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Abstract

We introduce a graph Ramsey game called Ramsey, Paper, Scissors. This game has
two players, Proposer and Decider. Starting from an empty graph on n vertices, on each
turn Proposer proposes a potential edge and Decider simultaneously decides (without
knowing Proposer’s choice) whether to add it to the graph. Proposer cannot propose
an edge which would create a triangle in the graph. The game ends when Proposer
has no legal moves remaining, and Proposer wins if the final graph has independence
number at least s. We prove a threshold phenomenon exists for this game by exhibiting
randomized strategies for both players that are optimal up to constants. Namely, there
exist constants 0 < A < B such that (under optimal play) Proposer wins with high
probability if s < A

√
n log n, while Decider wins with high probability if s > B

√
n log n.

This is a factor of Θ(
√

log n)) larger than the lower bound coming from the off-diagonal
Ramsey number r(3, s).

1 Introduction

Ramsey’s theorem states for every m, s ≥ 3, there exists a least positive integer r(m, s) for
which every graph on r(m, s) vertices has a clique of order m or an independent set of order
s. The study of the Ramsey numbers r(m, s) and their many variations has a long history
and holds a central place in extremal combinatorics.

One notable problem is the study of the asymptotic growth of r(3, s). The classical
argument of Erdős and Szekeres [7] yields an upper bound of r(3, s) ≤

(
s+1

2

)
, while an

involved probabilistic construction of Erdős [5] shows that r(3, s) = Ω(s2/ log2 s). Spencer
[15] later used the Lovász Local Lemma to give a simpler proof of this same lower bound.

∗Department of Mathematics, Stanford University, Stanford, CA 94305, USA. Email:
jacobfox@stanford.edu. Research supported by a Packard Fellowship and by NSF Career Award
DMS-1352121.
†Department of Mathematics, Stanford University, Stanford, CA 94305, USA. Email:

alkjash@stanford.edu. Research supported by a NSF GRFP grant number DGE-1656518.
‡Department of Mathematics, Stanford University, Stanford, CA 94305, USA. Email:

yuvalwig@stanford.edu. Research supported by a NSF GRFP grant number DGE-1656518.

1



The upper bound was then improved to O(s2/ log s) by Ajtai, Komlós, and Szemerédi [1]
and later Shearer [14] improved the constant factor. Finally, the log s gap was closed by Kim
[12], who proved that r(3, s) = Θ(s2/ log s). Subsequently, Bohman [2] used the so-called
triangle-free process to reprove Kim’s lower bound, and further improvements [3, 8] to this
analysis have determined the asymptotics of r(3, s) up to a factor of 4 + o(1). For more
details on these results, see the survey of Spencer [16] on the r(3, s) problem.

Many interesting questions in graph Ramsey theory concern the game theory of various
graph-building and graph-coloring games, usually played between two players. The earliest
example of a graph Ramsey game was studied by Erdős and Selfridge [6], who studied a class
of games known as positional games; a prototypical positional game is the Maker-Breaker
game on graphs, in which two players, Maker and Breaker, take turns claiming the edges of
a complete graph Kn, and Maker wins by building a graph with a prescribed property (such
as containing a large clique). A more symmetric version of this game is usually just called
the Ramsey game: given a fixed graph H, two players take turns claiming edges of a large
complete graph until one player wins by building a copy of H. The misère version of this
game, in which the first player to build a copy of H loses, has also been studied. For an
introduction to these topics, see the book of Hefetz, Krivelevich, Stojaković, and Szabó [10].

A game that more closely resembles the one we study in this paper is the so-called online
Ramsey game, which starts instead on a large empty graph and involves two players: Builder,
who builds an edge on each turn, and Painter, who then paints it red or blue. Builder’s goal
is to build a monochromatic clique of a certain order n using as few turns as possible. By
Ramsey’s theorem, Builder can always win by building the edges of a large complete graph,
and Painter’s goal is simply to delay this eventuality by as long as possible.

Ever since Erdős proved the lower bound r(s, s) ≥ 2s/2 on the classical Ramsey numbers
using the probabilistic method, randomness has been ever-present in graph Ramsey theory.
All known proofs of exponential lower bounds on r(s, s) use the probabilistic method. Using a
careful analysis of random play, Conlon, Fox, He, and Grinshpun [4] recently proved that the

online Ramsey game takes at least 2(2−
√

2)s−O(1) turns, making an exponential improvement
on the trivial bound of 2s/2−1 in that setting.

In certain cases, randomness is even baked directly into the definition of the game itself.
Friedgut, Kohayakawa, Rödl, Ruciński, and Tetali [9] studied Ramsey games against a one-
armed bandit: a variation of the online Ramsey game in which Builder builds a uniform
random unbuilt edge on each turn from a fixed set of vertices and Painter must color these
incoming edges red or blue while avoiding monochromatic triangles for as long as possible.

In this paper, we study another graph-building game we call Ramsey, Paper, Scissors, due
to the simultaneous nature of the turns. The game is played between two players, Proposer
and Decider, on a fixed set of n vertices, who jointly build a graph on these vertices one
edge at a time. On each turn of the game, Proposer proposes a pair of vertices and Decider
simultaneously decides whether to add this pair as an edge. Proposer cannot propose pairs
that have been proposed before, nor pairs that would introduce a triangle to the graph if
built. It is essential that Proposer and Decider make their moves simultaneously in each turn,
so that Proposer doesn’t know whether Decider intends to build the edge before proposing
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it, and Decider doesn’t know which pair Proposer will propose. However, after both players
make their choice, they each learn the other’s choice (so Proposer learns whether the edge
was added to the graph, and Decider learns which pair was proposed).

Ramsey, Paper, Scissors ends when Proposer has no legal moves, and Proposer wins if
the independence number of the final graph is at least a predetermined value s. Note that
if n ≥ r(3, s), then Proposer always wins, since the final graph must have independence
number at least s. Thus, Proposer wins if s ≤ c

√
n log n for some constant c > 0. On

the other hand, Decider can always win if s = n by simply saying YES to the first pair
Proposer proposes—this means that the final graph will have at least one edge, and thus
must have independence number at most n − 1. Finally, if s is between these two bounds
(i.e. s < n < r(3, s)), then both players can win with positive probability via randomized
strategies. Namely, Proposer can propose pairs randomly, and if Proposer gets lucky, the
only edges Decider will say YES to will be the n− 1 edges incident to a single vertex, thus
forcing the final graph to be the star K1,n−1 with independence number n − 1. Of course,
if Decider says YES to fewer than n − 1 pairs then if Proposer is lucky, the independence
number is still at least n− 1.

For the other randomized strategy, Decider can fix a triangle-free graph H on n vertices
with m edges and independence number s, and say YES exactly m times, determining these
m times completely at random. If Decider gets lucky, then exactly a copy of H is built,
thus achieving an independence number of s. However, both of these strategies will only
succeed with extremely small probability, and it is therefore natural to ask for (randomized)
strategies for both Proposer and Decider that succeed with high probability; as usual, we
say that an event E happens with high probability (w.h.p.) if Pr(E)→ 1 as n→∞. Indeed,
our main theorem states that such strategies exist for both players for s = Θ(

√
n log n).

Theorem 1. If s ≤ 1
1000

√
n log n then Proposer can win w.h.p, while if s ≥ 1000

√
n log n,

Decider can win w.h.p.

One surprising consequence of Theorem 1 is that the fully random strategy is not optimal
for Proposer. Indeed, if Proposer were to play fully randomly (i.e. proposing a uniformly
random pair among all remaining open pairs at each step), then Decider can choose to
simply answer YES to every proposal. In that case, the game will simply follow the so-
called triangle-free process, and Bohman [2] proved that w.h.p., the triangle-free process
produces a graph with independence number O(

√
n log n). Thus, if Proposer were to play

fully randomly, Decider could respond with a strategy that saves a factor of Ω(
√

log n) from
the optimum. Nevertheless, for Decider, a completely random strategy is optimal (up to a
constant factor).

This paper is organized as follows. In the next section, we formally define the game and
describe the Proposer and Decider strategies we will use to prove Theorem 1. In Section 3,
we prove the upper bound in Theorem 1 by studying the random Decider strategy. This
argument is motivated by an old proof of Erdős [5] that the off-diagonal Ramsey numbers
satisfy r(3, t) = Ω(t2/(log t)2), and relies on a concentration lemma of Conlon, Fox, He, and
Grinshpun [4]. This kind of argument has been generalized to prove lower bounds on all
off-diagonal Ramsey numbers by Krivelevich [13].

3



Finally, in Section 4, we prove the lower bound in Theorem 1. This last argument is the
most delicate, and requires two main ingredients: an appropriate “semi-random” strategy
for Proposer and the analysis of an auxiliary game, whose upshot is that Azuma’s inequality
remains close to true, even when an adversary is allowed to weakly affect the outcomes taken
by a sequence of random variables.

In the concluding remarks, we mention some open problems and conjectures relating to
this and other Ramsey games.

All logarithms are base 2 unless otherwise stated. For the sake of clarity of presentation,
we systematically omit floor and ceiling signs whenever they are not crucial.

2 Background and Winning Strategies

Ramsey, Paper, Scissors is the following two-player graph-building game played on a fixed
set V of n vertices. Each turn of the game yields a new graph Gi = (V,Ei) on these vertices.
The game is initialized with G0 as the empty graph, and each Gi will either be equal to Gi−1

or will add a single new edge to Gi−1. Throughout the game Gi is required to be triangle-free.
In order to ensure this, call a pair {x, y} ∈

(
V
2

)
\Ei closed in Gi if there is some z ∈ V such

that {x, z}, {y, z} ∈ Ei; this means that the pair {x, y} cannot be added as an edge without
introducing a triangle to the graph. Let Ci denote the set of closed pairs in Gi. Call the pair
{x, y} ∈

(
V
2

)
\ Ei open in Gi if it is not closed in Gi, and let Oi be the set of all open pairs

in Gi. Thus,
(
V
2

)
= Ei tOi t Ci.

The game proceeds as follows. Initialize a “forbidden” set F0 = ∅; in general, Fi will
contain all pairs that Proposer has proposed up to turn i. On turn i, Proposer chooses a pair
{x, y} ∈ Oi \ Fi. Decider does not learn what pair Proposer has chosen, but must decide to
answer either YES or NO. If Decider answers YES, then we add the edge {x, y} to Gi, so that
Ei+1 = Ei ∪ {xy}. Otherwise, if Decider answers NO, then Ei+1 = Ei. Finally, regardless
of Decider’s answer, the pair {x, y} is added to the forbidden set, namely Fi+1 = Fi ∪ {xy}.
Thus, Proposer can never propose the same pair twice. Both players can see the contents of
Fi, so at this point Decider learns what pair was proposed. The game ends when Proposer
has no legal moves left, on the turn i where Oi ⊆ Fi. Proposer wins if the final graph thus
produced contains an independent set of order s (for some parameter s), and Decider wins
otherwise.

We now sketch the strategies for Proposer and Decider which we will use to prove the two
parts of Theorem 1. Decider’s strategy is simply to say YES on each turn with probability
p = Cn−1/2 randomly and independently, for an appropriately chosen constant C > 0. As
a result, the final graph built will be a subgraph of the Erdős–Rényi random graph G(n, p),
where some edges may have been removed to make it triangle-free. We will show in Section 3
that not too many such edges are removed from any set of a certain size, so the independence
number at the end of the game will still be Θ(

√
n log n).

As mentioned above, Proposer’s strategy cannot be purely random, for otherwise Decider
could respond by saying YES on every single turn. The resulting graph process will be exactly
the triangle-free process, which would result in a final graph with an independence number
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of Θ(
√
n log n) w.h.p. [2].

To achieve an independence number of Θ(
√
n log n), Proposer will divide the game into

m stages (which we call epochs), where m is extremely slowly growing (its growth is of order
log∗ n), and Proposer’s strategy is to force Decider to progressively ratchet up the fraction of
YES answers in each epoch. Roughly, this is done as follows, though the precise strategy is
slightly more involved. Proposer divides the vertex set into 2m sets Ui, Vi, where 1 ≤ i ≤ m
of sizes approximately |Ui| = |Vi| ≈ n/2i+1. In epoch i, Proposer proposes all the pairs from
Ui to Vj for j ≥ i and all the open pairs within Vi, mixing together these two kinds of pairs
in a uniformly random order.

To see why Decider must answer YES more often with each epoch, note that in order to
keep Vi from containing a large independent set, Decider must answer YES with a certain
density p. But then the number of edges built from Ui to Vi+1 will have roughly the same
density p, which will then close a large fraction of the pairs in Vi+1. Thus, on the next
epoch, Decider must answer YES much more frequently in order to reach the same final
edge density in Vi+1. After enough epochs, this becomes impossible. Proposer’s strategy is
slightly different from the one sketched above to simplify the analysis; it is formally laid out
in Section 4, as are the details of this heuristic argument.

3 Decider’s winning strategy

In this section, we show that Decider’s random strategy wins w.h.p. when Proposer must
build an independent set of order at least 1000

√
n log n.

Theorem 2. Decider has a randomized strategy such that w.h.p., no matter how Proposer
plays, the final graph produced will contain no independent set of order at least 1000

√
n log n.

We will require the following structural result about the Erdős–Rényi random graph (see
[4, Lemma 18]). It shows that for suitable p ≈ n−1/2, when edges are removed from G(n, p)
until it is triangle-free, not many edges need to be removed from any given small subset.

Lemma 3. Suppose t is sufficiently large, p = 20(log t)/t, n = 10−6t2/(log t)2, and G ∼
G(n, p) is an Erdős-Rényi random graph. Then, w.h.p. there does not exist a set S ⊂ V (G)
of order t such that more than t2

10
pairs of vertices in S have a common neighbor outside S.

In order to apply this lemma, we will need to understand the space of Proposer’s strategies
when Decider plays randomly.

Definition 4. Let G be an arbitrary graph. Define a spanning subgraph H ⊂ G to be a
reachable subgraph of G if for every edge (u, v) ∈ E(G) \ E(H) there exists w ∈ V (G) for
which (u,w), (v, w) ∈ E(H).

That is, every edge of G not in H is the third edge of a triangle with the other two edges
in H.
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Proof of Theorem 2. Suppose n, t, p satisfy the conditions of Lemma 3. Decider’s strategy
is simply to answer YES with probability p on every turn. Unless a pair {x, y} is closed,
Proposer must choose it eventually, in which case it is added to the graph with probability
p. Thus, we may as well pretend that Decider samples a random graph G ∼ G(n, p) at the
beginning of the game and answers YES to a pair {x, y} if and only if x ∼ y in G. The
final graph produced is thus some subgraph G′ ⊆ G of the random graph G, obtained by
removing certain edges from triangles. In fact, it is easily seen that the final graph G′ must
be a reachable subgraph of G.

We will show that w.h.p., every reachable subgraph of G ∼ G(n, p) has independence
number less than t. Since t ≤ 1000

√
n log n, this completes the proof.

For each S ⊂ V (G) of order t, define X(S) to be the event that not more than t2/10
pairs of distinct vertices in S have a common neighbor outside S. By Lemma 3, w.h.p. all
the events X(S) occur.

Let I(S) be the event that there exists a reachable subgraph H ⊆ G in which S is an
independent set. Conditioning on X(S), at most t2/10 pairs of vertices in S have common
neighbors outside S. Note that if G[S] contains an edge (u, v) with no common neighbor
outside S, then S is not an independent set in any reachable subgraph H ⊂ G. This is
because either (u, v) ∈ E(H) or else the two edges that form a triangle with (u, v) must both
lie in E(H). In either case there is an edge in H[S].

Thus, since there are at least
(
t
2

)
− t2

10
pairs in S chosen by Proposer,

Pr[I(S)|X(S)] ≤ (1− p)(
t
2)−

t2

10 ≤ (1− p)t2/4.
We now compute

Pr

[∨
S

I(S)

]
≤ Pr

[∧
S

X(S)

]
+ Pr

[∧
S

X(S) ∧
∨
S

I(S)

]
.

The first summand goes to zero by Lemma 3. The second can be bounded by a union of
events of low probability, as follows.

Pr

[∧
S

X(S) ∧
∨
S

I(S)

]
≤
∑
S

Pr

[∧
S′

X(S ′) ∧ I(S)

]
≤
∑
S

Pr[X(S) ∧ I(S)]

≤
∑
S

Pr[I(S)|X(S)]

≤
(
n

t

)
(1− p)t2/4

≤ et logn · e−pt2/4

≤ e2t log t · e−5t log t.

It follows that w.h.p., none of the events I(S) occur. That is, there is no reachable
subgraph of G ∼ G(n, p), and Proposer cannot win.
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4 Proposer’s winning strategy

In the previous section, we showed that Decider can win w.h.p. when s = Ω(
√
n log n). In

this section, we show that Proposer can match this bound (up to the constant factor), by
exhibiting a strategy that yields an independence number of Ω(

√
n log n) w.h.p.

Theorem 5. Proposer has a randomized strategy such that w.h.p., no matter how Decider
plays, the final graph produced will contain an independent set of order at least 1

1000

√
n log n.

We now formally describe Proposer’s strategy. In the next subsection, we introduce an
auxiliary game and its analysis, which will be crucial to the analysis of this strategy, and
then we prove that this strategy indeed wins w.h.p. in Section 4.2.

Proposer begins by partitioning the vertex set as U tV tAtB with |U | = |V | = n/6 and
|A| = |B| = n/3, and labeling their vertices u1, . . . , un/6, v1, . . . , vn/6, a1, . . . , an/3, b1, . . . , bn/3,
respectively (we can assume for simplicity that n is divisible by 6). Everything significant
Proposer does will be between U and V , while A and B will only be used for “clean-up” to
simplify the analysis.

Proposer divides the game into n/6 periods. At the beginning of period i, Proposer first
compiles a list Li of open pairs to propose in this period, and then orders Li uniformly at
random. During the period, Proposer proposes the pairs in Li one at a time in this order.
By the choice of Li, regardless of how Decider plays during period i, none of the pairs in Li
will be closed, so Proposer will be able to propose all of them regardless of the chosen order
or of Decider’s choices.

Proposer’s list Li consists of all the pairs {ui, vj} for j > i, together with all the pairs
{vi, vj} with j > i that are open at the beginning of period i. Additionally, Proposer
ensures that each period has length n/3 by adding some number of pairs {a`, b`′} to Li until
|Li| = n/3. The list Li is designed so that all pairs in Li are open at the start of period i and
remain open until they are proposed. Moreover, since the induced subgraph on A∪B stays
bipartite throughout this whole process, all of the “clean-up” pairs in Li will remain open as
well, and since we made A and B sufficiently large, Proposer will always have enough pairs
to propose to ensure that |Li| = n/3 for all periods. Finally, as stated above, once Proposer
has compiled Li, it is ordered uniformly at random, and Proposer proposes the pairs in Li
according to that order.

Once Proposer has done this for periods 1, 2, . . . , n/6, there will be many pairs that
are still open and that Proposer has not yet proposed. Proposer will propose these in an
arbitrary order; no matter what happens at this “endgame” stage, Proposer will have already
guaranteed a sufficiently large independent set inside V , which will remain independent
throughout the remainder of the game.

For the analysis, we will also want to group periods into epochs. To do this, we will pick
a sequence of decreasing positive constants ε1, ε2, . . . , εm summing to 1/6, and declare the
first epoch to consist of the first ε1n periods, the second epoch to consist of the subsequent
ε2n periods, and so on. The number of epochs, m, will be a very slowly growing function of
n. Let Ik ⊆ {1, . . . , n/6} denote the set of periods comprising epoch k, and let

Uk = {ui}i∈Ik Vk = {vi}i∈Ik
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denote the set of vertices in U and V that are the roots of those pairs considered in epoch k.
In order to prove that this strategy works w.h.p., we will need a probabilistic tool which

we call the bucket lemma, and which is stated and proved in the next section. It describes
the behavior of a different game, which is designed to model one period of Ramsey, Paper,
Scissors from Decider’s perspective. The bucket lemma can be thought of as an adaptive
concentration inequality akin to Azuma’s inequality; it says that even if an adversary has
certain weak control over a sequence of random variables, he can’t make it stray too far from
its mean w.h.p.

4.1 Coins and Buckets

We begin with a straightforward tight concentration lemma. To prove it, we will also need
the following concentration lemma of Bohman [2], which is a generalization of Azuma’s
inequality; it says that if we have a martingale whose differences are bounded by different
amounts from above and below, then we get concentration of the same order as a martingale
with differences bounded by the geometric mean of the bounds.

Lemma 6 ([2, Lemmas 6 & 7]). Suppose 0 = Z0, Z1, . . . , Zm is a martingale such that for
all i,

Zi − c1 ≤ Zi+1 ≤ Zi + c2,

where 0 < c1 ≤ c2/10 are constants. Let 0 < λ < mc1. Then

Pr(|Zm| ≥ λ) ≤ 2e
− λ2

3c1c2m .

Given integers a, b > 0, define Xa,b to be the following random variable with mean zero:

Pr

[
Xa,b =

1

a

]
=

a

a+ b

Pr

[
Xa,b = −1

b

]
=

b

a+ b
.

Lemma 7. Suppose a, b, ν0, ν are positive integers with a ≤ b, ν = a + b, and ν0 ≤ ν, and
X1, . . . , Xν are ν independent random variables identically distributed as Xa,b. Let Sm =∑

i≤mXi. Then, for all 0 < t < a
b
,

Pr

[
∃m ∈ [ν0, ν] such that |Sm| ≥

tm

a

]
≤ 40

t2
e−

ν0νt
2

20a .

Proof. Fix an m ≥ ν0, and notice that S0, S1, . . . , Sm is a martingale. The martingale {Sj}
is (1/a)-Lipschitz, so by Azuma’s inequality, for all t > 0,

Pr

[
|Sm| ≥

tm

a

]
≤ 2e−mt

2

. (1)
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We will use this bound when a ≥ b/10. In the case that a < b/10, we use instead
Lemma 6 with λ = tm/a, c1 = 1/b, and c2 = 1/a. The condition λ < mc1 holds because we
assumed t < a/b, so we have

Pr

[
|Sm| ≥

tm

a

]
≤ 2e−

mbt2

3a . (2)

Together with the fact that b ≥ ν/2, inequalities (1) and (2) show that

Pr

[
|Sm| ≥

tm

a

]
≤ 2e−

mνt2

20a (3)

for all a ≤ b.
In particular, applying the union bound over all m ≥ ν0 to (3), we have that

Pr

[
∃m ∈ [ν0, ν] such that |Sm| ≥

tm

a

]
≤
∑
m≥ν0

2e−
mνt2

20a ≤ 2e−
ν0νt

2

20a

1− e− νt
2

20a

.

Because e−x ≤ 1− x/2 for x ∈ [0, 1], and because

νt2

20a
≤ (2b)(a/b)2

20a
=

a

10b
< 1,

we can bound 1− e− νt
2

20a ≥ νt2/40a ≥ t2/20 for all 0 < t < a/b. Thus,

Pr

[
∃m ∈ [ν0, ν] such that |Sm| ≥

tm

a

]
≤ 40

t2
e−

ν0νt
2

20a ,

as desired.

Consider the following game, which we call Coins and Buckets, and which we will use to
model a single period of Ramsey, Paper, Scissors in which Proposer plays randomly. The
game begins with two buckets A,B of sizes a, b respectively, and a total of ν = a+ b coins to
divide among them. Before the game starts, Proposer picks a random set I from

(
[ν]
a

)
(but

does not reveal the choice of the set to Decider). On step i of the game, a coin is placed into
one of two buckets: bucket A if i ∈ I, and bucket B otherwise. Before the coin is placed,
Decider decides whether it is placed inside heads or tails, but Decider does not find out which
bucket the coin enters until after the choice. Decider’s goal is to make the distribution of
heads in the buckets as uneven as possible. Namely, if we let h be the total number of coins
placed heads-up, and hA the number of coins in bucket A that are heads-up, Decider wishes
to maximize the error parameter |hA − ah/ν|, which we call his score.

We also pick a threshold ν0 such that we consider the game a forfeit if Decider picks heads
fewer than ν0 times—that is, Decider receives a score of zero. Call this game the Coins and
Buckets game with parameters (a, ν, ν0).

Under these conditions, we show that in Coins and Buckets, regardless of how Decider
plays, w.h.p. the density of heads in the first bucket is not far from the overall density of
heads.
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Lemma 8. Suppose Decider plays a game of Coins and Buckets with parameters (a, ν, ν0)
where a ≤ ν/2. If hA is the number of heads in the first bucket at the end of the game and
h is the total number of heads, then for any 0 < t < a/ν,

Pr[(h ≥ ν0) ∧ (|hA − ah/ν| ≥ th)] ≤ 80
√
ν

t2
e−

ν0νt
2

20a .

Proof. Of course we may assume that Decider chooses heads at least ν0 times.
Let b = ν − a. Instead of playing under the assumption that Proposer picks a fixed

sequence out of
(

[ν]
a

)
, we will simplify our analysis by considering the modification in which

each coin is placed into the first bucket with probability a
ν

independently; our first task is
to show that this simplification is allowable, namely that a strong bound for this simplified
model implies the desired bound in the original setting. To that end, let E be the event that
exactly a of the coins fall in the first bucket in this new setting.

The factorial function satisfies

√
2π · ν

ν+ 1
2

eν
≤ ν! ≤ e · ν

ν+ 1
2

eν

for all ν ≥ 1. Thus, we find that

Pr[E] =

(
ν

a

)
· a

abb

νν
≥
√

2πν

e2
√
ab
≥ 1

2
√
ν
,

where in the last step we used the AM-GM inequality in the form
√
ab ≤ ν/2.

The original formulation of Coins and Buckets can be obtained by the modified version
by conditioning on event E, and the probability of E is at least 1/2

√
ν. Thus, it will suffice

to show that in the modified setting,

Pr
[∣∣∣hA − a

ν
h
∣∣∣ ≥ th

]
≤ 40

t2
e−

ν0νt
2

20a , (4)

because conditioning on E can multiply the failure probability by at most a factor of Pr[E]−1

(by Bayes’ Theorem). We turn to proving (4) now.

Let h
(i)
A and h

(i)
B be the number of heads in buckets A and B respectively after i turns of

the game. Consider the sequence of random variables

Zi =
1

a
h

(i)
A −

1

b
h

(i)
B .

On each of Decider’s turns, there are two possibilities. If Decider picks tails, then Zi
remains unchanged. On the other hand, if Decider picks heads, the coin goes into bucket
A with probability a/(a + b), and bucket B otherwise. Therefore, in this case, Zi+1 − Zi is
distributed as Xa,b, the random variable defined for Lemma 7.

We are ready to apply Lemma 7. To see why, imagine that we “pre-process” some of the
randomness in the game, as follows. Before the start of the game, we sample ν independent

10



random variables X1, . . . , Xν identically distributed as Xa,b. Keep a count ` of the total
number of heads so far. On each turn that Decider picks tails, we place the coin into a
bucket at random as before. However, on the turn Decider picks heads for the `th time, we
place the coin into bucket A if and only if X` = 1/a. From Decider’s perspective, this is the
same game, since he doesn’t know that the randomness was “pre-processed”.

Under these assumptions, Zi will be equal to exactly Sh(i) =
∑

j≤h(i) Xj where h(i) is the

number of heads placed up through turn i. It follows that Zn = Sh, where h = h(ν) is the total
number of heads placed. But then we can apply Lemma 7 to see that for 0 < t < a/ν < a/b,

Pr[|Zν | ≥ th/a] ≤ Pr

[
∃m ∈ [ν0, ν] such that |Sm| ≥

tm

a

]
≤ 40

t2
e−

ν0νt
2

20a . (5)

We now finish by noting that

|Zν | =
∣∣∣∣1ahA − 1

b
hB

∣∣∣∣ ≥ ∣∣∣∣1ahA − 1

ν
h

∣∣∣∣ ,
since 1

ν
h is a convex combination of 1

a
hA and 1

b
hB, and so (5) implies (4), as desired.

4.2 Proposer’s strategy works

We are ready to show that the strategy described at the beginning of Section 4 indeed allows
Proposer to produce an independent set of order 1

1000

√
n log n w.h.p.

Recall the setup: Gi = (V,Ei) is the graph built on turn i. The vertices are labeled
ui, vi, a`, b` where 1 ≤ i ≤ n/6 and 1 ≤ ` ≤ n/3. Period i consists of a total of n/3 turns,
during which Proposer proposes only pairs of the forms {ui, vj}, {vi, vj}, with j > i and
“clean-up” pairs {a`, b`′}. Proposer will propose all pairs of the first form {ui, vj}, but only
the open pairs among {vi, vj}, and orders the choices completely at random. Let us fix some
strategy for Decider; our goal is to show that no matter what this strategy is, Proposer will
win w.h.p. We define pi to be the fraction (out of n/3) of Decider’s answers which are YES
during period i; pi will depend on Decider’s strategy, and potentially also on the random
permutation chosen by Proposer, or more generally on the state of the game throughout
period i.

Recall also that we organized the periods into epochs Ik ⊆ {1, . . . , n/6} of decreasing
order |Ik| = εkn satisfying

∑
εk = 1/6. We will pick εk to satisfy εk ≥ 1/ log n if n is

sufficiently large. The vertices of an epoch we called Uk = {ui}i∈Ik and Vk = {vi}i∈Ik . We
define Pk to be the average of pi over all i ∈ Ik. Finally, we define ok to be the open density
inside Vk at the end of epoch k − 1; formally, if i∗ is the maximum i ∈ Ik−1, then we define

ok =
|Oi∗ ∩

(
Vk
2

)
|(|Vk|

2

) .

The main result that we need is the following theorem of Shearer1 [14], improving by a

1Shearer’s bound is of the form α(G) ≥ nf(d) with f(d) = (1 + o(1)) log d/d, and one can check that
f(d) ≥ 2 log d/(3d) for all d.

11



constant factor earlier work of Ajtai, Komlós, and Szemerédi [1]. As usual, α(G) denotes
the order of the largest independent set in G.

Theorem 9. If G is a triangle-free graph on n vertices and with average degree d, then

α(G) ≥ 2n log d

3d
.

We first show, using Theorem 9, that if Pk is too small for a given epoch, Proposer wins
in this epoch immediately.

Lemma 10. Suppose that for some k, we have

Pk ≤
200

ok
√
n
.

Then with probability at least 1− e−Ω(
√
n/(logn)3), Proposer will win the game; in fact, at the

end of epoch k, Vk will contain w.h.p. an independent set of order 1
1000

√
n log n, and since

Proposer will have proposed or closed every pair in this independent set by the end of epoch
k, it will remain independent until the end of the game.

Proof. First, suppose that at the end of epoch k, the average degree inside Vk is at most
3. By Turán’s Theorem, a graph on εkn vertices with average degree d has independence
number at least εkn/(d+ 1), so Vk will contain an independent set of size at least

εkn

4
≥ n

4 log n
≥ 1

1000

√
n log n,

for n sufficiently large. Thus, from now on, we may assume that the average degree inside
Vk is more than 3 at the end of epoch k.

Next, suppose that ok ≤ 1/n. This implies that at most
(|Vk|

2

)
/n edges can be built inside

Vk, so the average degree in Vk is at most |Vk|/n = εk < 3. This contradicts the above
assumption, so we may assume that ok > 1/n.

Next, we show that if Pk < εk/
√
n, then Proposer is guaranteed to win in epoch k.

Indeed, the total number of edges built in the entire epoch is Pk · (n/3) · (εkn) = Pkεkn
2/3.

In particular, at most this many edges are built inside Vk. It follows that the average degree
in Vk at the end of the game is between 3 and Pkn/3, so by Theorem 9, Vk will contain an
independent set of order at least

2|Vk| log(Pkn/3)

3(Pkn/3)
=

2εk log(Pkn/3)

Pk
,

where we use the fact that the function log d/d is monotonically decreasing for d > 3. If
Pk < εk/

√
n, then this quantity is at least 1

1000

√
n log n for n sufficiently large, and Proposer

wins.
Now, using this fact we may assume that Decider chooses YES at least an εk/

√
n fraction

of the time throughout the period k. We can now apply Lemma 8 to obtain a stronger bound

12



on the total number of edges built in Vk. Namely, let A be the set of all pairs within Vk that
are proposed in epoch k. Since the average open density at the beginning of the epoch is ok
and only open pairs can be proposed, |A| ≤ ok

(|Vk|
2

)
≤ okε

2
kn

2/2. If A is smaller, then add
pairs to A until |A| = okε

2
kn

2/2. Also, a total number of εkn
2/3 turns occur in the epoch,

and we know from the preceding argument that Decider answers YES at least εk/
√
n of the

time, so we can take ν0 = ε2
kn

3/2/3 as a lower bound on the number of YES answers Decider
gives.

Thus, we can think of epoch k as an instance of the Coins and Buckets game with
parameters

(a, ν, ν0) =

(
okε

2
kn

2

2
,
εkn

2

3
,
ε2
kn

3/2

3

)
.

Here we think of the set A of pairs as bucket A in the Coins and Buckets game, and the
condition a < ν/2 is satisfied because εk <

1
6

and ok ≤ 1.
Each pair in A proposed corresponds to a coin placed in the bucket A, each pair pro-

posed outside A corresponds to a coin in the bucket B, and Decider’s answers of heads/tails
correspond to YES/NO.

We now apply Lemma 8 with t = a/2ν = 3okεk/4 to this game. By our choice of ν0, we
know that h ≥ ν0 always, so we find that

Pr
(
hA ≥

(a
ν

+ t
)
h
)
≤ 80

√
ν

t2
e−

ν0νt
2

20a

=
80
√
εkn2/3

(3okεk/4)2
e−

okε
3
kn

3/2

160

≤
80n3

√
εk/3

9ε2
k/16

e−ε
3
k

√
n/160

≤ e−Ω(
√
n/(logn)3),

where the second inequality follows from our assumption that ok ≥ 1/n, and the final
inequality uses the fact that εk ≥ 1/ log n for n sufficiently large.

Therefore, we find that the number of edges actually in Vk is bounded above by

hA ≤
(a
ν

+ t
)
h =

(
1 +

1

2

)
Pkokε

2
kn

2/2,

with probability at least 1− e−Ω(
√
n/(logn)3).

Thus the average degree in Vk at the end of the game will be at most 3
2
Pkokεkn. By

Theorem 9 again, Vk must contain an independent set of order at least

|Vk| log(3
2
Pkokεkn)

9
4
Pkokεkn

≥
(εkn) log(3

2
(200/

√
n)εkn)

9
4
(200/

√
n)εkn

≥
√
n

450
log(300

√
n/ log n) ≥ 1

1000

√
n log n,

where we used the bounds Pkok ≤ 200/
√
n and εk ≥ 1/ log n. Thus, in this regime of Pk,

Proposer wins with probability at least 1− e−Ω(
√
n/(logn)3).
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This lemma implies that for Decider to have a reasonable hope of winning, Decider must
always ensure that Pk ≥ 200/(ok

√
n). Intuitively, a large Pk implies that many edges will be

built between Uk and Vk+1, which means that many pairs in Vk+1 will be closed off, so ok+1

must be considerably smaller than ok. Thus, to ensure Pk+1 ≥ 200/(ok+1

√
n), Pk+1 must be

considerably larger than Pk, and so on. This cannot be sustained for long because Pk must
always be bounded by 1, so eventually Decider will run out of room and lose the game. The
next two lemmas makes this rigorous. We will need further notation; define ok,i to be the
fraction of pairs in

(
Vk
2

)
that are open at the end of period i.

Lemma 11. Suppose that k ≥ 2, i ∈ Ik−1, and pi, ok,i−1 satisfy pi ≥ Pk−1/2 and

ok,i−1 ≥
3(log n)3

Pk−1εkn
, (6)

then with probability at least 1− e−Ω(logn)2,

ok,i ≤
(

1− 1

16
p2
i

)
ok,i−1.

Proof. We set up the conditions for Coins and Buckets to apply Lemma 8. Suppose Li is
the set of all pairs Proposer proposes during period i, consisting of all the pairs {ui, vj}
with j > i, all the open pairs {vi, vj} with j > i, and some filler pairs {a`, b`′} to make
at total of n/3 turns. Suppose A ⊆ Li has order (log n)2/Pk−1 ≤ |A| ≤ |Li|/2. The
total number of YES responses given in this period is pi|Li| ≥ Pk−1|Li|/2, so we can define
ν0 = Pk−1|Li|/2. Thus we can think of this period as a game of Coins and Buckets with
parameters (a, ν, ν0) = (|A|, |Li|, Pk−1|Li|/2).

Then, by Lemma 8, the density of YES responses made by Decider to pairs in A will be
close to the density of YES responses made by Decider to all pairs in Ai. Specifically, taking

t =
a

2ν
=

3|A|
2n

and writing yA for the number of YES answers given to edges in A, we have

yA =

(
1± 1

2

)
pi|A|, (7)

with probability at least

1− 80
√
ν

t2
e−

ν0νt
2

20a = 1−
80
√
n/3

(3|A|/2n)2
e−

(Pk−1n/6)|A|
80n/3

≥ 1− 100n5/2e−(logn)2/160

= 1− e−Ω(logn)2 ,

by Lemma 8. In the inequality, we use the trivial bound |A| ≥ 1 and our assumption that
|A| ≥ (log n)2/Pk−1. We will apply bound (7) a total of O(n) times, so by the union bound,
all of them will hold with probability at least 1− e−Ω(logn)2 .
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Now, we count the number of open pairs in Vk before and after period i. Thinking of
the set Oi of open pairs after turn i as itself a graph on V , let Ok,i = Oi[Vk] be the induced
subgraph of Oi consisting of open pairs in Vk after period i. The pairs of Ok,i−1 that are
closed off after period i are exactly those pairs {vj, vj′} for which Decider answers YES to
both {ui, vj} and {ui, vj′}, or else to both {vi, vj} and {vi, vj′}. In particular, to lower-bound
the number of pairs that are closed off in period i, it suffices to lower-bound the number of
j, j′ for which Decider answers YES to both {ui, vj} and {ui, vj′}.

We write NOk,i−1
(vj) for the neighborhood of vj in Ok,i−1, and dk,i−1(vj) for the order

of this neighborhood. We will apply inequality (7) to the set A(vj) = {ui} × NOk,i−1
(vj)

consisting of all pairs from ui to NOk,i−1
(vj). We can only apply it to those vj with

|A(vj)| = dk,i−1(vj) ≥
(log n)2

Pk−1

;

note that the inequality |A(vj)| ≤ |Li|/2 holds for all vj, since at most half the pairs in
Li are between ui and Vk, and in particular at most half are in A(vj). Then for those
vj with dk,i−1(vj) ≥ (log n)2/Pk−1, inequality (7) tells us that with probability at least
1 − e−Ω(logn)2 , the number of neighbors j′ ∈ NOk,i(vj) for which Decider answers YES to
{ui, vj′} is (1 ± 1

2
)pidk,i−1(vj). We will write yNOk,i−1

(vj) for this number of YES answers,

which is a shorthand for y{ui}×NOk,i−1
(vj).

We also divide the vertices vj ∈ Vk into dyadic intervals based on degree. That is, let
D` be the set of all vertices vj ∈ Vk with dk,i−1(vj) lying in [2`−1, 2`), where 1 ≤ ` ≤ log2 n.
Applying inequality (7) again, to the set {ui} × D`, we have that if |D`| ≥ (log n)2/Pk−1,
then yD` = (1 ± 1

2
)pi|D`| with probability at least 1 − e−Ω(logn)2 . Here we again write yD`

as a shorthand for y{ui}×D` , the number of YES answers made to pairs of the form {ui, vj}
where vj ∈ D`.

Throughout, we applied inequality (7) a total of O(n) times, so everything still holds with
probability 1− e−Ω(logn)2 . Putting all this together, we can lower bound the number of open
pairs that are closed off in period i, by summing over `. For each ` ≥ 1+log((log n)2/Pk−1), we
have that every vj ∈ D` has degree at least 2`−1 ≥ (log n)2/Pk−1, so we can apply our above
lower bound for yNOk,i−1

(vj). Suppose additionally that ` is such that |D`| ≥ (log n)2/Pk−1,

so that we also have a bound for yD` . Then we find that for such an `, the number of pairs
{vj, vj′} closed off with vj ∈ D` is at least

yD` · min
vj∈D`

yNOk,i−1
(vj) ≥

(
1

2
pi|D`|

)(
1

2
pi min

vj∈D`
dk,i−1(vj)

)
≥ 1

4
p2
i |D`|2`−1.

We now sum this up over all ` as above, namely all ` ≥ 1 + log((log n)2/Pk−1) with |D`| ≥
(log n)2/Pk−1; call such values of ` good. Doing so gives us a lower bound on the total
number of open pairs in Vk closed off during period i; note that when we sum up, we might
double-count pairs {vj, vj′} if vj and vj′ are in different parts of the dyadic partition {D`}.
Thus, we need to divide by 2 when summing, and find that the total number of open pairs
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in Vk that are closed during period i is at least

p2
i

8

∑
` good

|D`|2`−1 =
p2
i

16

∑
` good

|D`|2`

≥ p2
i

16

∑
` good

∑
vj∈D`

dk,i−1(vj)

=
p2
i

16

2|Ok,i−1| −
∑

` not good

∑
vj∈D`

dk,i−1(vj)

 . (8)

So it suffices to bound
∑

vj∈D` dk,i−1(vj) for all ` that are not good. If ` ≤ log((log n)2/Pk−1),
then ∑

vj∈D`

dk,i−1(vj) ≤ |D`|2` ≤ |D`|
(log n)2

Pk−1

≤ (log n)2

Pk−1

· εkn.

On the other hand, if ` is not good since |D`| < (log n)2/Pk−1, then we find that∑
vj∈D`

dk,i−1(vj) ≤ |D`| max
vj∈D`

dk,i−1(vj) ≤
(log n)2

Pk−1

· εkn.

Since there are are at most log n values of `, and in particular at most log n values of ` that
are not good, we find that ∑

` not good

∑
vj∈D`

dk,i−1(vj) ≤
(log n)3

Pk−1

· εkn.

We can now plug this back into (8). Doing so, we find that the number of open pairs in Vk
closed off during period i is at least

|Ok,i−1| − |Ok,i| ≥
p2
i

16

(
2|Ok,i−1| −

εkn(log n)3

Pk−1

)
.

We assumed that ok,i−1 ≥ 3(log n)3/Pk−1εkn, which implies that

|Ok,i−1| = ok,i−1

(
|Vk|
2

)
≥ ok,i−1|Vk|2

3
≥ εkn(log n)3

Pk−1

.

Putting this together, we find that

|Ok,i−1| − |Ok,i| ≥
p2
i

16
|Ok,i−1|.

Dividing out by
(|Vk|

2

)
gives the desired result for ok,i.
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Now we are ready to accumulate the density decrements from this lemma, to show that
ok is small in terms of Pk−1, as before. Recall that ok is the open density in Vk just after the
epoch k − 1.

Lemma 12. With probability at least 1− e−Ω(logn)2, for all k ≥ 2,

ok ≤ max

(
3(log n)3

εkPk−1n
, e−εk−1P

2
k−1n/64

)
.

Proof. We will apply Lemma 11 using the fact that Pk−1 is the average value of pi across all

i in epoch k− 1. If at any point ok,i ≤ 3(logn)3

εkPk−1n
, then we are done, since the open density can

never increase. Also, we will ignore every period i where pi < Pk−1/2, and let I∗k−1 be the
indices of the remaining periods.

The conditions of Lemma 11 are satisfied for each i ∈ I∗k−1, so we have for these i,

ok,i ≤
(

1− 1

16
p2
i

)
ok,i−1.

Iterating over all i ∈ I∗k−1 and noting that the open density is initially at most 1, it follows
that

ok ≤
∏
i∈I∗k−1

(
1− 1

16
p2
i

)
≤
∏
i∈I∗k−1

exp(−p2
i /16) = exp

− ∑
i∈I∗k−1

p2
i /16

 . (9)

There are εk−1n periods in epoch k−1, so the total sum of pi over i ∈ Ik−1 is Pk−1 ·εk−1n,
while the sum of those pi for which pi < Pk−1/2 is at most half this amount. Thus, together
with the Cauchy–Schwarz inequality,

∑
i∈I∗k−1

p2
i ≥

1

εk−1n
·

 ∑
i∈I∗k−1

pi

2

≥ 1

4
P 2
k−1 · εk−1n.

Plugging into (9), this implies that ok ≤ e−εk−1P
2
k−1n/64, as desired.

From Lemmas 10 and 12, we can complete the proof of Theorem 5.

Proof of Theorem 5. We pick m = log∗(n)+1, where log∗(n) is the binary iterated logarithm
function. We then pick εk = 1/(6 ·2k) for 1 ≤ k ≤ m−1 and εm = εm−1, so that

∑
εk = 1/6.

Moreover, since εk ≥ εm ≥ 2− log∗(n)/6, we get that εk ≥ 1/ log n for all n sufficiently large,
as we required.

For each k, we may assume by Lemma 10 that Pk−1 > 200/(ok−1

√
n), for otherwise

Proposer will win the game w.h.p. Then with the above choices of εk and this lower bound
on Pk−1, Lemma 12 implies a recursive bound on the open densities of the form

ok ≤ max

(
2k(log n)3

10
√
n

ok−1, e
−100/(2ko2k−1)

)
, (10)
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Suppose that for some k ≤ m− 1, the first term in the maximum in (10) is larger. Then
ok ≤ 2k(log n)3/10

√
n. Applying (10) again,

ok+1 ≤ max

(
22k+1(log n)6

100n
, exp

(
− 10000n

23k+1(log n)6

))
≤ 200√

n

for n sufficiently large, since 23k = O(log n) for k = O(log∗ n). It then follows by Lemma 10
that Proposer can win in epoch k + 1 w.h.p.

Thus, we may assume that the second expression on the right hand side of (10) is larger
for every k ≤ m− 1. Writing xk = − log ok, the bound becomes

xk ≥
100

2k
e2xk−1 ,

starting from x1 = 0. It is easy to prove by induction that xk ≥ tk(2) for all k ≥ 2, where tk(2)
is a tower of 2s of height k. Thus, xm−1 ≥ tlog∗ n(2) ≥ n. But then, om−1 = e−xm−1 ≤ e−n,
which implies that om−1 = 0 since it must be a nonnegative rational with denominator less
than n2. Proposer wins by epoch m− 1 in this case.

We have shown that Proposer guarantees w.h.p. the existence of an independent set of
size 1

1000

√
n log n, as desired.

5 Concluding Remarks

A natural open problem is to close the constant-factor gap in Theorem 1. If we defineRPS(n)
to be the largest s for which Proposer can win with probability at least 1/2 regardless of
how Decider chooses to play, then Theorem 1 implies that RPS(n) = Θ(

√
n log n). We have

made no attempt to optimize the constants 10−3 and 103 that our proof provides, but even
if we did, it is unlikely that they would match, meaning that we still don’t fully understand
the full asymptotic behavior of RPS(n). In the language of thresholds, Theorem 1 asserts
that RPS(n) exhibits a coarse threshold; we conjecture that there is a sharp threshold.

Conjecture 13. There is some constant C > 0 so that

RPS(n) = (C + o(1))
√
n log n.

Further, for every ε > 0, Proposer can win w.h.p. if s < (C − ε)
√
n log n, while Decider can

win w.h.p. if s > (C + ε)
√
n log n w.h.p.

Moreover, we suspect that Decider’s strategy of playing randomly is optimal.
Finally, there is a natural extension of Ramsey, Paper, Scissors to the case where we

forbid a subgraph other than the triangle. Specifically, for any fixed graph H, we define the
H-RPS game to be exactly as before, except that Proposer can never propose a pair that, if
added, would form a copy of H. As before, Proposer wins if the independence number is at
least s when Proposer has no legal moves remaining. From this, we can define the quantity
RPS(H;n) to be the maximum s for which Proposer can win with probability at least 1

2
.

Thus, the above discussion concerns the special case RPS(K3;n), and it would be natural
to search for analogues of Theorem 1 for RPS(H;n), where H is some graph other than K3.
A natural question is whether Decider’s random strategy is still close to optimal.
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