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Abstract

Motivated by higher vanishing multiplicity generalizations of Alon’s Combinatorial Nullstellensatz
and its applications, we study the following problem: for fixed k ≥ 1 and n large with respect to
k, what is the minimum possible degree of a polynomial P ∈ R[x1, . . . , xn] with P (0, . . . , 0) 6= 0
such that P has zeroes of multiplicity at least k at all points in {0, 1}n \ {(0, . . . , 0)}? For k = 1, a
classical theorem of Alon and Füredi states that the minimum possible degree of such a polynomial
equals n. In this paper, we solve the problem for all k ≥ 2, proving that the answer is n + 2k− 3.
As an application, we improve a result of Clifton and Huang on configurations of hyperplanes in
Rn such that each point in {0, 1}n \ {(0, . . . , 0)} is covered by at least k hyperplanes, but the
point (0, . . . , 0) is uncovered. Surprisingly, the proof of our result involves Catalan numbers and
arguments from enumerative combinatorics.

1 Introduction

Alon’s Combinatorial Nullstellensatz [1], which gives a non-vanishing criterion for a polynomial on
some grid of points under certain conditions, has had applications to many problems in combinatorics.
The following statement due to Alon and Füredi [2] is a now classical example of an application of the
Combinatorial Nullstellensatz (even though it historically predated it).

Theorem 1.1 (see [2]). Let n ≥ 1. Then any polynomial P ∈ R[x1, . . . , xn] with P (0, . . . , 0) 6= 0 and
such that P has zeroes at all points in {0, 1}n \ {(0, . . . , 0)} has degree degP ≥ n.

The example P = (x1 − 1) · · · (xn − 1) shows that the bound degP ≥ n is tight. Alon and Füredi [2]
proved this theorem in order to solve a problem of Komjáth [12] asking about the minimum possible
number m such that there are m hyperplanes in Rn covering all points in {0, 1}n \{(0, . . . , 0)}, but not
covering (0, . . . , 0). By considering the product of the linear polynomials defining these hyperplanes,
Theorem 1.1 easily implies that at least n hyperplanes are needed. As n hyperplanes are also sufficient,
the answer to Komjáth’s hyperplane problem is m = n.

There has been a lot of work on finding generalizations of both the Combinatorial Nullstellensatz [1]
and of Alon and Füredi’s result [2] on Komjáth’s hyperplane problem to higher vanishing or covering
multiplicities [3, 4, 8, 13, 14]. More generally, there is now a rich collection of higher-multiplicity
generalizations of related algebraic results. There are also various combinatorial applications of such
higher-multiplicity results, like Stepanov’s method (see e.g. [11]) and the multiplicity Schwartz–Zippel
lemma (see e.g. [5, 6, 9]). In this spirit, it is natural to also ask for generalizations of Theorem 1.1 to
higher vanishing orders for the polynomial P . This leads to the following problem.
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Problem 1.2. Let k ≥ 2 and let n be sufficiently large with respect to k. What is the minimum degree
that a polynomial P ∈ R[x1, . . . , xn] can have, if P (0, . . . , 0) 6= 0 and if P has zeroes of multiplicity at
least k at all points in {0, 1}n \ {(0, . . . , 0)}?

As usual, we say that a polynomial P ∈ R[x1, . . . , xn] has a zero of multiplicity at least k at a point
a ∈ Rn if all derivatives of P up to order k − 1 vanish at a. Note that P (a) = 0 is equivalent to P
having a zero of multiplicity at least 1 at a.

Ball and Serra [3, Theorem 4.1] proved a lower bound of degP ≥ n + k − 1 for Problem 1.2 (in fact,
they proved a similar bound for more general grids instead of just {0, 1}n ⊆ Rn). This in particular
implies that the answer to Problem 1.2 is n+ 1 if k = 2. Clifton and Huang [8] proved that the answer
to Problem 1.2 is n+ 3 if k = 3, and they improved the lower bound to degP ≥ n+ k + 1 for k ≥ 4.
Clifton and Huang were actually studying the generalization of Komjáth’s hyperplane problem [12]
mentioned above to higher covering multiplicities (where every point in {0, 1}n \ {(0, . . . , 0)} needs to
be covered by at least k hyperplanes, while (0, . . . , 0) must remain uncovered). Their approach was to
consider the product of the polynomials for all of the hyperplanes and to prove a lower bound for the
degree of this product. This naturally leads to Problem 1.2, even though their lower bound results are
not explicitly stated in the setting of Problem 1.2.

In this paper, we resolve Problem 1.2, showing that the answer is n + 2k − 3. This is the content of
the following theorem.

Theorem 1.3. Let k ≥ 2 and n ≥ 2k−3. Then any polynomial P ∈ R[x1, . . . , xn] with P (0, . . . , 0) 6= 0
having zeroes of multiplicity at least k at all points in {0, 1}n\{(0, . . . , 0)} has degree degP ≥ n+2k−3.
Furthermore, there exists such a polynomial P with degree degP = n+ 2k − 3.

Instead of demanding P (0, . . . , 0) 6= 0, one can also ask a more general version of Problem 1.2 where
P is required to have a zero of multiplicity exactly ` at (0, . . . , 0) for some ` ∈ {0, . . . , k − 1} (note
that for ` ≥ k, we cannot expect any interesting lower bounds on the degree of P for large n, as the
example P = x`1(x1 − 1)k with degP = ` + k shows). Also note that the case ` = 0 corresponds to
Problem 1.2 above. Our next theorem resolves this more general problem for 0 ≤ ` ≤ k − 2.

Theorem 1.4. Let k ≥ 2 and n ≥ 2k − 3. Let P ∈ R[x1, . . . , xn] be a polynomial having zeroes of
multiplicity at least k at all points in {0, 1}n \ {(0, . . . , 0)}, and such that P does not have a zero of
multiplicity at least k − 1 at (0, . . . , 0). Then P must have degree degP ≥ n + 2k − 3. Furthermore,
for every ` = 0, . . . , k− 2, there exists a polynomial P with degree degP = n+ 2k− 3 having zeroes of
multiplicity at least k at all points in {0, 1}n \ {(0, . . . , 0)}, and such that P has a zero of multiplicity
exactly ` at (0, . . . , 0).

Note that Theorem 1.4 implies Theorem 1.3. Indeed, it is clear that the first part of Theorem 1.4
(giving the degree bound degP ≥ n+ 2k− 3) implies the first part of Theorem 1.3. Furthermore, the
second part of Theorem 1.3 is equivalent to the second part of Theorem 1.4 for ` = 0.

Theorem 1.4 does not address the case where P has a zero of multiplicity exactly k − 1 at (0, . . . , 0).
This case turns out to have a slightly different answer, as shown in the following theorem.

Theorem 1.5. Let k ≥ 2 and n ≥ 1. Let P ∈ R[x1, . . . , xn] be a polynomial having zeroes of
multiplicity at least k at all points in {0, 1}n \ {(0, . . . , 0)}, and a zero of multiplicity exactly k − 1 at
(0, . . . , 0). Then P must have degree degP ≥ n+ 2k − 2. Furthermore, there exists such a polynomial
P with degree degP = n+ 2k − 2.

Note that Theorem 1.5 is also true for k = 1, and is identical to Alon and Füredi’s result in Theorem
1.1. Theorem 1.5 is actually significantly easier to prove than Theorems 1.3 and 1.4.

As an application of Theorem 1.3, we can improve a result of Clifton and Huang [8] concerning
collections of hyperplanes in Rn such that every point in {0, 1}n \{(0, . . . , 0)} is covered by at least k of
these hyperplanes, but no hyperplane contains (0, . . . , 0). Generalizing Komjáth’s hyperplane problem
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[12], Clifton and Huang studied the minimum possible size of such a collection of hyperplanes, where
k is fixed and n is assumed to be sufficiently large with respect to k. They proved that the minimum
size of such a collection of hyperplanes is n+ 1 if k = 2 and n+ 3 if k = 3. Furthermore, for k ≥ 4 they
proved a lower bound of n+ k+ 1 for the size of any such collection of hyperplanes. As an immediate
corollary of Theorem 1.3, we can recover their lower bound for k ∈ {2, 3, 4} and improve it for k ≥ 5.

Corollary 1.6. Fix k ≥ 2 and let n ≥ 2k − 3. Consider a collection of hyperplanes in Rn such that
every point in {0, 1}n \ {(0, . . . , 0)} is covered by at least k of these hyperplanes, but no hyperplane
contains (0, . . . , 0). Then this collection must consist of at least n+ 2k − 3 hyperplanes.

Indeed, Corollary 1.6 follows from Theorem 1.3 by taking the linear polynomials corresponding to
all of the hyperplanes, and observing that their product P satisfies the assumptions in Theorem 1.3.
This was also the approach taken by Clifton and Huang [8] to prove their lower bounds for the size
of any such collection of hyperplanes. Clifton and Huang obtained lower bounds on the degree of the
resulting product polynomial P by using a punctured higher-multiplicity version of the Combinatorial
Nullstellensatz due to Ball and Serra [3] and a relatively involved analysis of the conditions on the
coefficients of the polynomial P imposed by its vanishing properties. As mentioned above, their
arguments also apply in the setting of Problem 1.2, but their bounds on the degree of P are weaker
than the lower bound we obtain in Theorem 1.3.

It is still an interesting open problem to determine the minimum possible size of a collection of hy-
perplanes as in Corollary 1.6 for k ≥ 4 (and n sufficiently large with respect to k). While Corollary
1.6 gives the best currently known lower bound, the best known upper bound is n+

(
k
2

)
, obtained by

a construction due to Clifton and Huang [8]. They conjectured that this upper bound is tight if n is
sufficiently large with respect to k; see also the discussion in Subsection 4.1 in the concluding remarks.

While Theorem 1.5 is relatively easy to prove, the proof of Theorem 1.4 takes up most of this paper.
Indeed, the proof of Theorem 1.5 uses only fairly standard techniques related to the Combinatorial
Nullstellensatz and its generalizations (like iteratively subtracting appropriate monomials in order to
put a given polynomial in some “canonical form”). Proving Theorem 1.4 is, however, significantly
harder. With various linear algebra arguments, one can reduce the desired statement to showing that
a certain linear map is an isomorphism (see Corollary 2.11 below). In order to show surjectivity of
this linear map, we analyze the representations of certain symmetric polynomials in terms of power
sum symmetric polynomials. We then need to show that a certain coefficient of such a representation
is non-zero. Surprisingly, it turns out that this coefficient is actually equal (up to sign) to a Catalan
number. The fact that enumerative combinatorics arguments appear in our proof is maybe somewhat
unexpected, given that Problem 1.2 is a problem in extremal combinatorics.

Notation. Throughout this paper, we work with the usual convention that the binomial coefficients(
n
m

)
are defined for all integers m and n ≥ 0, but we have

(
n
m

)
= 0 unless 0 ≤ m ≤ n. The variables

i, j, k, `,m, n, r, s, t always refer to integers.

2 Proof of Theorems 1.4 and 1.5

In this section we prove Theorem 1.5, and we also prove Theorem 1.4 apart from the proof of Propo-
sition 2.9 below, which we postpone to Section 3. Recall that Theorem 1.4 implies Theorem 1.3.

For k ≥ 2, let us say that a polynomial P ∈ R[x1, . . . , xn] is k-reduced, if degP ≤ n + 2k − 3 and if
P does not contain any monomials divisible by x2i1 · · ·x

2
ik

for some (not necessarily distinct) indices
i1, . . . , ik ∈ {1, . . . , n} (in other words, no monomial of P is divisible by a product of k squares of
variables). Let Uk ⊆ R[x1, . . . , xn] be the vector space of all k-reduced polynomials.

Before starting the proofs of Theorems 1.4 and 1.5, we will show a sequence of claims. The first
claim shows that in order to prove the first part of Theorems 1.4 and 1.5, we can restrict ourselves
to considering k-reduced polynomials P . Furthermore, it will be easy to derive the second part of
Theorem 1.4 from this claim.
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Claim 2.1. Let k ≥ 2 and n ≥ 1. For every polynomial Q ∈ R[x1, . . . , xn], we can find a polynomial
P ∈ Uk with degP ≤ degQ such that the difference Q − P has zeroes of multiplicity at least k at all
points in {0, 1}n \ {(0, . . . , 0)} and a zero of multiplicity at least k − 1 at (0, . . . , 0). Furthermore, if
degQ ≤ n + 2k − 3, then we can even choose P ∈ Uk with degP ≤ degQ such that the difference
Q− P has zeroes of multiplicity at least k at all points in {0, 1}n.

Proof. Fix k ≥ 2 and n ≥ 1. Note that for any polynomial Q ∈ R[x1, . . . , xn], when defining a
polynomial Q∗ ∈ R[x1, . . . , xn] by either

(a) Q∗ = Q − a · xi1(xi1 − 1) · · ·xik(xik − 1) · xm1
1 · · ·xmn

n with a ∈ R, with non-negative integers
m1, . . . ,mn and with (not necessarily distinct) indices i1, . . . , ik ∈ {1, . . . , n}, or

(b) Q∗ = Q − a · xi1(xi1 − 1) · · ·xik−1
(xik−1

− 1) · (x1 − 1) · · · (xn − 1) with a ∈ R and with (not
necessarily distinct) indices i1, . . . , ik−1 ∈ {1, . . . , n},

the difference Q −Q∗ has zeroes of multiplicity at least k at all points in {0, 1}n \ {(0, . . . , 0)} and a
zero of multiplicity at least k − 1 at (0, . . . , 0). Furthermore, if we define Q∗ as in (a), then Q − Q∗
even has zeroes of multiplicity at least k at all points in {0, 1}n.

Let us say that a monomial in R[x1, . . . , xn] is bad if it is of the form x2i1 · · ·x
2
ik
· xm1

1 · · ·xmn
n with

non-negative integers m1, . . . ,mn and with (not necessarily distinct) indices i1, . . . , ik ∈ {1, . . . , n}, or
of the form x2i1 · · ·x

2
ik−1
· x1 · · ·xn with (not necessarily distinct) indices i1, . . . , ik−1 ∈ {1, . . . , n}.

Whenever Q ∈ R[x1, . . . , xn] contains a bad monomial, we can apply one of the steps (a) or (b) above,
replacing the bad monomial with monomials of lower degree. We can repeatedly perform these steps,
always replacing a bad monomial of maximum degree by lower-degree monomials, until we arrive at
a polynomial P ∈ R[x1, . . . , xn] which does not contain any bad monomials. Indeed, note that when
repeatedly applying these steps, the process must terminate at some point (since at every step either
the maximum degree of the occurring bad monomials decreases or the maximum degree of the occurring
bad monomials remains unchanged but the number of different bad monomials of this maximum degree
decreases).

By construction of P , we have degP ≤ degQ and the difference Q − P has zeroes of multiplicity at
least k at all points in {0, 1}n \ {(0, . . . , 0)} and a zero of multiplicity at least k − 1 at (0, . . . , 0). Let
us now check that P ∈ Uk, i.e. that P is k-reduced and has degree degP ≤ n+ 2k − 3.

Recall that P does not contain any bad monomials. This means in particular that P does not have
any monomials which are divisible by x2i1 · · ·x

2
ik

for some (not necessarily distinct) indices i1, . . . , ik ∈
{1, . . . , n}. Note that this already implies that degP ≤ n+ 2k− 2. Furthermore, if P had a monomial
of degree n+ 2k− 2, then this monomial would need to be of the form x2i1 · · ·x

2
ik−1
·x1 · · ·xn with (not

necessarily distinct) indices i1, . . . , ik−1 ∈ {1, . . . , n}. But such a monomial is also bad, and therefore
we must have degP ≤ n+ 2k − 3. This proves that P ∈ Uk.

Finally, for the second part of the claim, note that if we have degQ ≤ n + 2k − 3, then throughout
the process of obtaining P from Q all polynomials have degree at most n + 2k − 3 and we therefore
never apply step (b). This means that we will only perform step (a), and hence Q − P has zeroes of
multiplicity at least k at all points in {0, 1}n.

For n ≥ 1 and t ≥ 1, let us define Mt(n) to be the number of n-tuples (m1, . . . ,mn) of non-negative
integers with m1 + · · ·+mn < t. We remark that Mt(n) =

(
n+t−1

n

)
, but we will not use this formula.

Note that for a polynomial P ∈ R[x1, . . . , xn] there are precisely Mt(n) different ways to form a
derivative of P of order less than t.

We will be using various dimension-counting arguments. The following claim expresses the dimension
of the vector space Uk in terms of the numbers Mt(n) we just defined.

Claim 2.2. Let k ≥ 2 and n ≥ 1. Then the vector space Uk ⊆ R[x1, . . . , xn] has dimension dimUk =
(2n − 1) ·Mk(n) +Mk−1(n).
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Proof. The dimension of the vector space Uk equals the number of monomials in R[x1, . . . , xn] of
degree at most n + 2k − 3 which are not divisible by x2i1 · · ·x

2
ik

for any (not necessarily distinct)
indices i1, . . . , ik ∈ {1, . . . , n}. In other words, dimUk is the number of monomials of the form
x2m1+r1
1 · · ·x2mn+rn

n with non-negative integers (m1, . . . ,mn) with m1 + · · ·+mn < k and r1, . . . , rn ∈
{0, 1} such that (2m1 + r1) + · · · + (2mn + rn) ≤ n + 2k − 3. If r1 + · · · + rn ≤ n − 1, then
there are precisely Mk(n) choices for (m1, . . . ,mn). But if r1 = · · · = rn = 1, then we must
have 2m1 + · · · + 2mn ≤ 2k − 3, which (for non-negative integers m1, . . . ,mn) is equivalent to
m1 + · · · + mn < k − 1. Hence, in this case, there are only Mk−1(n) choices for (m1, . . . ,mn).
All in all we obtain dimUk = (2n − 1) ·Mk(n) +Mk−1(n), as desired.

Claim 2.3. Let k ≥ 2 and n ≥ 1, and let N = (2n − 1) ·Mk(n) +Mk−1(n). Consider the linear map
ψk : Uk → RN sending each polynomial P ∈ Uk to the N -tuple consisting of the derivatives of P of
order less than k at all points in {0, 1}n \ {(0, . . . , 0)} and all the derivatives of P of order less than
k − 1 at (0, . . . , 0). Then ψk : Uk → RN is an isomorphism.

Proof. By Claim 2.2 we have dimUk = (2n − 1) ·Mk(n) + Mk−1(n) = N , so it suffices to prove that
the linear map ψk : Uk → RN is surjective. The surjectivity of ψk follows from Claim 2.1: indeed, for
any N -tuple α ∈ RN , we can easily construct a (high-degree) polynomial Q ∈ R[x1, . . . , xn] such that
the derivatives of Q of order less than k at all points in {0, 1}n \ {(0, . . . , 0)} and the derivatives of Q
of order less than k − 1 at (0, . . . , 0) form precisely the N -tuple α. For example, one can take

Q =
∑ α(a1,...,an),(m1,...,mn)

m1! · · ·mn!
· (x1 − a1)m1 · · · (xn − an)mn · ((x1 − a1)2k − 1)2k · · · ((xn − an)2k − 1)2k,

where the sum is over all entries α(a1,...,an),(m1,...,mn) of α (which correspond to conditions of the form
(∂x1)m1 . . . (∂xn)mnQ(a1, . . . , an) = α(a1,...,an),(m1,...,mn) with (a1, . . . , an) ∈ {0, 1}n). Now, by Claim
2.1 there exists a polynomial P ∈ Uk where this N -tuple of derivatives agrees with the N -tuple for Q.
Hence ψk(P ) = α.

Corollary 2.4. Let k ≥ 2 and n ≥ 1. For every polynomial Q ∈ R[x1, . . . , xn] there is at most one
polynomial P ∈ Uk such that Q − P has zeroes of multiplicity at least k at all points in {0, 1}n \
{(0, . . . , 0)} and a zero of multiplicity at least k − 1 at (0, . . . , 0). In particular, the polynomial P in
Claim 2.1 is unique.

Proof. Suppose that for some polynomial Q ∈ R[x1, . . . , xn] there were two different polynomials
P, P ∗ ∈ Uk with the desired properties. Then the non-zero polynomial P −P ∗ ∈ Uk would have zeroes
of multiplicity at least k at all points in {0, 1}n \{(0, . . . , 0)} and a zero of multiplicity at least k−1 at
(0, . . . , 0), and would therefore be mapped to (0, 0, . . . , 0) ∈ RN under the isomorphism ψk : Uk → RN

in Claim 2.3. This is a contradiction.

With these preparations, we are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. Suppose for contradiction that there is a polynomial Q ∈ R[x1, . . . , xn] of degree
degQ ≤ n+ 2k− 3 having zeroes of multiplicity at least k at all points in {0, 1}n \ {(0, . . . , 0)}, and a
zero of multiplicity exactly k − 1 at (0, . . . , 0). By the second part of Claim 2.1, there is a polynomial
P ∈ Uk also having zeroes of multiplicity at least k at all points in {0, 1}n \ {(0, . . . , 0)}, and a zero of
multiplicity exactly k − 1 at (0, . . . , 0). In particular, P is not the zero polynomial. However, under
the isomorphism ψk : Uk → RN in Claim 2.3, the polynomial P is mapped to (0, 0, . . . , 0) ∈ RN (recall
that the derivatives of order k − 1 at (0, . . . , 0) are not recorded by ψk). This is a contradiction.

For the second part of the theorem, note that the polynomial

P (x1, . . . , xn) = xk−11 (x1 − 1)k−1 · (x1 − 1) · · · (xn − 1)

has degree degP = n+ 2k − 2 and satisfies the desired conditions.
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It remains to prove Theorem 1.4. The second part of Theorem 1.4 (concerning the existence of P with
degP = n + 2k − 3 with the desired conditions) is a direct consequence of Claim 2.1, as we will see
below. However, the first part of Theorem 1.4 is much more challenging.

For k ≥ 2, let Vk ⊆ Uk ⊆ R[x1, . . . , xn] be the vector space of all k-reduced polynomials which have
zeroes of multiplicity at least k at all points in {0, 1}n \ {(0, . . . , 0)}. In order to prove the first part of
Theorem 1.4, our goal will be to show that all non-zero polynomials P ∈ Vk have degree n + 2k − 3.
We continue with our sequence of claims.

Claim 2.5. Let k ≥ 2 and n ≥ 1. Then the vector space Vk ⊆ R[x1, . . . , xn] has dimension Mk−1(n).

Proof. Note that Vk consists precisely of those polynomials in Uk which are mapped to N -tuples under
the isomorphism ψk : Uk → RN in Claim 2.3 where the first (2n − 1) ·Mk(n) entries are zero. Since
the subspace of such N -tuples has dimension N − (2n − 1) ·Mk(n) = Mk−1(n), the subspace Vk ⊆ Uk

also has dimension Mk−1(n).

Claim 2.6. Let k ≥ 3 and n ≥ 1. Then for each j ∈ {1, . . . , n} and each polynomial P ∈ Vk−1, we
have xj(xj − 1) · P ∈ Vk.

Proof. Recall that P ∈ Vk−1 ⊆ Uk−1 is (k − 1)-reduced, meaning that degP ≤ n + 2k − 5 and
no monomial of P is divisible by x2i1 · · ·x

2
ik−1

for any (not necessarily distinct) indices i1, . . . , ik−1 ∈
{1, . . . , n}. Then clearly the polynomial xj(xj − 1) · P has degree at most n + 2k − 3, and it is also
not hard to see that no monomial of xj(xj − 1) · P is divisible by x2i1 · · ·x

2
ik

for any (not necessarily
distinct) indices i1, . . . , ik ∈ {1, . . . , n}. Hence xj(xj − 1) · P ∈ Uk.

Since P ∈ Vk−1, the polynomial P has zeroes of multiplicity at least k − 1 at all points in {0, 1}n \
{(0, . . . , 0)}. Hence xj(xj − 1) · P has zeroes of multiplicity at least k at all these points, and we can
conclude that xj(xj − 1) · P ∈ Vk.

Now, in order to show that all non-zero polynomials P ∈ Vk have degree n+ 2k−3, let us consider the
linear map ϕk : Vk → R[x1, . . . , xn] sending each polynomial in Vk to its homogeneous degree n+2k−3
part. Our goal is to show that this map is injective. To show this, it is sufficient to prove that the
image ϕk(Vk) has dimension dimVk = Mk−1(n).

Let Wk ⊆ R[x1, . . . , xn] be the subspace spanned by all polynomials of the form

x1 · · ·xn · (xm1 + · · ·+ xmn ) · x2d1
1 · · ·x2dn

n (2.1)

for non-negative integers (m, d1, . . . , dn) with m+ 2(d1 + · · ·+ dn) = 2k− 3. Note that all polynomials
in Wk are homogeneous of degree n+ 2k − 3. We will later show that ϕk(Vk) = Wk.

Claim 2.7. Let k ≥ 2 and n ≥ k − 1. Then the polynomials in (2.1) form a basis of Wk.

Proof. By definition of Wk, the polynomials in (2.1) span Wk. It remains to show that these polyno-
mials are linearly independent. Since we can divide all the polynomials by x1 · · ·xn, it suffices to show
that the polynomials of the form

Qm,d1,...,dn
= (xm1 + · · ·+ xmn ) · x2d1

1 · · ·x2dn
n

for non-negative integers (m, d1, . . . , dn) with m+ 2(d1 + · · ·+ dn) = 2k − 3 are linearly independent.

Note that for each such polynomial Qm,d1,...,dn
we have that m is odd and that d1+· · ·+dn ≤ k−2 < n.

Hence all monomials of Qm,d1,...,dn
have exactly one variable with an odd exponent, this odd exponent

is always at least m, and there exists some monomial where the odd exponent is equal to m (namely
each of the monomials xmi · x

2d1
1 · · ·x2dn

n for those i ∈ {1, . . . , n} with di = 0, which must exist since
d1 + · · ·+ dn < n).
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Now suppose we had a linear dependence relationship∑
(m,d1,...,dn)

λm,d1,...,dn
Qm,d1,...,dn

= 0

for some coefficients λm,d1,...,dn
∈ R not all of which are zero. Then let m∗ be the minimum value

of m for which some coefficient λm,d1,...,dn is non-zero (and note that m∗ is odd, since m is always
odd). Furthermore, fix i ∈ {1, . . . , n} such that we have λm,d1,...,dn 6= 0 for some (m, d1, . . . , dn) with
m = m∗ and di = 0.

Now, in the polynomials Qm,d1,...,dn
with λm,d1,...,dn

6= 0, all monomials have exactly one variable with
an odd exponent, and this odd exponent is always at least m∗. Let us consider all the monomials where
xi has exponent m∗. These monomials can only appear in polynomials Qm,d1,...,dn

with λm,d1,...,dn
6= 0

where m = m∗ and di = 0. But note that each such polynomial contains precisely one monomial where
xi has exponent m = m∗, namely the monomial xm

∗

i · x2d1
1 · · ·x2dn

n . Hence these monomials cannot
cancel out between different polynomials Qm,d1,...,dn

with λm,d1,...,dn
6= 0. Thus, a linear dependence

relationship between the polynomials Qm,d1,...,dn
is not possible.

Corollary 2.8. Let k ≥ 2 and n ≥ k − 1. Then the vector space Wk ⊆ R[x1, . . . , xn] has dimension
Mk−1(n).

Proof. By Claim 2.7, the dimension of Wk equals the number of polynomials of the form as in (2.1),
i.e. the number of choices of non-negative integers (m, d1, . . . , dn) with m+ 2(d1 + · · ·+ dn) = 2k − 3.
We must have d1 + · · ·+ dn < k− 1. So there are Mk−1(n) possibilities to choose (d1, . . . , dn), and for
each of them m = 2k − 3− 2(d1 + · · ·+ dn) is uniquely determined.

A key step in the proof of Theorem 1.4 is to prove the following proposition, from which we will deduce
that the map ϕk : Vk → R[x1, . . . , xn] is injective.

Proposition 2.9. Let k ≥ 2 and n ≥ 2k − 3. Then there exists a polynomial P ∈ Vk such that
the homogeneous degree n + 2k − 3 part ϕk(P ) of P satisfies ϕk(P ) ∈ Wk as well as the following
condition: if we write ϕk(P ) ∈ Wk in terms of the basis in (2.1), then the coefficient of the basis
element x1 · · ·xn · (x2k−31 + · · ·+ x2k−3n ) is non-zero.

We postpone the proof of Proposition 2.9 to Section 3. The proposition implies the following corollaries.

Corollary 2.10. Let k ≥ 2 and n ≥ 2k − 3. Then we have Wk ⊆ ϕk(Vk).

Proof. We prove the corollary by induction on k. For the base case k = 2 note that the space W2 is
the one-dimensional space spanned by the polynomial x1 · · ·xn · (x1 + · · · + xn). By Proposition 2.9
for k = 2, there exists a polynomial P ∈ V2 such that ϕ2(P ) ∈ W2 is a non-zero scalar multiple of
x1 · · ·xn · (x1 + · · ·+ xn). This shows that W2 ⊆ ϕ2(V2).

Now let k ≥ 3 and assume that we have already shown that Wk−1 ⊆ ϕk−1(Vk−1). Let W ′k ⊆ Wk be
the subspace spanned by all polynomials of the form (2.1) with d1 + · · · + dn ≥ 1. In other words,
W ′k ⊆ Wk is spanned by all of the form (2.1) except the polynomial x1 · · ·xn · (x2k−31 + · · · + x2k−3n ).
Note that dimW ′k = dimWk − 1.

Let us first show that W ′k ⊆ ϕk(Vk). So fix a polynomial x1 · · ·xn · (xm1 + · · · + xmn ) · x2d1
1 · · ·x2dn

n of
the form (2.1) where d1 + · · ·+ dn ≥ 1. Now, let j ∈ {1, . . . , n} be chosen such that dj ≥ 1. Note that
then (using the induction hypothesis Wk−1 ⊆ ϕk−1(Vk−1)) we have

x1 · · ·xn · (xm1 + · · ·+ xmn ) · x2d1
1 · · ·x2dj−1

j−1 x
2dj−2
j x

2dj+1

j+1 · · ·x
2dn
n ∈Wk−1 ⊆ ϕk−1(Vk−1).

Hence there exists a polynomial P ∗ ∈ Vk−1 of degree n+ 2k− 5 whose homogeneous degree n+ 2k− 5

part is ϕk−1(P ∗) = x1 · · ·xn · (xm1 + · · · + xmn ) · x2d1
1 · · ·x2dj−1

j−1 x
2dj−2
j x

2dj+1

j+1 · · ·x2dn
n . By Claim 2.6 we
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have xj(xj − 1) · P ∗ ∈ Vk, and note that the homogeneous degree n + 2k − 3 part of xj(xj − 1) · P ∗
is precisely x2j · ϕk−1(P ∗) = x1 · · ·xn · (xm1 + · · ·+ xmn ) · x2d1

1 · · ·x2dn
n . Hence ϕk maps the polynomial

xj(xj − 1) · P ∗ ∈ Vk to x1 · · ·xn · (xm1 + · · ·+ xmn ) · x2d1
1 · · ·x2dn

n . This establishes that W ′k ⊆ ϕk(Vk).

Thus, ϕk(Vk) ∩Wk is a subspace of Wk with W ′k ⊆ ϕk(Vk) ∩Wk ⊆ Wk. Now, Proposition 2.9 states
that there exists a polynomial P ∈ Vk with ϕk(P ) ∈Wk and ϕk(P ) 6∈W ′k. Hence ϕk(Vk) ∩Wk 6= W ′k.
Since dimW ′k = dimWk − 1, this implies that ϕk(Vk)∩Wk = Wk and consequently Wk ⊆ ϕk(Vk).

Corollary 2.11. Let k ≥ 2 and n ≥ 2k − 3. Then ϕk(Vk) = Wk, and the linear map ϕk : Vk → Wk

is an isomorphism.

Proof. Recall that dimVk = Mk−1(n) = dimWk by Claim 2.5 and Corollary 2.8. Furthermore recall
that by Corollary 2.10 we have Wk ⊆ ϕk(Vk). Since dimϕk(Vk) ≤ dimVk = dimWk, we must have
ϕk(Vk) = Wk and the linear map ϕk : Vk →Wk must be an isomorphism.

Using Corollary 2.11, we are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Fix k ≥ 2 and n ≥ 2k − 3, and let Q ∈ R[x1, . . . , xn] be a polynomial having
zeroes of multiplicity at least k at all points in {0, 1}n \ {(0, . . . , 0)}, and such that Q does not have a
zero of multiplicity at least k − 1 at (0, . . . , 0). We need to show that degQ ≥ n+ 2k − 3. Let P be a
polynomial as in Claim 2.1. Then we have P ∈ Uk and degP ≤ degQ. Furthermore, P also has zeroes
of multiplicity at least k at all points in {0, 1}n \ {(0, . . . , 0)}, which implies that P ∈ Vk. Finally, P
does not have a zero of multiplicity at least k−1 at (0, . . . , 0), which in particular means that P is not
the zero polynomial. Recall that by Corollary 2.11 the map ϕk : Vk → Wk is an isomorphism (and in
particular injective). Thus, we have ϕk(P ) 6= 0, which means that the homogeneous degree n+ 2k− 3
part of P is non-zero. So we can conclude that degQ ≥ degP ≥ n+ 2k − 3.

It remains to prove the second part of Theorem 1.4. Fix 0 ≤ ` ≤ k − 2. It is not hard to construct a
(high-degree) polynomial Q having zeroes of multiplicity at least k at all points in {0, 1}n\{(0, . . . , 0)},
and such that Q has a zero of multiplicity exactly ` at (0, . . . , 0), for example the polynomial Q =
x`1 · (x1 − 1)k · · · (xn − 1)k. By Claim 2.1, there exists a polynomial P ∈ Uk which also has zeroes
of multiplicity at least k at all points in {0, 1}n \ {(0, . . . , 0)}, and a zero of multiplicity exactly `
at (0, . . . , 0) (recall that ` ≤ k − 2). It remains to check that degP = n + 2k − 3. Since P ∈ Uk,
we must have degP ≤ n + 2k − 3. Furthermore, the first part of Theorem 1.4 proved above implies
that degP ≥ n + 2k − 3. Hence degP = n + 2k − 3, and the polynomial P has all of the desired
properties.

3 Proof of Proposition 2.9

In this section, we will prove Proposition 2.9 by constructing a polynomial P ∈ Vk satisfying the
desired conditions. Our polynomial P will be a symmetric polynomial.

Recall that we can write any symmetric polynomial R ∈ R[x1, . . . , xn] in terms of the power sum
symmetric polynomials xm1 + · · ·+ xmn for 1 ≤ m ≤ n. More precisely, we can write R as a linear com-
bination of products of power sum symmetric polynomials, i.e. as a linear combination of terms of the
form (xm1

1 +· · ·+xm1
n ) · · · (xm`

1 +· · ·+xm`
n ) for positive integers m1, . . . ,m` ≤ n. Furthermore, for every

symmetric polynomial R ∈ R[x1, . . . , xn], such a representation is unique (up to reordering m1, . . . ,m`

in the terms of this linear combination), and we can therefore refer to it as “the representation of R
in terms of power sum symmetric polynomials”.

Claim 3.1. Let n ≥ 1. Suppose that d1, . . . , dt are positive integers with d1 + · · ·+ dt ≤ n, such that
exactly one of d1, . . . , dt is odd. Then the symmetric polynomial∑

i1,...,it∈{1,...,n}
distinct

xd1
i1
· · ·xdt

it
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is a linear combination of terms of the form (xm1
1 + · · ·+ xm1

n ) · · · (xm`
1 + · · ·+ xm`

n ) for m1, . . . ,m` ∈
{1, . . . , n} with m1 + · · ·+m` = d1 + · · ·+ dt and such that exactly one of m1, . . . ,m` is odd.

Proof. Let us prove the claim by induction on t. If t = 1, then d1 is odd and the symmetric polynomial
xd1
1 + · · · + xd1

n is already of the desired form. So let us now assume that t ≥ 2 and that the claim
holds for t − 1. As only one of d1, . . . , dt is odd, we may assume without loss of generality that dt is
even. Note that∑

i1,...,it∈{1,...,n}
distinct

xd1
i1
· · ·xdt

it
= (xdt

1 + · · ·+ xdt
n ) ·

∑
i1,...,it−1∈{1,...,n}

distinct

xd1
i1
· · ·xdt−1

it−1

−
t−1∑
s=1

∑
i1,...,it−1∈{1,...,n}

distinct

xd1
i1
· · ·xds−1

is−1
xds+dt
is

x
ds+1

is+1
· · ·xdt−1

it−1
.

As exactly one of d1, . . . , dt−1 is odd, we can apply the induction hypothesis to the sum
∑
xd1
i1
· · ·xdt−1

it−1
.

We can then conclude that (xdt
1 + · · ·+xdt

n ) ·
∑
xd1
i1
· · ·xdt−1

it−1
is a linear combination of terms of the form

(xdt
1 + · · ·+xdt

n ) · (xm1
1 + · · ·+xm1

n ) · · · (xm`
1 + · · ·+xm`

n ) for positive integers m1, . . . ,m` with dt +m1 +
· · ·+m` = d1 + · · ·+ dt and such that exactly one of dt,m1, . . . ,m` is odd. Furthermore, for each s =

1, . . . , t− 1 we can also apply the induction hypothesis to the sum
∑
xd1
i1
· · ·xds−1

is−1
xds+dt
is

x
ds+1

is+1
· · ·xdt−1

it−1

and we find that each of these sums is a linear combination of terms of the desired form as well.

Claim 3.2. Let k ≥ 2 and let n ≥ 2k − 3. Let P ∈ Uk be a symmetric polynomial and let P be
the homogeneous degree n+ 2k − 3 part of P . Suppose that the polynomial P is divisible by x1 · · ·xn.
Then we have P ∈ Wk. Furthermore, when we write P in terms of the basis of Wk in (2.1), then the
coefficient of x1 · · ·xn · (x2k−31 + · · ·+x2k−3n ) is the same as the coefficient of x2k−31 + · · ·+x2k−3n when
writing the symmetric polynomial P/(x1 · · ·xn) in terms of power sum symmetric polynomials.

Proof. Recall that P ∈ Uk does not contain any monomials which are divisible by x2i1 · · ·x
2
ik

for some
(not necessarily distinct) indices i1, . . . , ik ∈ {1, . . . , n}. Therefore any monomial of P must be of
the form x2m1+r1

1 · · ·x2mn+rn
n with non-negative integers (m1, . . . ,mn) with m1 + · · · + mn ≤ k − 1

and r1, . . . , rn ∈ {0, 1}. If (2m1 + r1) + · · · + (2mn + rn) = n + 2k − 3, then this is only possible if
m1 + · · · + mn = k − 1 and r1 + · · · + rn = n − 1. This means that any monomial of P of degree
n+ 2k − 3 must have an odd exponent for exactly n− 1 of the n variables x1, . . . , xn.

Now let R = P/(x1 · · ·xn), and note that R ∈ R[x1, . . . , xn] is homogeneous of degree 2k − 3. Fur-
thermore, since P is symmetric, the polynomials P and R are also symmetric. We saw above that
every monomial in P has odd exponents for exactly n − 1 of the variables x1, . . . , xn (and an even
exponent for the remaining variable). Hence every monomial in R has an odd exponent for ex-
actly one variable. Thus, we can apply Claim 3.1 to all different types of monomials appearing in
R (recalling that n ≥ 2k − 3). We obtain that R is a linear combination of terms of the form
(xm1

1 + · · ·+ xm1
n ) · · · (xm`

1 + · · ·+ xm`
n ) for m1, . . . ,m` ∈ {1, . . . , n} with m1 + · · ·+m` = 2k − 3 and

such that exactly one of m1, . . . ,m` is odd. By renaming m1, . . . ,m`, we can always assume that m1

is odd and m2, . . . ,m` are even.

Note that this representation of R as a linear combination of such terms is the representation of R
in terms of power sum symmetric polynomials. Hence the coefficient λ of x2k−31 + · · · + x2k−3n when
expressing P/(x1 · · ·xn) = R in terms of power sum symmetric polynomials is precisely the coefficient
of x2k−31 + · · ·+ x2k−3n when expressing R as a linear combination as above.

By multiplying with x1 · · ·xn, we can now express P = x1 · · ·xn ·R as a linear combination of terms of
the form x1 · · ·xn·(xm1

1 +· · ·+xm1
n ) · · · (xm`

1 +· · ·+xm`
n ) for m1, . . . ,m` ∈ {1, . . . , n} with m1+· · ·+m` =

2k − 3 such that m1 is odd and m2, . . . ,m` are even. Note that the only such term with m1 = 2k − 3
is the term x1 · · ·xn · (x2k−31 + · · ·+ x2k−3n ), and the coefficient of this term equals λ.
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Note that each of these terms x1 · · ·xn ·(xm1
1 +· · ·+xm1

n ) · · · (xm`
1 +· · ·+xm`

n ) (with m1+· · ·+m` = 2k−3
and such that m1 is odd and m2, . . . ,m` are even) can be written as a linear combination of terms of
the form (2.1) with m = m1 (indeed, when multiplying out (xm2

1 + · · ·+ xm2
n ) · · · (xm`

1 + · · ·+ xm`
n ) all

variables always appear with even exponents). All in all, this shows that P can be written as a linear
combination of terms of the form (2.1), so P ∈ Wk. Furthermore, when writing P in terms of the
basis of Wk in (2.1), the coefficient of x1 · · ·xn · (x2k−31 + · · · + x2k−3n ) equals λ, which we defined as
the coefficient of x2k−31 + · · ·+ x2k−3n when expressing P/(x1 · · ·xn) in terms of power sum symmetric
polynomials.

Let us now prove Proposition 2.9. The proof of the proposition depends on three lemmas, whose proofs
we will postpone to the next two subsections.

Proof of Proposition 2.9. Fix k ≥ 2 and n ≥ 2k − 3. In order to construct the desired polynomial
P ∈ Vk, let us first define the symmetric polynomial

Q(x1, . . . , xn) = (−1)(k−1)n · (x1 − 1)k · · · (xn − 1)k. (3.1)

Note that Q has zeroes of multiplicity at least k at all points in {0, 1}n \ {(0, . . . , 0)}.
Let us now define P ∈ Uk to be the unique polynomial in Uk such that Q−P has zeroes of multiplicity
at least k at all points in {0, 1}n \ {(0, . . . , 0)} and a zero of multiplicity at least k − 1 at (0, . . . , 0)
(such a polynomial P exists by Claim 2.1 and it is unique by Corollary 2.4). Then P has zeroes of
multiplicity at least k at all points in {0, 1}n \ {(0, . . . , 0)}, and hence P ∈ Vk. Furthermore, since Q is
symmetric and P is unique, P must also be a symmetric polynomial (otherwise we could permute the
variables in P and obtain another polynomial with the desired properties, contradicting uniqueness).

Recall that ϕk(P ) is the homogeneous degree n+ 2k−3 part of P . We need to show that ϕk(P ) ∈Wk

and that when writing ϕk(P ) ∈ Wk in terms of the basis in (2.1), then the coefficient of the basis
element x1 · · ·xn · (x2k−31 + · · ·+ x2k−3n ) is non-zero.

We wish to apply Claim 3.2 to P , but this requires the homogeneous degree n+ 2k − 3 part ϕk(P ) of
P to be divisible by x1 · · ·xn.

Lemma 3.3. The polynomial ϕk(P ) is divisible by x1 · · ·xn.

We postpone the proof of Lemma 3.3 to Subsection 3.1. Assuming Lemma 3.3, by Claim 3.2 we
obtain ϕk(P ) ∈Wk, which establishes the first of our two required properties for P . Furthermore, we
also obtain from Claim 3.2 that the desired coefficient of ϕk(P ) (when writing it in terms of the basis
elements of Wk) is equal to the coefficient of x2k−31 +· · ·+x2k−3n when writing ϕk(P )/(x1 · · ·xn) in terms
of power sum symmetric polynomials. So it remains to prove that this coefficient of x2k−31 + · · ·+x2k−3n

is non-zero. The following lemma determines this coefficient.

Lemma 3.4. When writing ϕk(P )/(x1 · · ·xn) in terms of power sum symmetric polynomials, the
coefficient of x2k−31 + · · ·+ x2k−3n is equal to

∑
(m1,...,mt)

(−1)t ·
(
k − 1−m1

m1 − 1

)(
k − 1−m2

m2

)
. . .

(
k − 1−mt

mt

)
,

where the sum is over all sequences (m1, . . . ,mt) of positive integers with m1 + · · ·+mt = k − 1.

We also postpone the proof of Lemma 3.4 to Subsection 3.1. Surprisingly, the value of the sum in
Lemma 3.4 is (up to its sign) equal to the Catalan number Ck−2; see the following lemma. Recall that
the Catalan numbers C0, C1, . . . are given by the explicit formula Cn =

(
2n
n

)
/(n+ 1) for all n ≥ 0.
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Lemma 3.5. For any ` ≥ 1, we have∑
(m1,...,mt)

(−1)t ·
(
`−m1

m1 − 1

)(
`−m2

m2

)
. . .

(
`−mt

mt

)
= (−1)`C`−1,

where the sum is over all sequences (m1, . . . ,mt) of positive integers with m1 + · · ·+mt = `.

We postpone the proof of Lemma 3.5 to Subsection 3.2. Applying the lemma with ` = k − 1, we see
that the sum in Lemma 3.4 equals (−1)k−1Ck−2 = (−1)k−1

(
2k−4
k−2

)
/(k − 1) 6= 0. Thus, the coefficient

of x2k−31 + · · ·+ x2k−3n when writing ϕk(P )/(x1 · · ·xn) in terms of power sum symmetric polynomials
is indeed non-zero, finishing the proof of the Proposition 2.9.

3.1 Proof of Lemmas 3.3 and 3.4

In this subsection, we prove Lemmas 3.3 and 3.4 by analyzing the polynomial P and its homogeneous
degree n+ 2k − 3 part ϕk(P ). As before, let k ≥ 2 and n ≥ 2k − 3 be fixed.

In order to calculate ϕk(P ), let us first rewrite the definition of the polynomial Q in (3.1) as

Q(x1, . . . , xn) =

n∏
i=1

(
(−1)k−1 · (xi − 1)k

)
.

For i = 1, . . . , n, let us now write (−1)k−1 · (xi − 1)k as a linear combination of (xi − 1), xi(xi − 1),
xi(xi − 1)2, x2i (xi − 1)2, x2i (xi − 1)3, . . . , as in the following claim.

Claim 3.6. For any ` ≥ 1 and i ∈ {1, . . . , n}, we have

(−1)`−1 · (xi − 1)` =

b(`−1)/2c∑
m=0

(
`− 1−m

m

)
xmi (xi − 1)m+1 −

b`/2c∑
m=1

(
`− 1−m
m− 1

)
xmi (xi − 1)m.

Proof. First, note that we may equivalently write the desired equation as

(−1)`−1 · (xi − 1)` =

∞∑
m=0

(
`− 1−m

m

)
xmi (xi − 1)m+1 −

∞∑
m=1

(
`− 1−m
m− 1

)
xmi (xi − 1)m,

since for all terms appearing in the infinite sums that did not appear in the original equation, the
respective binomial coefficients are zero.

Let us now prove this equation by induction on `. For ` = 1, the equation is easy to check. Let us
now assume it is true for some ` ≥ 1, and let us check it for `+ 1. We have

(−1)`(xi − 1)`+1 = −(xi − 1)

∞∑
m=0

(
`− 1−m

m

)
xmi (xi − 1)m+1 + (xi − 1)

∞∑
m=1

(
`− 1−m
m− 1

)
xmi (xi − 1)m

= −
∞∑

m=0

(
`− 1−m

m

)
xm+1
i (xi − 1)m+1 +

∞∑
m=0

(
`− 1−m

m

)
xmi (xi − 1)m+1

+

∞∑
m=1

(
`− 1−m
m− 1

)
xmi (xi − 1)m+1

= −
∞∑

m=1

(
`−m
m− 1

)
xmi (xi − 1)m +

∞∑
m=0

(
`−m
m

)
xmi (xi − 1)m+1,

as desired. This proves the claim.
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From Claim 3.6, we now obtain that Q(x1, . . . , xn) equals

n∏
i=1

b(k−1)/2c∑
m=0

(
k − 1−m

m

)
xmi (xi − 1)m+1 −

bk/2c∑
m=1

(
k − 1−m
m− 1

)
xmi (xi − 1)m

 . (3.2)

Using this equation, we can calculate the polynomial P . Recall that P is the unique polynomial in Uk

such that Q − P has zeroes of multiplicity at least k at all points in {0, 1}n \ {(0, . . . , 0)} and a zero
of multiplicity at least k − 1 at (0, . . . , 0).

When expanding the product over all i in (3.2), each of the terms that we obtain is a product of
factors of the form xmi

i (xi− 1)mi+1 or xmi
i (xi− 1)mi for each i = 1, . . . , n (with some coefficient given

as the product of certain binomial coefficients). Note that each such term is divisible by the product
xm1
1 (x1 − 1)m1 · · ·xmn

n (xn − 1)mn , and if m1 + · · · + mn ≥ k this means that the term has zeroes of
multiplicity at least k at all points in {0, 1}n. We can omit all such terms from Q without violating
the defining property of P ∈ Uk (i.e. the property that Q − P has zeroes of multiplicity at least k at
all points in {0, 1}n \ {(0, . . . , 0)} and a zero of multiplicity at least k − 1 at (0, . . . , 0)).

So let us now imagine that we expand the product over i in (3.2), but we only keep the terms which
are products of factors of the form xmi

i (xi − 1)mi+1 or xmi
i (xi − 1)mi for each i = 1, . . . , n such that

m1 + · · · + mn ≤ k − 1. Note that all of these terms have degree at most n + 2k − 2. Furthermore,
any such term of degree n + 2k − 2 must be of the form xm1

1 (x1 − 1)m1+1 · · ·xmn
n (xn − 1)mn+1 =

(x1 − 1) · · · (xn − 1) · xm1
1 (x1 − 1)m1 · · ·xmn

n (xn − 1)mn with m1 + · · ·+ mn = k − 1. Hence any such
term of degree n+ 2k− 2 has zeroes of multiplicity at least k at all points in {0, 1}n \ {(0, . . . , 0)} and
a zero of multiplicity at least k − 1 at (0, . . . , 0). We can also omit all of these terms from Q without
violating the defining property of P ∈ Uk.

Now, let Q∗ be the polynomial consisting only of the remaining terms in the expansion of the product
over i in (3.2), i.e. of the terms which are products of factors of the form xmi

i (xi−1)mi+1 or xmi
i (xi−1)mi

for each i = 1, . . . , n such that m1 + · · · + mn ≤ k − 1 and which have degree at most n + 2k − 3.
Then Q∗ − P has zeroes of multiplicity at least k at all points in {0, 1}n \ {(0, . . . , 0)} and a zero of
multiplicity at least k − 1 at (0, . . . , 0). However, the polynomial Q∗ is also k-reduced, so we have
Q∗ ∈ Uk. By applying Corollary 2.4 to the polynomial Q∗, we can therefore conclude that Q∗ = P
(since P,Q∗ ∈ Uk both satisfy the conditions in Corollary 2.4).

In other words, we just showed that P can be obtained by expanding the product over i in (3.2), but
only keeping the terms which are products of factors of the form xmi

i (xi − 1)mi+1 or xmi
i (xi − 1)mi

for each i = 1, . . . , n such that m1 + · · · + mn ≤ k − 1 and which have degree at most n + 2k − 3.
Now, the homogeneous degree n + 2k − 3 part ϕk(P ) of P can be calculated by only considering the
products of degree exactly n+ 2k − 3 (and by only taking the homogeneous degree n+ 2k − 3 part of
these products). In other words, ϕk(P ) is obtained by expanding

n∏
i=1

b(k−1)/2c∑
m=0

(
k − 1−m

m

)
x2m+1
i −

bk/2c∑
m=1

(
k − 1−m
m− 1

)
x2mi

 , (3.3)

but only keeping the terms which are products of factors of the form x2mi+1
i or x2mi

i for each i = 1, . . . , n
such that m1 + · · · + mn ≤ k − 1 and which have degree exactly n + 2k − 3. Note that such a term
can only have degree n + 2k − 3 if it consists of n − 1 factors of the form x2mi+1

i and one factor of
the form x2mi

i (with m1 + · · · + mn = k − 1). Hence ϕk(P ) can be obtained by expanding (3.3), but
only keeping the monomials of degree exactly n + 2k − 3 in which exactly one variable has an even
exponent.

To simplify notation, let us define a0, . . . , ak−1 to be the coefficients such that (3.3) can be written as∏n
i=1(ak−1x

k
i + ak−2x

k−1
i + · · ·+ a0xi). Furthermore, for d ≥ k, let us define ad = 0. Note that then

for all m ≥ 0 we have a2m =
(
k−1−m

m

)
, and for all m ≥ 1 we have a2m−1 = −

(
k−1−m
m−1

)
. Also note that

12



a0 = 1. Using this notation, we now obtain that

ϕk(P ) =
∑

(d1,...,dn)

ad1
· · · adn

· xd1+1
1 · · ·xdn+1

n , (3.4)

where the sum is over all sequences (d1, . . . , dn) of non-negative integers with (d1 +1)+ · · ·+(dn +1) =
n + 2k − 3 such that exactly one of d1 + 1, . . . , dn + 1 is even. These conditions are equivalent to
demanding that d1 + · · ·+ dn = 2k − 3 and exactly one of d1, . . . , dn is odd. Now, Lemma 3.3 follows
easily.

Proof of Lemma 3.3. All monomials appearing in (3.4) are divisible by x1 · · ·xn, and hence ϕk(P ) is
divisible by x1 · · ·xn, as desired.

From (3.4), we now obtain that

ϕk(P )/(x1 · · ·xn) =
∑

(d1,...,dn)

ad1
· · · adn

· xd1
1 · · ·xdn

n ,

where the sum is over all sequences (d1, . . . , dn) of non-negative integers with d1 + · · · + dn = 2k − 3
such that exactly one of d1, . . . , dn is odd. Recalling that a0 = 1, we can rewrite this equation as

ϕk(P )/(x1 · · ·xn) =
∑

(d1,...,dt)

ad1
· · · adt

∑
1≤i1<···<it≤n

xd1
i1
· · ·xdt

it

 , (3.5)

where the sum is over all sequences (d1, . . . , dt) of positive integers with d1 + · · · + dt = 2k − 3 such
that exactly one of d1, . . . , dt is odd. Note that when we consider all t! permutations of one fixed such
sequence (d1, . . . , dt) (some of which may be equal to the original sequence), then the resulting part
of the sum in (3.5) is the symmetric polynomial ad1

· · · adt

∑
i1,...,it
distinct

xd1
i1
· · ·xdt

it
. By averaging over all

permutations of (d1, . . . , dt), we can therefore rewrite (3.5) as

ϕk(P )/(x1 · · ·xn) =
∑

(d1,...,dt)

ad1
· · · adt

t!

∑
i1,...,it∈{1,...,n}

distinct

xd1
i1
· · ·xdt

it

 , (3.6)

where the sum is again over all sequences (d1, . . . , dt) of positive integers with d1 + · · ·+ dt = 2k − 3
such that exactly one of d1, . . . , dt is odd.

In order to prove Lemma 3.4, we need to find the coefficient of x2k−31 + · · · + x2k−3n when expressing
ϕk(P )/(x1 · · ·xn) in terms of power sum symmetric polynomials. We will use the following claim,
which can be derived from more general statements in the theory of symmetric polynomials. For the
reader’s convenience we provide a simple self-contained proof.

Claim 3.7. For any sequence (d1, . . . , dt) of positive integers with d1 + · · ·+ dt ≤ n, when expressing∑
i1,...,it∈{1,...,n}

distinct

xd1
i1
· · ·xdt

it

in terms of power sum symmetric polynomials, the coefficient of xd1+···+dt
1 + · · · + xd1+···+dt

n equals
t! · (−1)t−1/t.

Proof. For t = 1, the claim is trivially true. Let us now assume that t ≥ 2, and that we already proved
the claim for t− 1. Note that

13



∑
i1,...,it∈{1,...,n}

distinct

xd1
i1
· · ·xdt

it
= (xdt

1 + · · ·+ xdt
n ) ·

∑
i1,...,it−1∈{1,...,n}

distinct

xd1
i1
· · ·xdt−1

it−1

−
t−1∑
s=1

∑
i1,...,it−1∈{1,...,n}

distinct

xd1
i1
· · ·xds−1

is−1
xds+dt
is

x
ds+1

is+1
· · ·xdt−1

it−1
.

Let us now imagine that we express the sums on the left-hand side in terms of power sum symmetric
polynomials. The terms contributed from the first part (before the minus sign), all contain a factor
xdt
1 + · · · + xdt

n , and in particular this first part does not contribute any xd1+···+dt
1 + · · · + xd1+···+dt

n

terms. For the second part (after the minus sign), the coefficient of xd1+···+dt
1 + · · · + xd1+···+dt

n is by

the induction hypothesis equal to −
∑t−1

s=1(t− 1)! · (−1)t−2/(t− 1) = (t− 1)! · (−1)t−1 = t! · (−1)t−1/t.
This finishes the proof of the claim.

Proof of Lemma 3.4. Let Y denote the coefficient of x2k−31 +· · ·+x2k−3n when writing ϕk(P )/(x1 · · ·xn)
in terms of power sum symmetric polynomials. We need to prove that Y equals the sum in the
statement of Lemma 3.4.

Recalling that we assumed n ≥ 2k − 3, we can apply Claim 3.7 to the terms on the right-hand side of
(3.6), and obtain

Y =
∑

(d1,...,dt)

ad1 · · · adt

t!
· t! · (−1)t−1

t
=

∑
(d1,...,dt)

ad1
· · · adt

· (−1)t−1

t
,

where the sums are over all sequences (d1, . . . , dt) of positive integers with d1 + · · ·+ dt = 2k− 3 such
that exactly one of d1, . . . , dt is odd. Note that all t cyclic permutations of one fixed such sequence
(d1, . . . , dt) contribute the same amount to the sum above, and for exactly one of these permutations
d1 is odd. Hence we can conclude that

Y =
∑

(d1,...,dt)

t · ad1 · · · adt ·
(−1)t−1

t
=

∑
(d1,...,dt)

(−1)t−1ad1 · · · adt ,

where this time the sums are over all sequences (d1, . . . , dt) of positive integers with d1+· · ·+dt = 2k−3
such that d1 is odd and d2, . . . , dt are even.

Let us now change variables, writing d1 = 2m1 − 1 and dj = 2mj for j = 2, . . . , t. Then we obtain

Y =
∑

(m1,...,mt)

(−1)t−1a2m1−1a2m2 · · · a2mt =
∑

(m1,...,mt)

(−1)t · (−a2m1−1) · a2m2 · · · a2mt

=
∑

(m1,...,mt)

(−1)t ·
(
k − 1−m1

m1 − 1

)(
k − 1−m2

m2

)
. . .

(
k − 1−mt

mt

)
,

where the sums are over all sequences (m1, . . . ,mt) of positive integers with m1 + · · · + mt = k − 1.
This proves Lemma 3.4.

3.2 Proof of Lemma 3.5

In this subsection, we prove Lemma 3.5. We remark that after an earlier version of this paper was
posted, alternative proofs were found, by Ekhad and Zeilberger [10] and by Carde [7].

We will use the formula for Catalan numbers stated in the following claim. This formula follows from
work of Riordan [16] and is also stated as Theorem 12.1 in a book on Catalan numbers by Koshy [15].
It can also be proved from a simple bijection argument, as shown in [10]. For the reader’s convenience
we give a self-contained proof here.
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Claim 3.8. For all s ≥ 1, we have

s∑
i=0

(−1)iCi ·
(
i+ 1

s− i

)
= 0. (3.7)

Proof. We prove the desired formula by induction on s. For s = 1 and s = 2, the formula is easy to
check. So let us now assume that s ≥ 3 and that the formula is true for s− 1 and s− 2.

Recall that for i ≥ 0 we have Ci =
(
2i
i

)
/(i + 1), which implies that Ci = Ci−1 · 2(2i − 1)/(i + 1) for

i ≥ 1. Consequently, for all i ≥ 1 we have

Ci ·
(
i+ 1

s− i

)
= 2Ci−1 · (2i− 1) · 1

i+ 1

(
i+ 1

s− i

)
= 2Ci−1 ·

(
2s− 4

s+ 1
(s− i) +

2s− 1

s+ 1
(2i+ 1− s)

)
· 1

i+ 1

(
i+ 1

s− i

)
=

4s− 8

s+ 1
· Ci−1 ·

s− i
i+ 1

(
i+ 1

s− i

)
+

4s− 2

s+ 1
· Ci−1 ·

2i+ 1− s
i+ 1

(
i+ 1

s− i

)
=

4s− 8

s+ 1
· Ci−1 ·

(
i

s− i− 1

)
+

4s− 2

s+ 1
· Ci−1 ·

(
i

s− i

)
.

Now, recalling that s ≥ 3, we obtain that

s∑
i=0

(−1)iCi ·
(
i+ 1

s− i

)
=

∞∑
i=1

(−1)iCi ·
(
i+ 1

s− i

)

= −4s− 8

s+ 1

∞∑
i=1

(−1)i−1Ci−1 ·
(

i

s− 1− i

)
− 4s− 2

s+ 1

∞∑
i=1

(−1)i−1Ci−1 ·
(

i

s− i

)

= −4s− 8

s+ 1

∞∑
i=0

(−1)iCi ·
(

i+ 1

s− 2− i

)
− 4s− 2

s+ 1

∞∑
i=0

(−1)iCi ·
(

i+ 1

s− 1− i

)

= −4s− 8

s+ 1

s−2∑
i=0

(−1)iCi ·
(

i+ 1

s− 2− i

)
− 4s− 2

s+ 1

s−1∑
i=0

(−1)iCi ·
(

i+ 1

s− 1− i

)
= 0,

using the induction hypothesis for s− 2 and s− 1 in the last step.

We will also use the following well-known formula for binomial coefficients (which is easy to prove, for
example by double-counting): for all non-negative integers m, n and s, we have(

n+ s+ 1

m− s

)
=

∞∑
j=s

(
s+ 1

j − s

)(
n

m− j

)
. (3.8)

From (3.7) and (3.8) we can derive the following statement, which will be used in the proof of Lemma
3.5.

Claim 3.9. For any non-negative integers m, n and s, we have(
n

m

)
=

s∑
j=0

(−1)jCj ·
(
n+ j + 1

m− j

)
−

2s+1∑
j=s+1

(
s∑

i=0

(−1)iCi ·
(
i+ 1

j − i

))(
n

m− j

)
.

Proof. First, note that for any j > 2s + 1, we have
(
i+1
j−i
)

= 0 for all i = 0, . . . , s. We can therefore
equivalently write the desired equation as(

n

m

)
=

s∑
j=0

(−1)jCj ·
(
n+ j + 1

m− j

)
−

∞∑
j=s+1

(
s∑

i=0

(−1)iCi ·
(
i+ 1

j − i

))(
n

m− j

)
.
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We prove this equation by induction on s. Note that for s = 0, it simply states that (recall that
C0 = 1) (

n

m

)
=

(
n+ 1

m

)
−
(

n

m− 1

)
,

which is true. Now let us assume that s ≥ 1 and that the desired equation is true for s− 1. Then(
n

m

)
=

s−1∑
j=0

(−1)jCj ·
(
n+ j + 1

m− j

)
−
∞∑
j=s

(
s−1∑
i=0

(−1)iCi ·
(
i+ 1

j − i

))(
n

m− j

)

=

s∑
j=0

(−1)jCj ·
(
n+ j + 1

m− j

)
− (−1)sCs ·

(
n+ s+ 1

m− s

)
−
∞∑
j=s

(
s−1∑
i=0

(−1)iCi ·
(
i+ 1

j − i

))(
n

m− j

)

=

s∑
j=0

(−1)jCj ·
(
n+ j + 1

m− j

)
−
∞∑
j=s

(
(−1)sCs ·

(
s+ 1

j − s

)
+

s−1∑
i=0

(−1)iCi ·
(
i+ 1

j − i

))(
n

m− j

)

=

s∑
j=0

(−1)jCj ·
(
n+ j + 1

m− j

)
−
∞∑
j=s

(
s∑

i=0

(−1)iCi ·
(
i+ 1

j − i

))(
n

m− j

)

=

s∑
j=0

(−1)jCj ·
(
n+ j + 1

m− j

)
−

∞∑
j=s+1

(
s∑

i=0

(−1)iCi ·
(
i+ 1

j − i

))(
n

m− j

)
,

where for the third equation we used (3.8), and in the last equation we used (3.7). This finishes the
proof of the claim.

Using Claim 3.9, we now prove Lemma 3.5.

Proof of Lemma 3.5. Fix ` ≥ 1. For convenience, let us denote the left-hand side of the equation in
Lemma 3.5 by Z. We then need to show that Z = (−1)`C`−1.

We have

Z =
∑

(m1,...,mt)
m1,...,mt>0
m1+···+mt=`

(−1)t ·
(
`−m1

m1 − 1

)(
`−m2

m2

)
. . .

(
`−mt

mt

)
.

Applying Claim 3.9 to the first binomial coefficient in the product (with n = `−m1 and m = m1 − 1
and s = `− 1), we obtain

Z =

`−1∑
j=0

∑
(m1,...,mt)
m1,...,mt>0
m1+···+mt=`

(−1)t · (−1)jCj

(
`−m1 + j + 1

m1 − 1− j

)(
`−m2

m2

)
. . .

(
`−mt

mt

)

−
2`−1∑
j=`

∑
(m1,...,mt)
m1,...,mt>0
m1+···+mt=`

(−1)t ·

(
`−1∑
i=0

(−1)iCi

(
i+ 1

j − i

))(
`−m1

m1 − 1− j

)(
`−m2

m2

)
. . .

(
`−mt

mt

)
.

Note that the sum after the minus sign in the above equation is zero. Indeed, for all terms appearing
in this sum we have m1 ≤ ` ≤ j, so the binomial coefficient

(
`−m1

m1−1−j
)

is zero. Hence

Z =

`−1∑
j=0

∑
(m1,...,mt)
m1,...,mt>0
m1+···+mt=`

t≥1

(−1)j+tCj

(
`−m1 + j + 1

m1 − j − 1

)(
`−m2

m2

)
. . .

(
`−mt

mt

)
.
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With a change of variables, replacing m1 − j − 1 by m1, we can rewrite this as

Z =

`−1∑
j=0

∑
(m1,...,mt)

m1≥0,m2,...,mt>0
m1+···+mt=`−j−1

t≥1

(−1)j+tCj

(
`−m1

m1

)(
`−m2

m2

)
. . .

(
`−mt

mt

)

(here, a priori the condition on m1 would be m1 > −j − 1, but since the binomial coefficient
(
`−m1

m1

)
vanishes for negative m1, we can instead take the condition m1 ≥ 0). Note that in the above equation,
the contribution for j = `− 1 is just (−1)`−1+1C`−1

(
`−0
0

)
= (−1)`C`−1. Thus,

Z = (−1)`C`−1 +

`−2∑
j=0

∑
(m1,...,mt)

m1≥0,m2,...,mt>0
m1+···+mt=`−j−1

(−1)j+tCj

(
`−m1

m1

)(
`−m2

m2

)
. . .

(
`−mt

mt

)
.

Now, in order to prove the lemma, it suffices to show that for any fixed j ∈ {0, . . . , `− 2} we have∑
(m1,...,mt)

m1≥0,m2,...,mt>0
m1+···+mt=`−j−1

(−1)t ·
(
`−m1

m1

)(
`−m2

m2

)
. . .

(
`−mt

mt

)
= 0. (3.9)

Indeed, by distinguishing whether m1 is positive or zero (and noting that for m1 = 0 we have
(
`−m1

m1

)
=(

`−0
0

)
= 1), we can rewrite the left-hand size of (3.9) as

∑
(m1,...,mt)

m1,m2,...,mt>0
m1+···+mt=`−j−1

(−1)t ·
(
`−m1

m1

)
. . .

(
`−mt

mt

)
+

∑
(m2,...,mt)
m2,...,mt>0

m2+···+mt=`−j−1

(−1)t ·
(
`−m2

m2

)
. . .

(
`−mt

mt

)
= 0,

where the equality follows because the exact same summands appear in both sums, but with opposite
signs. This proves (3.9), finishing the proof of Lemma 3.5.

4 Concluding remarks

4.1 Clifton and Huang’s hyperplane problem

As mentioned in the introduction, Clifton and Huang [8] studied the minimum size of a collection
of hyperplanes in Rn such that every point in {0, 1}n \ {(0, . . . , 0)} is covered by at least k of these
hyperplanes, but no hyperplane contains (0, . . . , 0), where k ≥ 2 is fixed and n is large with respect
to k. While Theorem 1.3 improves their lower bound for this problem to n + 2k − 3, the best known
upper bound is still n+

(
k
2

)
. It would be very interesting to close this gap.

Clifton and Huang [8] conjectured that their upper bound n+
(
k
2

)
for this hyperplane problem is tight

if n is sufficiently large with respect to k. Theorem 1.3 shows that this conjecture cannot be proved
by following the approach of Clifton and Huang and only being more careful with the of the analysis
of the coefficients of the polynomials appearing in their argument. In their approach, they consider a
polynomial f defined as the product of the linear hyperplane polynomials corresponding to a collection
of hyperplanes satisfying the conditions. By applying the punctured higher-multiplicity version of the
Combinatorial Nullstellensatz due to Ball and Serra [3] to f , they obtain another polynomial u. This
polynomial u (and some of its derivatives) need to vanish at certain points, due to the higher-order
vanishing properties of the polynomial f . Clifton and Huang show that these vanishing conditions
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for u imply that u must have sufficiently large degree (specifically, degree at least 3 for k = 3 and
degree at least 5 for k = 4), and this gives their lower bound for the number of hyperplanes. In
principle, one could hope to get better lower bounds from performing the analysis of the vanishing
conditions for u more carefully or for larger values of k. However, the second part of Theorem 1.3
implies that there exist polynomials of degree at most 2k− 3 satisfying the vanishing properties of the
polynomial u in the approach of Clifton and Huang. Hence one cannot prove a lower bound of

(
k
2

)
on the degree of u just by using the relevant vanishing conditions. Instead, when hoping to prove the
conjecture that n+

(
k
2

)
hyperplanes are necessary (if n is sufficiently large with respect to k) with an

argument along the lines of Clifton and Huang’s approach, one would need to incorporate additional
information about the polynomial f from which u is obtained. This polynomial f is a product of linear
polynomials, but this is not necessarily true for the polynomial u obtained by applying the punctured
higher-multiplicity version of the Combinatorial Nullstellensatz. Unfortunately, it is unclear how the
fact that f is a product of linear polynomials can be used when analyzing the polynomial u.

Note that Clifton and Huang’s hyperplane problem is actually equivalent to the following problem:
for fixed k ≥ 1 and n large with respect to k, what is the minimum possible degree of a polynomial
P ∈ R[x1, . . . , xn] with P (0, . . . , 0) 6= 0 such that P has zeroes of multiplicity at least k at all points in
{0, 1}n \ {(0, . . . , 0)} and such that P can be written as a product of linear polynomials? Without this
last condition, this is precisely Problem 1.2. By the results of Alon and Füredi [2], the answers for both
problems agree if k = 1. The answers also agree for k = 2 and k = 3, since then n+ 2k− 3 = n+

(
k
2

)
.

However, if Clifton and Huang’s conjecture is true, then by Theorem 1.3 the answers must be different
for k ≥ 4. It would be interesting to prove (or disprove) that the two problems have different answers
for sufficiently large k.

One can also study a variant of Clifton and Huang’s hyperplane problem, where one replaces the
condition that no hyperplane contains (0, . . . , 0) by the condition that (0, . . . , 0) is covered by exactly `
hyperplanes for some given 0 ≤ ` ≤ k−1. The case of ` = 0 corresponds to Clifton and Huang’s original
hyperplane problem. As before, we can equivalently rephrase the problem in terms of polynomials,
asking for the minimum possible degree of a polynomial P ∈ R[x1, . . . , xn] with a zero of multiplicity
exactly ` at (0, . . . , 0) and zeroes of multiplicity at least k at all points in {0, 1}n\{(0, . . . , 0)} such that
P can be written as a product of linear polynomials. Again, one may ask whether the answer to this
problem changes by omitting the last condition that P is a product of linear polynomials. Theorems
1.4 and 1.5 determine the answer of the problem where the last condition is omitted (the answer is
n+2k−3 for 0 ≤ ` ≤ k−2 and n+2k−2 for ` = k−1). By finding examples for the polynomial P with
the desired properties and of the appropriate degree such that P is a product of linear polynomials,
one can show that the answers for both problems agree for k − 3 ≤ ` ≤ k − 1. However, it is not clear
what happens for smaller `.

Clifton and Huang also studied their hyperplane problem in the opposite parameter range, where the
dimension n is fixed and k is large. They proved that for any fixed dimension n, the answer is of the
form (1 + 1

2 + · · ·+ 1
n + o(1)) · k as k goes to infinity. It might also be interesting to study Problem 1.2

for fixed dimension n and large k.

4.2 Problem 1.2 over other fields

One can also consider Problem 1.2 over other fields than R. For an arbitrary field F, let us say that
a polynomial P ∈ F[x1, . . . , xn] has a zero of multiplicity at least k at a point (a1, . . . , an) ∈ Fn if the
following holds: when expanding the polynomial P (x1+a1, . . . , xn+an) ∈ F[x1, . . . , xn], all monomials
occurring in P (x1 + a1, . . . , xn + an) have degree at least k. Note that for F = R this agrees with our
definition in terms of the derivatives of P at (a1, . . . , an).

Our proof of Theorems 1.3 to 1.5 works for every field of characteristic 0, but it is also interesting to
consider Problem 1.2 over fields of positive characteristic. Since Alon and Füredi’s result [2] stated in
Theorem 1.1 is valid over any field, one might also expect the answer for Problem 1.2 to be independent
of the characteristic of the field.

18



Interestingly, this is not the case, and the answer for Problem 1.2 does depend on the characteristic of
the field. Specifically, for a field F of characteristic p > 3 and k = (p+ 5)/2, there exists a polynomial
P ∈ F[x1, . . . , xn] of degree degP ≤ n + 2k − 4 with P (0, . . . , 0) 6= 0 and such that P has zeroes of
multiplicity at least k at all points in {0, 1}n \ {(0, . . . , 0)}. In particular, the statement in Theorem
1.3 fails to hold in this case. Theorem 1.3 similarly fails for a field of characteristic 2 and k = 4 and
for a field of characteristic 3 and k = 7.

For example, for k = 4 and the field F = F2, one can check that the following polynomial of degree
n+ 2k − 4 = n+ 4 has zeroes of multiplicity at least 4 at all points in Fn

2 \ {(0, . . . , 0)}, but does not
vanish at (0, . . . , 0):(

n∏
`=1

(x` + 1)

)
·

1 +

n∑
i=1

(x3i + x2i + xi) +
∑

1≤i6=j≤n

(x3i + x2i )xj +
∑

1≤i<j≤n

xixj +
∑

1≤i<j<k≤n

xixjxk

 .

The relevance of the values k = (p + 5)/2 in characteristic p > 3, as well as k = 4 in characteristic
p = 2, and k = 7 in characteristic p = 3 is as follows: in each of these cases, k is the smallest number
such that the Catalan number Ck−2 is divisible by p. By using the arguments from our proof (together
with some additional analysis of our map ϕk), one can show that there is a counterexample to Theorem
1.3 for this value of k in each of these cases (but the theorem holds for all smaller values). In fact, the
proof of Theorem 1.3 essentially gives an algorithm for producing such counterexamples. It is worth
pointing out that the only point in our proof which is dependent on the characteristic of the field F is
the assertion that the Catalan numbers are non-zero in F.

Since the first part of Theorem 1.3 fails to hold over fields of positive characteristic, the first part of
Theorem 1.4 (which is a more general statement) also fails for over fields of positive characteristic.
Theorem 1.5, however, holds over any field.
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