwise

the claim is fulfilled by taking W to consist of a single vertex.
By the definition of n = r(5k1, 5k2), we know that for every Y ⊆ X of size n, G1[Y ] contains a

(4k1 + 1)-clique or G2 contains a (4k2 + 1)-clique. By the pigeonhole principle, there is an i ∈ [2], such

that for at least 1
2

(|X|
n

)
sets Y , Gi contains a (4ki + 1)-clique.

By Lemma 2.3 there is a
(
ki,

|X|
2n5

)
-skeleton in Gi. Furthermore, since Gi contains no copy of Hi, by

Lemma 2.7 there are sets A,B ⊆ X with A < B such that dGi
(A,B) ≤ c

8 and

|A|, |B| ≥
( c

8

) 2mi
ki |X|

4n5m2
i

≥ 2α|X|.

Let A′ ⊆ A be the α|X| ≤ |A|/2 vertices in A with the lowest degree into B and note that each
vertex in A′ has at most c

4 |B| neighbors in B. We apply the induction hypothesis with h′
i = hi − 1

and h′
3−i = h3−i on the induced subgraph G[A′]. Thus for some ℓ ∈ [2], there is a set W ′

1 ⊆ A′ of

size at least αh′
1+h′

2 |A′| = αh1+h2 |X| with dGℓ
[W ′

1] ≤ 2−h′
ℓ + c/2. If ℓ ̸= i, then we are done since

h′
ℓ = hℓ. So assume that ℓ = i. By averaging, there is a subset W1 ⊆ W ′

1 of size exactly αh1+h2 |W | with
dGi

[W1] ≤ 2−hi+1 + c/2.
Observe that dGi

(W1, B) ≤ c/4 since in Gi every vertex in A′ ⊇ W1 has at most c
4 |B| neighbors in

B. Let B′ be the set of α|X| ≤ |B|/2 vertices with the lowest degree in Gi into the set W1. Then in Gi

every vertex in B′ has at most c
2 |W1| neighbors in W1.

We apply the induction hypothesis on the graph G[B′] with h′
i = hi − 1 and h′

3−i = h3−i. Again,
if we find a sparse set in G3−i, we are done, so we assume that there is a set W ′

2 ⊆ B′ of size at least
αh′

1+h′
2 |B′| ≥ αh1+h2 |X| with dGi

[W ′
2] ≤ 2−hi+1 + c/2. Again, by averaging there is a subset W2 ⊆ W ′

2

of size exactly αh1+h2 |X| with dGi
[W2] ≤ 2−hi+1 + c/2.

We claim that W1 ∪W2 is the desired set. Indeed, recall that in Gi every vertex in W2 has at most
c
2 |W1| neighbors in W1. Therefore, since |W1| = |W2|, we have

dGi
[W1 ∪W2] =

1

4
(dGi

[W1] + dGi
[W2]) +

1

2
dGi

[W1,W2] ≤
1

4
· 2 · (2−hi+1 + c/2) +

1

2
· c/2 = 2−hi + c/2,

as required.
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2.4 Putting things together

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. We prove the statement by induction on m1 ·m2. For m1 ·m2 ≤ 106 the statement
clearly holds, since a colored complete ordered graph on 22·10

8

vertices contains a clique of size 108 in
one of the two colors.

Now let m1,m2 ∈ N and suppose that the statement holds for all m′
1m

′
2 < m1m2. Without

loss of generality, suppose that m1 ≥ m2 and let H1 and H2 be ordered graphs with no isolated
vertices and with m1 and m2 edges respectively. Moreover let G be a complete ordered graph on

N = e10
8(m1m2)

1/4(log log(m1+m2))
3/2

vertices whose edges are colored red and blue; we let G1 and G2 be
the red and blue graphs respectively. Suppose for contradiction that there is neither a copy of H1 in G1

nor a copy of H2 in G2.
We first let c1 = m2

m1 log2 m1
. By Lemma 2.8 we can find an i1 ∈ [2] and W ⊆ V (G) such that

dGi1
(W ) ≤ c1 and

|W |
N

≥ exp

(
−500 log

(
m1 log

2 m1

m2

)(
log

(
m1 log

2 m1

m2

)√
m2

log logm1
+ log

(
e ·m1

m2

)√
m2 log logm1

))
≥ exp

(
−104

√
m2 · (log logm1)

3/2 · log2
(
e ·m1

m2

))
≥ exp

(
−105 · (m1m2)

1/4 · (log logm1)
3/2

)
,

where in the first inequality we use twice that log
(

m1 log2 m1

m2

)
≤ 2 ·

(
log( e·m1

m2
)
)
· (log logm1) . Further,

let a = 10m1√
m2

log2 m1 and notice that since a ≥ 10
c1

by Lemma 2.5 there is a i2 ∈ [2] such that Gi2 [W ]

contains an (a, b)-skeleton for

b = |W | · exp
(
−6000 · 10m1 log

2 m1√
m2

· m2

m1 log
2 m1

· log
(
m1 log

2 m1

m2

))
≥ |W | · exp

(
−106 ·

√
m2 · log logm1 · log

(
e ·m1

m2

))
≥ exp

(
(108 − 106 − 105)(m1m2)

1/4(log log(m1 +m2))
3/2

)
.

We now let c2 = 1
6m1

. Notice that b ≥ 2m2
1c

− 2m1
a

2 ≥ 2mi2c
−

2mi2
a

2 and therefore by Lemma 2.7 we can
find A,B ⊆ V (G) such that A < B, dGi2

(A,B) ≤ c2 and

|A|, |B| ≥ b

2m2
i2

· exp
(
− log(6mi2) · 2mi2 ·

√
m2

10m1 log
2 m1

)
≥ exp

(
(108 − 106 − 105 − 10)(m1m2)

1/4(log log(m1 +m2))
3/2

)
.

We now let i3 = 3 − i2 and notice that dGi3
(A,B) ≥ 1 − c2. We want to use this dense pair for

our inductive step. To that end, let n = |V (Hi3)| ≤ 2m1 and let v1 < · · · < vn be the vertices of Hi3 .
Moreover, let ℓ ∈ [n] be the largest index such that for UL = {v1, . . . , vℓ} we have |E(Hi3(UL))| ≤ mi3/2.
Let UR = V (Hi3)\UL and notice that |E(Hi3 [UR])| ≤ mi3/2 as well. Let L and R be the graphs obtained
by removing the isolated vertices from Hi3 [UL] and Hi3 [UR] respectively.

Now, let A′ be the vertices in A with at least (1 − 2c2)|B| neighbors in B and notice that we have
|A′| ≥ |A|/2. Moreover, let A′′ be the subset of A′ obtained by taking every 3m1-th vertex of A under
the ordering of G, where we also omit the last vertex we would add to A′′ in this process. Since

|A′′| ≥ 1

6m2
1

exp
(
(108 − 106 − 105 − 10)(m1m2)

1/4(log log(m1 +m2))
3/2

)
− 1

≥ exp

(
108

(m1 ·m2

2

)1/4

(log log(m1 +m2))
3/2

)
,
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by the induction hypothesis we can find an ordered copy of Hi2 in Gi2 [A
′′] or an ordered copy of Hi3

in Gi3 [A
′′]. In the former case, we are done. Let us therefore assume that the latter happens, i.e., we

find an embedding ϕ1 of L into Gi3 [A
′′]. Note that the number of isolated vertices in Hi3 [UL] is at most

2mi3 < 3m1 and therefore, since between any two vertices in A′ that are used by ϕ there is at least 3m1

free vertices, we can extend ϕ1 into an embedding ϕ2 of Hi3 [UL] into A′.
We now let B′ ⊆ B be the set of common neighbors of ϕ2(UL) in B and notice that by our choice of

A′, we have |B′| ≥ |B| − 2mi3
1

3m1
|B| ≥ |B|/2. We define B′′ ⊆ B′ in the same way as A′′ above, i.e., as

the set obtained by taking every 3m1-th vertex of B′ and omitting the last vertex we would add in such
a manner. Then we again have

|B′′| ≥ 1

6m2
1

exp
(
(108 − 106 − 105 − 10)(m1m2)

1/4(log log(m1 +m2))
3/2

)
− 1

≥ exp

(
108

(m1 ·m2

2

)1/4

(log log(m1 +m2))
3/2

)
,

and thus, by the induction hypothesis we can either find a copy of Hi2 in Gi2 [B
′′] or a copy of Hi3 [UR]

in Gi3 [B
′′]. In the former case we are done, in the latter case we can again obtain an embedding ϕ3 of

Hi3 [UR] into Gi3 [B
′].

We now let ϕ : V (Hi3) → V (Gi3) be defined as

ϕ(v) =

{
ϕ2(v), v ∈ UL

ϕ3(v), v ∈ UR

.

The, since A′ < B′ and ab ∈ E(Gi3) for all a ∈ A′, b ∈ B′ we have that ϕ′ is an embedding of Hi3 into
Gi3 , which concludes the proof.

3 Larger subdivisions

In this section, we prove Theorem 1.4 using the following digraph, which we formally call a (1, 2)-
subdivision of a transitive tournament.

Definition 3.1. A (1, 2)-subdivision Sn = (V,E) of the transitive tournament on n vertices is the acyclic
digraph with the vertex set

V = [n] ∪ {(i, j, k) ∈ [n]3 : i < j < k}

and the edge set
E = {(i, (i, j, k)), ((i, j, k), j), ((i, j, k), k) : 1 ≤ i < j < k ≤ n}.

We call the set [n] the base vertices of Sn.

It is easy to check that (1, 2)-subdivisions are 3-degenerate. Next we prove that they have super-
polynomial oriented Ramsey numbers by constructing a suitably large host tournament which does not
contain a copy of Sn. Specifically, we take the iterated blow-up of a random tournament. We argue that
since the random tournament will not contain a transitive tournament on 4 log n vertices, we will be able
to use at most 2 log n of the blobs in any embedding of Sn. In particular, in some of the blobs we would
have to find a copy of Sn′ , which we exclude by construction.

Theorem 3.2. For each n ≥ 3 we have

#»r (Sn) ≥ nlogn/100 log logn

Proof. We prove the statement by induction on n. The base case is trivial, since for n ≤ 20 we clearly
have #»r (Sn) ≥ 4 ≥ 20log 20/100 log log 20.

Now suppose that for some n ∈ N the statement holds for all n′ < n. We aim to construct a
tournament T on |V (T )| ≥ nlogn/100 log logn vertices that doesn’t contain a copy of Sn.

Let therefore R be a tournament on the vertex set [m] where m = n/10 that doesn’t contain a
copy of a transitive tournament on 4 log n vertices. Note that the probability that a uniformly random

10



tournament on n1 vertices contains a copy of such a transitive tournament is at mostm4 logn2−8 log2 n < 1,
and thus such a tournament indeed exists.

Now, let n′ = n
40 logn and let T ′ be a tournament on |V (T ′)| = n′ logn′/100 log logn′

vertices that
contains no copy of Sn′ , which exists by induction. We let T be a blow-up of R obtained by replacing
each of its vertices by a copy of T ′. More formally, we let N = m · n′ logn′/100 log logn′

and T be the
tournament on the vertex set V (T ) = [N ] = V1 ∪ · · · ∪ Vn1 , where |Vℓ| = |V (T ′)| for all ℓ, defined as
follows. For each ℓ ∈ [m], T [Vℓ] is a copy of T ′, and for each ij ∈ E(R) we have Vi × Vj ⊆ E(T ).

Suppose now that there is a copy D of Sn in T . For each ℓ ∈ [m] let Bℓ be the set of the base vertices
embedded into Vℓ.

Claim 3.3. For each ℓ ∈ [m] we have |Bℓ| < n′.

Proof. Suppose that |Bℓ| ≥ n′ holds for some ℓ ∈ [m]. We will show that in this case T [Vℓ] contains a
copy of Sn′ .

Indeed, let v = (i, j, k) ∈ V (T ) ∩B3
ℓ and notice that since i → v, v → j and ϕ(i), ϕ(j) ∈ Vℓ, we must

have that ϕ(v) ∈ Vℓ. Indeed, if ϕ(v) is in any other part, then the edges ϕ(i)ϕ(v) and ϕ(j)ϕ(v) must be
oriented identically. Therefore, with a slight abuse of notation, ϕ(V [Bℓ∪B3

ℓ ]) ⊆ Vℓ and, since V [Bℓ∪B3
ℓ ]

is isomorphic to S|Bℓ| and |Bℓ| ≥ n′, we get that T [Vℓ] contains a copy of Sn′ , a contradiction to T [Vk]
being a copy of T ′.

Claim 3.4. We have |{ℓ ∈ [m] : |Bℓ| ≥ 2}| < 4 log n.

Proof. Without loss of generality, suppose that {i ∈ [m] : |Bℓ| ≥ 2} = [k] for some k ∈ [m] and for each
ℓ ∈ [k] let aℓ ∈ Bℓ be the smallest element and bℓ ∈ Bℓ be the second-smallest element in Bℓ. Again
without loss of generality, we can assume that b1 < b2 < · · · < bk.

We now show that for each 1 ≤ i < j ≤ k we have ij ∈ E(R), which together with the fact that R

doesn’t contain a copy of
−−−−→
K4 logn will give us k < 4 log n. Indeed, for such i and j let v = (ai, bi, bj) and

notice first that since ϕ(ai), ϕ(bi) ∈ Vi, ai → v and v → bi we must have that ϕ(v) ∈ Vi. Moreover, we
must have ϕ(v)ϕ(bj) ∈ E(T ) and thus ij ∈ E(R).

By the two claims we get that

n =

n1∑
ℓ=1

|Bℓ| ≤ m+ 4 log n · n′ < n,

a contradiction. Thus T does not contain a copy of Sn. Finally, we have

|V (T )| = m · n′ logn′/100 log logn′
≥ n

10
·
(

n

40 log n

) log n−log(40 log n)
100 log log n

≥ n

10
n

log n
100 log log n− 1

10 · e−
(log n)·log(40 log n)

100 log log n

≥ n

10
n

log n
100 log log n− 1

5

≥ n
log n

100 log log n

and thus #»r (Sn) ≥ nlogn/100 log logn.

Note that Theorem 1.4 follows from Theorem 3.2, since the underlying graph of Sn is 3-degenerate
for each n.
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