Note: Almost all these exercises, as well as almost all the material in the class, is adapted from the phenomenal textbook The Probabilistic Method by Alon and Spencer. If you'd like to learn more or see other exercises, this is the book to check out. It's pretty rare to find a field of math with one canonical textbook, but that's definitely the case here.

1. A prefix-free code is a collection \mathcal{C} of finite binary strings with the property that no string in \mathcal{C} is a prefix of another string. For example, $\{0,11,101\}$ is prefix-free, whereas $\{0,11,110\}$ is not.
For a binary string x, let $\ell(x)$ denote the length of x. Prove that if \mathcal{C} is a prefix-free code, then

$$
\sum_{x \in \mathcal{C}} \frac{1}{2^{\ell(x)}} \leq 1
$$

Can you figure out why we care about prefix-free codes, or why this inequality says something meaningful? Come talk to me if not!
2. Let G be a graph on $n \geq 10$ vertices and suppose that if we add to G any edge not in G then the number of copies of a complete graph on 10 vertices in it increases. Show that G has at least $8 n-36$ edges.
Hint: Use one of the results we proved in class today!
3. Prove the following strengthened version of Bollobás's two families theorem.

Let $A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{m}$ be sets with the property that $A_{i} \cap B_{j}=\varnothing$ if and only if $i=j$. Then

$$
\sum_{i=1}^{m} \frac{1}{\binom{\left|A_{i}\right|+\left|B_{i}\right|}{\left|A_{i}\right|}} \leq 1
$$

4. Let $\{1,2,3\}^{d}$ denote the $3 \times 3 \times \cdots \times 3$ grid in d dimensions. We wish to cover this grid by sets of the form $S_{1} \times S_{2} \times \cdots \times S_{d}$, where $S_{i} \subseteq\{1,2,3\}$ has size exactly 2 . In other words, we wish to cover the grid with side length 3 by (generalized) subgrids of side length 2.
(a) Prove that we need at least $(3 / 2)^{d}$ subgrids of side length 2 for this to be possible.
(b) Prove that this is possible with at most $(3 / 2)^{d} \cdot(d \ln 3)$ subgrids.
? (c) Can you improve either the lower or the upper bound, and close the $d \ln 3$ gap?
5 . Let k, t, n be positive integers.
(a) Suppose that there exists some $p \in[0,1]$ so that

$$
\binom{n}{k} p^{\binom{k}{2}}+\binom{n}{t}(1-p)^{\binom{t}{2}}<1 .
$$

Prove that there exists an n-vertex graph with no clique of size k and no independent set of size t.

[^0]\star (b) Conclude that there exists an n-vertex graph with no K_{4} and independence number at most $O\left(n^{2 / 3} \log n\right)$.
** (c) Can you explicitly construct such a graph?
6. Let \mathcal{F} be a collection of k-element subsets of $\{1,2, \ldots, n\}$. \mathcal{F} is called intersecting if for all $A, B \in \mathcal{F}$, we have that $A \cap B \neq \varnothing$.
(a) If $n<2 k$, find an intersecting family of k-element subset of $\{1,2, \ldots, n\}$ with $|\mathcal{F}|=\binom{n}{k}$.
(b) If $n \geq 2 k$, find an intersecting family of k-element subsets of $\{1,2, \ldots, n\}$ with $|\mathcal{F}|=\binom{n-1}{k-1}$.
(c) For $0 \leq s \leq n-1$, let $A_{s}=\{s, s+1, \ldots, s+k-1\}$, where addition is modulo n. Prove that if \mathcal{F} is intersecting and $n \geq 2 k$, then \mathcal{F} can contain at most k of the sets A_{s}.
(d) Let π be a uniformly random permutation of $\{1,2, \ldots, n\}$, and let $i \in\{1,2, \ldots, n\}$ be uniformly random as well. Let $A=\{\pi(i), \pi(i+1), \ldots, \pi(i+k-1)\}$. Using part (c), prove that $\operatorname{Pr}(A \in \mathcal{F}) \leq k / n$.
(e) With the same notation as above, prove that $\operatorname{Pr}(A \in \mathcal{F})=|\mathcal{F}| /\binom{n}{k}$.
(f) Using parts (d) and (e), prove that if $n \geq 2 k$ and \mathcal{F} is intersecting, then
$$
|\mathcal{F}| \leq\binom{ n-1}{k-1}
$$
i.e. that the construction in part (b) is best possible.

1. In class, we proved that for any finite set $A \subseteq \mathbb{N}$, there is a subset $B \subseteq A$ with $|B| \geq|A| / 3$ such that B is sum-free.

Prove the same thing for any finite set $A \subseteq \mathbb{R}$ of real numbers.
2. Call a set $B \subseteq \mathbb{N}$ weirdo-sum-free if there do not exist $b_{1}, b_{2}, b_{3}, b_{4} \in B$ so that

$$
\begin{equation*}
b_{1}+2 b_{2}=2 b_{3}+2 b_{4} . \tag{*}
\end{equation*}
$$

Prove that there exists some $c>0$ so that every $A \subseteq \mathbb{N}$ contains a weirdo-sum-free subset $B \subseteq A$ with $|B| \geq c|A|$.
For which other equations besides $(*)$ can you prove such a result?
3. Let $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d}$ be vectors in d-dimensional space, with the property that $\left\|v_{i}\right\| \leq 1$ for all i, where $\|\cdot\|$ denotes the usual Euclidean length of a vector. Prove that there exist $\sigma_{1}, \ldots, \sigma_{n} \in\{-1,1\}$ so that

$$
\left\|\sigma_{1} v_{1}+\cdots+\sigma_{n} v_{n}\right\| \leq \sqrt{n}
$$

4. Let T be an n-vertex tournament. A Hamiltonian path in T is some ordering v_{1}, \ldots, v_{n} of the vertices so that the arrows go $v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{n}$.
(a) Prove that there exists an n-vertex tournament with at least $n!/ 2^{n}$ different Hamiltonian paths.
(b) Prove that every tournament has at least one Hamiltonian path.
5. You may wish to skip this problem if you are unfamiliar with graph theory.

Let G be an n-vertex graph. Its independence number $\alpha(G)$ is the size of the largest independent set in G, i.e. the size of the largest set of vertices with no edges between them. The chromatic number $\chi(G)$ is the least number of colors we can use if we want to assign a color to every vertex with the property that adjacent vertices receive different colors.
(a) Prove that $\chi(G) \geq n / \alpha(G)$.
(b) Suppose G is vertex-transitive, meaning that for all vertices $v, w \in V(G)$, there is some automorphism of G taking v to w. Roughly speaking, this means that G is very symmetric: all vertices "look the same". Prove that in this case,

$$
\chi(G) \leq \frac{n}{\alpha(G)} \ln n
$$

(c) Prove that the vertex-transitive assumption is necessary in part (b), i.e. find non-vertex-transitive graphs for which the lower bound $\chi(G) \geq n / \alpha(G)$ is very far from the truth.
6. Suppose that G is an n-vertex graph with $n d / 2$ edges, for some real numer $d \geq 1$. In this problem, you'll show that $\alpha(G) \geq n /(2 d)$, which is about a factor of two worse than the result we proved today in class.
(a) Fix some parameter $p \in[0,1]$ that we'll pick later. Let S be a random subset of $V(G)$ obtained by taking each vertex independently with probability p. Let $X=|S|$. Prove that $\mathbb{E}[X]=p n$.
(b) Let Y denote the number of edges in S. Prove that $\mathbb{E}[Y]=p^{2} n d / 2$.
(c) Pick p to maximize $\mathbb{E}[X-Y]$, and conclude that G has an independent set of size at least $n /(2 d)$.
7. Let G be an n-vertex graph with minimum degree δ. A dominating set in G is a set $U \subseteq V(G)$ of vertices with the property that every vertex of G is either contained in U or has at least one neighbor in U.
(a) Fix some parameter $p \in[0,1]$ that we'll pick later. Let S be a random subset of $V(G)$ obtained by taking each vertex independently with probability p. Let $X=|S|$. Prove that $\mathbb{E}[X]=p n$.
(b) Let Y denote the number of vertices outside of S that do not have a neighbor in S. Prove that $\mathbb{E}[Y] \leq n(1-p)^{\delta+1}$.
(c) Prove that G has a dominating set of size at most $p n+n(1-p)^{\delta+1}$.
(d) Pick the value of p that minimizes this quantity to conclude that any n-vertex graph with minimum degree δ has a dominating set of size at most

$$
n \frac{1+\ln (\delta+1)}{\delta+1}
$$

[^0]: \star means that this problem is harder than the other ones.
 ? means that this is an open problem.

