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Abstract

A graph G is said to be Ramsey size-linear if r(G,H) = OG(e(H)) for every graph H with
no isolated vertices. Erdős, Faudree, Rousseau, and Schelp observed that K4 is not Ramsey
size-linear, but each of its proper subgraphs is, and they asked whether there exist infinitely
many such graphs. In this short note, we answer this question in the affirmative.

Given two graphs G,H, their Ramsey number r(G,H) is the least integer N such that every two-
coloring of E(KN ) contains a monochromatic copy of G in the first color, or of H in the second
color. Our understanding of r(G,H) is rather limited in general, but a great deal is known in
certain special cases. For example, Chvátal [1] proved that1 r(T,Kn) = (v(T ) − 1)(n − 1) + 1
for every tree T , and Sidorenko [8] proved that r(K3, H) ⩽ 2e(H) + 1 for every graph H with no
isolated vertices, which is tight if H is a tree or a matching.

Generalizing this second example, Erdős, Faudree, Rousseau, and Schelp [4] defined a Ramsey
size-linear graph to be a graph G for which r(G,H) ⩽ CG ·e(H) for every graph H with no isolated
vertices, where CG > 0 is a constant depending only on G. Thus, Sidorenko’s result [8] implies that
K3 is Ramsey size-linear. On the other hand, K4 is not Ramsey size-linear, since r(K4,Kn) = ω(n2)
[7, 9], whereas Kn has

(
n
2

)
= O(n2) edges.

Erdős, Faudree, Rousseau, and Schelp [4] observed that in fact, K4 is minimally non-Ramsey
size-linear, in the sense that every proper subgraph ofK4 is Ramsey size-linear. They asked whether
there exist infinitely many such graphs, or even more restrictively, whether there exist any examples
besides K4. This question was reiterated in [3, 5], and appears as problem 79 on Bloom’s Erdős
problems website [2]. In this note, we show that there are infinitely many such graphs.

Theorem 1. There exist infinitely many graphs G which are not Ramsey size-linear, but every
proper subgraph G′ ⊊ G is Ramsey size-linear.

In the course of the proof of Theorem 1, we shall need the following three simple facts.

Lemma 2. Every forest is Ramsey size-linear.

Indeed, it suffices to prove this for trees, since every forest is a subgraph of a tree. Every graph
H with no isolated vertices is a subgraph of K2e(H), so Lemma 2 follows immediately from the
result of Chvátal [1] mentioned above. Substantially stronger results than Lemma 2 are proved in
[4, Theorems 3–5].

Lemma 3 ([4, Corollary 1]). If e(G) ⩾ 2v(G)− 2, then G is not Ramsey size-linear.
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1We use v(H) and e(H) to denote the number of vertices and edges, respectively, of a graph H.
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Indeed, using the Lovász local lemma, one can show that r(G,Kn) = Ω((n/log n)
e(G)−1
v(G)−2 ) (see

[4, 9] for details). If e(G) ⩾ 2v(G) − 2 then this exponent is strictly greater than 2, hence Kn

witnesses that G is not Ramsey size-linear.

Lemma 4. For every g ⩾ 3, there exists a graph with girth at least g and average degree at least 4.

The existence of such a graph follows immediately from a standard probabilistic deletion argu-
ment. For explicit constructions, one can use the Ramanujan graphs of Lubotzky–Phillips–Sarnak
[6], for example.

With these preliminaries, we are ready to prove Theorem 1.

Proof of Theorem 1. Suppose for contradiction that there exist only finitely many such graphs,
say G1, . . . , Gk. By Lemma 2, each Gi contains at least one cycle, say of length ℓi. Let g =
1+max{ℓ1, . . . , ℓk}. By Lemma 4, there exists a graph G0 with girth at least g and average degree
at least 4. Note that no Gi is a subgraph of G0, since Gi has a cycle of length ℓi but G0 does not.

Moreover, since the average degree of G0 is at least 4, we have e(G0) ⩾ 2v(G0), hence G0 is
not Ramsey size-linear by Lemma 3. Let G be an inclusion-wise minimal subgraph of G0 which is
not Ramsey-size linear. By construction, G is not Ramsey size-linear, but every proper subgraph
of it is. Moreover, G /∈ {G1, . . . , Gk}, since G is a subgraph of G0 but none of G1, . . . , Gk is. This
contradiction completes the proof.

We remark that this proof is non-constructive, in the sense that it does not supply any example
of a minimally non-Ramsey size-linear graph. As such, the following natural problem remains open.

Open problem 5. Give an example of a minimally non-Ramsey size-linear graph other than K4.

The proof of Theorem 1 implies that if one starts with a K4-free graph with average degree at
least 4, such as K2,2,2 or K4,4, then some subgraph of it is minimally non-Ramsey size-linear, but
it seems difficult to identify such a subgraph.
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