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1 Introduction

Recall that given two graphs K,H, their Ramsey number r(K,H) is defined as the minimum
N such that whenever we color the edges of KN red and blue, we either see a red copy of K
or a blue copy of H. The fact that these numbers exist (i.e. are finite) is (a simple corollary
of) Ramsey’s theorem, and the main question in graph Ramsey theory is to obtain good
estimates on the number r(K,H) for K,H in various natural classes of graphs.

One of the simplest ways to lower-bound r(K,H) is the following construction, usually
attributed to Chvátal and Harary. Suppose that H is connected. We take χ(K) − 1 blue
cliques, each of size v(H) − 1, and connect all these blue cliques by red edges. In other
words, the blue graph is a disjoint union of χ(K) − 1 copies of Kv(H)−1, and the red graph
is a complete (χ(K)− 1)-partite graph. Note that the blue graph cannot contain any copy
of H, since H is connected and has v(H) vertices, and thus cannot fit in any connected
component of the blue graph. Moreover, the red graph can contain no copy of K, by the
definition of χ(K). This yields a coloring on (χ(K) − 1)(v(H) − 1) vertices with no red K
or blue H, which implies that

r(K,H) ≥ (χ(K)− 1)(v(H)− 1) + 1. (1)

In general, this bound is hopelessly bad. For instance, if K = H = Kk, it yields a bound
of r(Kk, Kk) ≥ (k − 1)2 + 1, while the correct behavior is known to be exponential in k.
More generally, if K and H are any graphs of density at least ε on k vertices, then a random
coloring shows that r(K,H) ≥ 2cεk for some cε > 0, which is far larger than the at-most-
quadratic bound of (1).

However, for sparse graphs, the bound (1) isn’t so bad. For instance, it is a famous
result of Chvátal, Rödl, Szemerédi, and Trotter that if H is a graph with maximum degree
at most ∆, then r(H,H) ≤ C∆v(H) for some constant C∆ independent of H. Since we will
also have χ(H) ≤ ∆ + 1, we see that this behavior of r(H,H) is similar to the lower bound
(1), in that it is linear in v(H) with a constant independent of H. A major generalization
of the Chvátal–Rödl–Szemerédi–Trotter theorem was a recent breakthrough by Lee, who
proved that r(H,H) ≤ Cdv(H) for every d-degenerate graph H. Recall that H is said to
be d-degenerate if every subgraph of H contains a vertex of degree at most d. Thus, being
d-degenerate is a much more general property than having maximum degree at most ∆, and
Lee’s result essentially says that for all “sparse” H, the Ramsey number r(H,H) is linear in
v(H).

However, one can ask a more refined question: when is (1) exactly tight? While one
can ask this for arbitrary choices of K and H, the most well-studied version is when we
take K to be a fixed clique Kk. In this case, Burr defined H to be k-good if r(Kk, H) =
(k − 1)(v(H)− 1) + 1. As it turns out, many sufficiently large (in terms of k) sparse graphs
are k-good. For instance, the earliest result in this direction is due to Chvátal, who showed
that every tree is k-good for all k. Burr and Erdős began systematically studying k-good
graphs, and proved a number of results in this direction, e.g. showing that all sufficiently
long cycles are k-good for all k. Simiarly to the above, they conjectured that all sufficiently
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large H with bounded maximum degree are k-good for all k. However, this conjecture was
disproven by Brandt.

Theorem 1.1 (Brandt 1996). For any k ≥ 3 and any ∆ sufficiently large, a random ∆-
regular graph is with high probability not k-good.

In fact, Brandt showed something even more general, namely that any sufficiently good
expander is not k-good. Since a random regular graph is a good expander, this implies
the result above. To prove this result in the case k = 3, consider a coloring where the red
graph is a blow-up of C5 where each part has (1

2
− δ)n vertices. The red graph is clearly

triangle-free. Moreover, if H is a subgraph of the blue graph with n vertices, then H has at
least δn vertices in two consecutive parts of the C5. Since the edges between these parts are
all red, this implies that H has two vertex subsets of size δn with no edges between them,
contradicting its expansion properties. This shows that r(K3, H) ≥ (5

2
− 5δ)n > 2(n− 1) + 1

for a sufficiently good expander H on n vertices.
The main result that I will be discussing is a theorem of Nikiforov and Rousseau, which

can be seen as a sort of converse to Brandt’s theorem; roughly speaking, it says that all large
graphs that are not good expanders (in an appropriate sense) are k-good for any k. To state
it, we will need the following definition.

Definition 1.2. Let H be an n-vertex graph, and let γ, η > 0 be real numbers. We say that
H is (γ, η)-splittable if there is a set S ⊆ V (H) with |S| ≤ n1−γ such that every connected
component of H \ S has at most ηn vertices.

Thus, H is splittable if it has a small separator, namely a small vertex subset whose re-
moval splits the graph into many small components. In particular, note that being splittable
is roughly the same as being a bad expander, because in a good expander all large vertex
sets will have edges between them, and in particular it is impossible to disconnect the graph
by removing a small number of vertices.

Theorem 1.3 (Nikiforov–Rousseau 2007). For every k ≥ 2, d ≥ 1, and 0 < γ < 1, there
exist η > 0 and n0 ∈ N such that the following holds. If H is a d-degenerate (γ, η)-splittable
graph on n ≥ n0 vertices, then H is k-good.

This result is enormously general, and in fact I am only stating a fairly special case of
Nikiforov and Rousseau’s actual theorem. As simple corollaries of this theorem, Nikiforov
and Rousseau were able to resolve all but one1 open question about Ramsey goodness that
had been asked by Burr and Erdős. It is hard to overstate just how powerful this theorem
is.

Example. One simple example of a graph H which satisfies the assumptions of Theorem
1.3 is K ′m, the subdivision of Km. This graph has m +

(
m
2

)
vertices, and is 2-degenerate

because it is a bipartite graph where one side is 2-regular. Moreover, if we delete the m

1This last question, namely that hypercubes are k-good for all k, was ultimately resolved by Fiz Pontiveros,
Griffiths, Morris, Saxton, and Skokan.
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original vertices of Km, then K ′m becomes a bunch of isolated vertices, implying that it has
a separator of size m = O(

√
v(K ′m)). Burr and Erdős had conjectured that K ′m is k-good

for all sufficiently large m, and Nikiforov and Rousseau’s theorem confirms this conjecture.
An extremely general class of splittable degenerate graphs is the class of planar graphs.

Indeed, Euler’s identity implies that every planar graph is 5-degenerate, and the famous
Lipton–Tarjan separator theorem implies that every sufficiently large planar graph is (1/2, η)-
splittable for all η. Thus, every sufficiently large planar graph is k-good for all k. Even more
generally, the Alon–Seymour–Thomas separator theorem implies that any sufficiently large
graph with some forbidden minor is (1/2, η)-splittable. Moreover, a result of Mader says
that such graphs also have bounded degeneracy. Putting these together, we see that in any
non-trivial minor-closed family, all sufficiently large graphs are k-good for all k.

2 Proof sketch and preliminaries

To prove Theorem 1.3, we need to show that if N = (k− 1)(n− 1) + 1, then every red/blue
edge-coloring of KN will contain either a red Kk or a blue copy of H, where n is sufficiently
large and H is d-degenerate and (γ, η)-splittable. The proof proceeds roughly as follows.

Suppose we are given such a coloring, and we assume that it contains no red Kk. Using
Szemerédi’s regularity lemma, we partition KN into a bounded number of vertex sets such
that most pairs of parts are ε-regular, for some appropriate ε chosen later. We can also
arrange it so that each part is ε-regular with itself. We first argue that each part must
be almost monochromatic in blue, for otherwise some part would contain a red Kk by the
regularity. Moreover, we can also ensure that the red graph between the parts looks almost
(k − 1)-partite, for otherwise we would find a red Kk spanning some of the parts. We can
also argue that this red graph must be quite dense between its “almost color classes”.

At this point, the situation already looks pretty similar to the construction we used to
derive the lower bound (1), namely we roughly have k− 1 blocks that are nearly monochro-
matic blue, while the edges between these parts are almost entirely red. Recall that in
deriving (1), we used the fact that H had n vertices and each blue clique had only n − 1
vertices. So to finish the proof, we must use the fact that N = (k− 1)(n− 1) + 1 to be able
to fully embed H in the blue graph. If all the blue blocks are really blue cliques, this is fine,
since by pigeonhole one of them must have at least n vertices. We can not assume this, but
it turns out that one of the parts has n vertices and is almost a blue clique, and then H can
be found in it through a careful embedding algorithm.

2.1 Regularity review

Given two vertex sets X, Y in a graph, let e(X, Y ) denote the number of pairs in X × Y
that are edges, and let d(X, Y ) = e(X, Y )/|X||Y | denote the edge density between X and
Y . Given a parameter ε > 0, we say that (X, Y ) is ε-regular if |d(X ′, Y ′) − d(X, Y )| ≤ ε
for all X ′ ⊂ X, Y ′ ⊂ Y with |X ′| ≥ ε|X|, |Y ′| ≥ |Y |. Note that in this definition we don’t
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require X and Y to be disjoint, and in particular if the pair (X,X) is ε-regular, then we’ll
just say that X is ε-regular (or that it’s ε-regular with itself).

The version of Szemerédi’s regularity lemma that we’ll use is the following.

Lemma 2.1 (Regularity lemma). For every ε > 0, there is an M = M(ε) ∈ N such that
every N-vertex graph G has a vertex partition V (G) = V0 t V1 · · · t Vk with m ≤M and the
following properties.

• |V0| < εN , and |V1| = · · · = |Vm|.

• Each Vi for i ≥ 1 is ε-regular with itself.

• For each i ≥ 1, the number of j such that (Vi, Vj) is not ε-regular is at most (1− ε)m.

To prove2 this, we first apply the ordinary version of Szemerédi’s regularity lemma with
some appropriately chosen ε′ < ε. If the irregular pairs aren’t well-distributed (in the sense
that some part participates in many irregular pairs), then there can’t be too many such bad
parts. We can arbitrarily cut them up and distribute their vertices among the other parts,
which only makes the regularity slightly worse. Next, we can use a lemma of Conlon and
Fox to find an ε′-regular subset of each part. By pulling out such subsets repeatedly, we
can almost partition each part into ε′-regular subparts, and then we can again arbitrarily
redistribute the remaining vertices without making the regularity much worse.

The main property we’ll need of regular pairs is the counting lemma; here is a simple
version that will suffice for our purposes.

Lemma 2.2 (Counting lemma). For every δ > 0, there exists some ε > 0 such that the
following holds. If X1, . . . , Xk are (not necessarily disjoint) vertex sets with (Xi, Xj) ε-
regular and with d(Xi, Xj) ≥ δ for all i 6= j, then there is a copy of Kk with one vertex in
each Xi.

2.2 Other results we’ll need

Here are a few other relatively standard results that will be used in the proof. The first is a
convenient version of the stability result for Turán’s theorem.

Theorem 2.3 (Andrásfai–Erdős–Sós, 1974). For every k ≥ 3, there exists some τ = τ(k) >
0 such that if G is a Kk-free graph on n vertices with minimum degree at least (1− 1

k−1
−τ)n,

then G is (k − 1)-partite.

The most well-known version of this is when k = 3, which says that a triangle-free graph
with minimum degree more than 2

5
n must be bipartite. This is tight, as shown by a blowup

of C5, which is (2
5
n)-regular, triangle-free, and not bipartite.

The next useful result will be the following form of the dependent random choice lemma.
Dependent random choice is an extremely useful proof technique, which allows one to find
“popular” subsets of a graph with many common neighbors, as follows.

2This is just a proof sketch, but see [arXiv:2001.00407, Lemma 1] for a full proof (of a nearly identical
result).
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Theorem 2.4. For every s ≥ 2, β > 0, λ > 0, there exist µ > 0 and n0 ∈ N such that
the following holds. Suppose G is a bipartite graph with parts A,B of sizes at least n0, and
assume that d(A,B) ≥ β. Then there is a subset A′ ⊂ A with |A′| ≥ |A|1−λ such that every
s-tuple of vertices in A′ has at least µ|B| common neighbors in B.

To prove this, we pick a small random subset of B, and define A′ to be the common
neighborhood of B. Then intuitively, we’d expect subsets of A′ to have many common
neighbors, basically because the distribution of A′ is biased towards sets with many common
neighbors. One can show, just by linearity of expectation, that with positive probability we
will indeed get the desired result.

3 Proof of Theorem 1.3

Recall that we set N = (k−1)(n−1) + 1 and we are given a two-coloring of E(KN), namely
a partition of the edges into two graphs R and B. We suppose that R is Kk-free, and wish
to find a copy of H in B, where H is a d-degenerate (γ, η)-splittable graph. Throughout
this proof, I will be vague about the order various parameters need to be picked and their
relative sizes. It is important (and not obvious) that the parameters can all be picked in a
consistent order, but I will ignore this for the sake of clarity. In particular, parameters like δ
and ε may suddenly appear without being defined or chosen; in every such case, you should
trust me (or check!) that one can in fact pick them so that the argument works.

We begin by applying the regularity lemma to the graph R, with some appropriately
small parameter ε. We obtain a partition of the vertices into V0 t V1 t · · · t Vm, where m is
bounded, |V0| ≤ εN , and |V1| = · · · = |Vm| = t, for some integer t. We also have that each Vi
for i > 0 is ε-regular with itself, and that each Vi participates in at most εm irregular pairs.

We first claim that each part Vi with i ∈ [m] has blue density at least 1−δ. For if this were
not the case, then some Vi would have red density at least δ, and would be ε-regular with
itself. By the counting lemma, this implies that this part Vi contains a red Kk, contradicting
our assumption. So d(B[Vi]) ≥ 1− δ for all i ∈ [m].

Now we define reduced graphs R∗ and B∗, as follows. Both of them will have vertex set
[m]. The edges of B∗ consist of those pairs (i, j) for which dB(Vi, Vj) > 1−δ, while the edges
of R∗ consist of those pairs for which (Vi, Vj) is ε-regular and dR(Vi, Vj) ≥ δ. Note that R∗

and B∗ are edge-disjoint. Moreover, if (i, j) is not an edge in R∗ or B∗, then we must have
that (Vi, Vj) is not ε-regular. In particular, this means that every vertex in [m] has degree
at least (1− ε)m in R∗ ∪B∗.

Lemma 3.1. If some vertex in B∗ has degree at least (1 + α) m
k−1

, then there is a copy of H
in B.

Proof sketch. Suppose without loss of generality that this vertex is 1 ∈ [m] = V (B∗). This
means that dB(V1, Vj) > 1− δ for at least (1+α) m

k−1
choices of j. Note that these (1+α) m

k−1

sets collectively contain (1 + α) m
k−1

t ≥ (1 + α′)N/(k − 1) > (1 + α′′)n vertices, since N =
(k − 1)(n − 1) + 1. Moreover, by the above, each part Vi has blue density at least 1 − δ.
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So we’ve found at least n vertices among the parts V1, {Vj}, and almost all the edges within
these parts and between V1 and the remaining parts are blue. In particular, it will be very
easy to now embed H in B. Specifically, we embed the small separator of H inside V1,
and then can greedily embed the remaining vertices in the parts Vj, using the splittability
property to only care about connecting these vertices to each other and to V1, and using the
d-degeneracy assumption to greedily embed the vertices in an appropriate order. Crucially,
the fact that essentially all edges we care about are blue means that this is easy—the only
thing that could go wrong is not having enough room to fit all of H in, and our assumption
says that we have (1 + α′′)n vertices to work with, which is plenty of wiggle room.

Therefore, we may assume that ∆(B∗) < (1 + α) m
k−1

. Since every vertex in R∗ ∪ B∗ has
degree at least (1− ε)m, this implies that

δ(R∗) > (1− ε)m− (1 + α)
m

k − 1
>

(
1− 1

k − 1
− τ
)
m.

Moreover, we claim that R∗ is Kk-free. Indeed, if R∗ had a Kk, this would yield k parts that
are ε-regular between them with red density at least δ, which gives a red Kk in R by the
counting lemma. Therefore, by the Andrásfai–Erdős–Sós theorem, R∗ is (k− 1)-partite. Let
Z1, . . . , Zk−1 be the color classes of R∗. Additionally, let U1, . . . , Uk−1 denote the partition
of V (KN) \V0 induced by Z1, . . . , Zk−1; namely, for each vertex v ∈ V (KN), if it lies in some
part Vi ⊂ Z`, then we declare v ∈ U`.

Note that each part U` is dense in blue, because it consists of parts Vi each of which has
dB > 1−δ, and since each Z` is an independent set in R∗, we also have that dB(Vi, Vj) > 1−δ
if i, j ∈ Z`. Moreover, we have that |Z`| ≤ ∆(B∗) + 1 ≤ (1 + α) m

k−1
. Moreover, since this

holds for all Z`, and because they form a partition of [m], we can get a corresponding lower
bound |Z`| > (1− kα) m

k−1
. Thus, the partition U1, . . . , Uk−1 is an almost equitable partition

of almost all of V (KN) into k − 1 parts that are extremely dense in blue; this is essentially
the structure we are looking for, and now we simply need to refine this structure some more
to eventually find a copy of H.

The first step of this refinement is proving that there are very few blue edges between
distinct U`, U`′ .

Lemma 3.2. Suppose we had that∑
1≤`<`′≤k−1

eB(U`, U`′) ≥ β

(
N

2

)
.

Then we can find a blue copy of H.

Proof. By averaging first over the pairs (`, `′), and then over parts Vi ⊂ U`, we can find that
there exist Vi and U`′ such that

eB(Vi, U`′) ≥ β|Vi||U`′ |.
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Additionally, recall that Vi is a subset of some U`, and that dB(Vi, U` \Vi) > 1−δ. We would
really like to mimic the proof of Lemma 3.1, where we embed the separator of H into V1 and
the remainder into the rest of U`. However, we are in trouble, because

|U`| = t|Z`| > (1− kα)
mt

k − 1
≈ (1− kα)

N

k − 1
≈ (1− kα)n,

which is close to but strictly smaller than n. To fix this, we will embed a small number of
vertices of H in U`′ . However, the issue we run into is that our assumption that d(Vi, U`′) > β
is rather weak, and so we can’t do the simple greedy embedding we did earlier. Instead, we
will need to use the dependent random choice lemma, Theorem 2.4, in two different ways.

First, we can find a subset X ⊂ Vi with |X| > σ|Vi|, such that every vertex in X has
at least β′|U`′| blue neighbors in U`′ and at least (1 − δ′)|U` \ Vi| blue neighbors in U` \ Vi.
We find this X by just deleting the vertices that don’t satisfy these properties, and applying
Markov’s inequality.

Next, we apply Theorem 2.4 k−2 times, once each to the red graph between X and each
Ua with a 6= `. By doing so repeatedly, we can find a set Y ⊂ X with |Y | ≥ |X|1−kλ such that
every pair of vertices in Y has at least µ|Ua| common red neighbors in Ua, for each a. Now,
if Y contains any red edge, then its two endpoints will have many common red neighbors
in each Ua. In particular, there will be at least µ|Va| common red neighbors inside some
Va ⊂ Ua, for each a. Now, the red graph between these Ua is ε-regular and has density at
least δ, so by the counting lemma, we can find a red Kk−2 among these common neighbors.
Combining this with the red edge we started with, we find a red Kk, a contradiction. So
there can be no red edge in Y , meaning that Y is a blue clique.

Now, we apply Theorem 2.4 again, this time to the blue graph between Y and U`′ . Recall
that this graph has density at least β′, since Y ⊂ X and every vertex in X had at least
β′|U`′| blue neighbors in U`′ . Now, this theorem allows us to find a subset W ⊂ Y with
|W | > |V1|1−ρ such that every d-tuple of vertices in W has at least ν|U`′ | common blue
neighbors in U`′ . Moreover, we still have that W is a blue clique, and that every vertex of
W has at least (1− δ′)|U` \ Vi| blue neighbors in U` \ Vi.

Now, we first embed the separator of H into W . This is easy because W is a blue clique,
so all we need to check is that there is room, but there is because the separator has size
at most n1−γ, and |W | > |V1|1−ρ for some arbitrarily small ρ. This is the reason we had
to assume that H had a polynomially-small separator. We embed almost all the remaining
vertices of H into U` \ Vi, which is again easy because the blue density here is very high.
However, since |U`| is slightly smaller than n, we finally need to embed the small number of
remaining vertices into U`′ . This is again easy because of the degeneracy condition, and the
fact that every d-tuple of vertices in W has at least ν|U`′ | common blue neighbors in U`′ .
However, note that that we cannot embed too many vertices in U`′ , because ν is very small,
and thus we can run into collisions if we try to embed more than roughly νn vertices in U`′ .
Luckily, the parameters can be chosen so that this is ok, namely so that U` \ Vi has enough
room to fit all but νn vertices of H.
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Recall that all of the above was under the assumption that∑
1≤`<`′≤k−1

eB(U`, U`′) ≥ β

(
N

2

)
.

Since we can find a blue H in this case, we can now assume that∑
1≤`<`′≤k−1

eB(U`, U`′) < β

(
N

2

)
. (2)

Note that we’ve refined our structure further; now we have the dense blue parts U1, . . . , Uk−1,
and we just showed that between them there are almost no blue edges. To refine it further,
we can find a large induced subgraph where R itself is (k − 1)-partite (rather than just the
reduced graph R∗ being (k − 1)-partite). Indeed, (2) implies that R has edge density close
to the Turán bound, since R is nearly complete between the k − 1 parts U1, . . . , Uk−1. By
repeatedly deleting the vertices of lowest degree, we can eventually get N ′ vertices, each of
which has red degree at least (1− 1

k−1
− τ)N ′. Since R is Kk-free, the Andrásfai–Erdős–Sós

theorem implies that this induced subgraph is (k − 1)-partite.
Concretely, we can show that there exist sets S1, . . . , Sk−1 such that |Si| > (1 − θ)n for

all i, such that each Si is a blue clique, and such that every vertex in S1 ∪ · · · ∪ Sk−1 has at
least (1− θ)n red neighbors in every other Si. Let S = S1 ∪ · · · ∪ Sk−1.

Since each Si is a blue clique, it is again easy to embed almost all of H in some Si. The
issue is fitting in the remaining θn vertices of H, and it is at this step were the very careful
arithmetic comes into play. We will embed the remaining vertices of H in T := V (KN) \ S.

First, observe that if there is a vertex in T that has at least kθ|Si| red neighbors in
each Si, we can greedily find a red Kk, since each vertex in Si has at least (1 − θ)|Sj| red
neighbors in each other Sj. Therefore, we may assume that every vertex in T has at most
kθ|Si| red neighbors in some Si. We partition T into T1 ∪ · · · ∪ Tk−1, where each vertex in
Ti has at most kθ|Si| red neighbors in Si. Now, the sets (Si ∪ Ti)k−1

i=1 partition V (KN), so
there exists some i with |Si ∪Ti| ≥ n. Recall that Si is a blue clique of size at least (1− θ)n,
and that dB(Si, Ti) ≥ 1− kθ. So we may greedily embed H in Si ∪ Ti. One has to be a bit
careful because there may be exactly n vertices in Si∪Ti, so there may be no room to spare.
However, since the blue density is so high, and since the majority of this set is an actual
blue clique, this embedding isn’t so hard.

4 Further remarks

The full theorem of Nikiforov and Rousseau is substantially more general than what I pre-
sented above. Indeed, looking at this proof, we can see that at every step where we found
a red Kk, we did so by applying the counting lemma (or something similar). Because of
this, we should expect that this proof can find not only one red Kk, but many of them, and
indeed this is the case. Nikiforov and Rousseau’s full theorem says that in any coloring of
E(KN) with N = (k− 1)(n− 1) + 1, we can find either a blue copy of H as above, or cnk−2
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red Kk all of which share a common edge, for some constant c > 0. This configuration is
called a joint of size cnk−2.

As it turns out, once you can find a large joint, you can find many other k-partite
structures as well. For instance, by applying an earlier result of Nikiforov, one can show that
a joint of size cnk−2 contains a complete multipartite graph K1,1,r,r,...,r, where r = κ log n
for some constant κ > 0. Thus, Nikiforov and Rousseau’s theorem implies a goodness-type
result, where in blue we are looking for a very sparse graph of size n, while in red we are
looking for a dense k-partite graph of size Ω(log n). Additionally, if one allows the red graph
to be somewhat sparser, one can even make it have size Ω(n), as certain such graphs can
also be found inside large joints.

The single Burr–Erdős question about Ramsey goodness that wasn’t answered by Niki-
forov and Rousseau concerned the hypercube graph Qd. Burr and Erdős had conjectured
that Qd is s-good for all sufficiently large d. Since the family of hypercubes does not have
uniformly bounded degeneracy (Qd is d-degenerate), Nikiforov and Rousseau’s theorem does
not apply. However, this conjecture of Burr and Erdős is true, as was proved by Fiz Pon-
tiveros, Griffiths, Morris, Saxton, and Skokan. Although this means that all the Burr–Erdős
conjectures are resolved, it would still be very interesting to obtain a fuller classification of
which graphs are k-good and which ones are not; in particular, it would be very interesting
to prove a fuller converse to Brandt’s result, essentially saying that all sparse bad expanders
are k-good.
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