
ETH Zürich Ramsey Theory—Spring 2024 Final exam solutions

1. (a) Prove that for every k, q ⩾ 2, the following holds. If N ⩾ 4k, then in any q-
coloring of E(KN) there is some copy of Kk whose edges receive at most ⌈q/2⌉
colors.

(b) Prove that for any even integer q ⩾ 2 and any sufficiently large k, there exists a
q-coloring of E(KN), where N = 2k/2, such that every Kk receives more than q/2
colors.

Solution.

(a) Fix a q-coloring χ of E(KN), where N ⩾ 4k. Arbitrarily divide the set of colors
into two sets C1, C2, where |C1| = ⌈q/2⌉ and |C2| = ⌊q/2⌋. We may define a new
coloring ψ : E(KN) → {1, 2} by setting ψ(e) = 1 if χ(e) ∈ C1, and ψ(e) = 2 if
χ(e) ∈ C2, for all e ∈ E(KN). By Theorem 2.1.4, we have that N ⩾ 4k ⩾ r(k),
so there exists a monochromatic Kk under ψ. But this is precisely a set of k
vertices all of whose edges receive a color from the same set Ci; in particular,
since |C2| ⩽ |C1| ⩽ ⌈q/2⌉, this is a Kk whose edges receive at most ⌈q/2⌉ colors.

(b) Fix an even integer q ⩾ 2 and let k be sufficiently large with respect to q. Consider
a random q-coloring of E(KN), where N = 2k/2. For any given set of k vertices,
the probability that the edges they define receive at most q/2 colors is at most(

q
q/2

)
2−(

k
2). Indeed, we have

(
q

q/2

)
choices for the q/2 colors to use, and having fixed

these colors, each edge receives one of them with probability exactly 1
2
. Therefore,

by the union bound, the probability that some k-set receives at most q/2 colors
is at most(

N

k

)(
q

q/2

)
2−(

k
2) ⩽

2q2k/2

k!
·Nk2−k2/2 =

2q2k/2

k!
·
(
N2−k/2

)k
=

2q2k/2

k!
.

If k is sufficiently large in terms of q (which we assumed), this quantity is less
than 1, since 2k/2/k! → 0 as k → ∞. Therefore, with positive probability, this
coloring contains no Kk whose edges receive at most q/2 colors. Thus, there exists
a coloring with this property, as desired.
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2. Prove that for every k ⩾ 3, there exists some N so that the following holds. Among
any N points in the plane, there are either k points lying on a line, or k points in
convex position.

Solution. Let N = r3(k,Kl(k)), and fix N points p1, . . . , pN in the plane. Define a

2-coloring of E(K
(3)
N ) as follows: if a triple pipjpℓ is collinear, we color {i, j, k} red, and

otherwise we color this triple blue. By the choice of N , there is either a red K
(3)
k in this

coloring, or a blue K
(3)
Kl(k). In the former case, we have found k points, such that every

three of them are collinear, which is precisely a set of k collinear points. In the latter
case, where we have a blue K

(3)
Kl(k), we have found Kl(k) points such that no three of

them are collinear. But then, by the definition of Kl(k) (that is, by Theorem 10.3.4),
these Kl(k) points contain k points in convex position.
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3. Prove that

lim
k→∞

r(3, 3, k)

r(3, k)
= ∞.

Solution. By Theorem 2.1.4, we know that r(3, k) ⩽ k2. We now claim that r(3, 3, k) ⩾
ck3/(log k)6 for an absolute constant c > 0; note that this implies the claimed result,
since

lim
k→∞

r(3, 3, k)

r(3, k)
⩾ lim

k→∞

ck3/(log k)6

k2
= lim

k→∞

ck

(log k)6
= ∞.

So it suffices to prove the claim. To do so, fix an integer k. By Bertrand’s postulate,
there exists a prime power q satisfying k/(60(ln k)2) ⩽ q ⩽ k/(30(ln k)2), which implies
k ⩾ 30q(ln q)2. By Lemma 4.3.7, there exists a triangle-free N -vertex graph Gq, where
N = q3, with at most Mk independent sets of order at most k, where M = 200q/ln q.

We now apply Lemma 3.1.2 to conclude that

r(3, 3, k) ⩾
N2

2ekM2
=

q6

2ek(200q/ln q)2
⩾ 10−5 q

4(ln q)2

k
⩾ c

k3

(log k)6
,

for some absolute constant c > 0, where the last step follows from our lower bound on
q. This is exactly what we wanted to prove.
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4. Let k ⩾ 2 be an integer, let N = 16k, and let G be an N -vertex graph with at least
N2/4 edges.

(a) Prove that there is a subset T ⊆ V (G) with |T | ⩾
√
N − 1 such that every set of

k vertices in T has at least
√
N common neighbors in G.

(b) Prove that there are disjoint sets A,B ⊆ V (G) with |A| = |B| = k such that the
following properties hold:

• A is a clique or an independent set in G,

• B is a clique or an independent set in G, and

• all pairs (a, b) ∈ A×B are edges of G.

Solution.

(a) Note that since G has at least N2/4 edges, it has average degree d ⩾ N/2. Let
∆ = k, r =

√
N = 4k, s =

√
N − 1, and t = 2k. Notice that

dt

N t−1
−

(
N

∆

)( r
N

)t

⩾ N

(
d

N

)t

−Nk

(
1√
N

)t

⩾ N2−t − 1 =
√
N − 1 = s.

Therefore, by Lemma 5.4.11, there exists a set T ⊆ V (G) with |T | ⩾ s such
that every ∆-element subset of T has at least r common neighbors in G; this is
precisely what we wanted to show.

(b) Let T be the set given by part (a). Recall that |T | ⩾
√
N = 4k. By Theorem 2.1.4,

we have that r(k) <
√
N , thus there exists a set A ⊆ T such that A with |A| = k

such that A is either a clique or an independent set in G. By the definition of
T , there is a set W ⊆ V (G) with |W | ⩾

√
N − 1 such that all vertices in A are

adjacent to all vertices in W . Again applying the fact that r(k) ⩽ 4k − 1 ⩽ |W |,
we find a set B ⊆ W with |B| = k which is a clique or an independent set in G.
Since all vertices of A are adjacent to all vertices of W ⊇ B, this is the desired
configuration.
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5. Prove that for every q ⩾ 2, there exists some N such that the following holds in any
coloring JNK → JqK. There exist three numbers x, y, z, all receiving the same color,
such that x + y = z and x and y have a different number of digits (when written in
base 10).

Solution. Let r = r(3; q) and let N = 10r, and fix a q-coloring χ : JNK → JqK. We
define a coloring ψ : E(Kr) → JqK as follows. We identify the vertex set of Kr with
JrK, and color an edge ab, where a < b, with color

ψ(ab) := χ(10b − 10a).

Note that this is well-defined, since 10b− 10a ∈ JNK, hence this integer receives a color
under χ; we assign the edge ab this same color.

By the definition of r, there is a monochromatic triangle under ψ, say with vertices
a, b, c with a < b < c. Define x = 10b − 10a, y = 10c − 10b, and z = 10c − 10a, which
definition implies that x + y = z. Moreover, since ψ(ab) = ψ(bc) = ψ(ac), we have
that χ(x) = χ(y) = χ(z). To conclude the proof, we simply note that x has exactly
b− 1 digits in base 10, whereas y has exactly c− 1 digits, and b− 1 ̸= c− 1.

Alternate solution. By Theorem 9.3.1, we may pick N to have the following property:
for every χ : JNK → JqK, there exist distinct x1, . . . , x11 ∈ JNK such that all their
non-empty subset sums receive the same color under χ. We claim that this same N
satisfies the desired property. Indeed, fix a coloring χ : JNK → JqK, and find x1, . . . , x11
as above. Suppose first that for some i, j ∈ J11K, the numbers xi, xj have distinct
numbers of digits. Then we may set x = xi, y = xj, and z = xi + xj; these all have the
same color under χ by assumption, they satisfy x + y = z by definition, and x and y
have distinct numbers of digits.

So we may assume that x1, . . . , x11 all have the same number of digits. Let x =
x1+ · · ·+x10, y = x11, and z = x+y = x1+ · · ·+x11. We again have a monochromatic
solution to x+y = z; the only remaining observation is that x is the sum of 10 integers
with the same number of digits, so it must have one more digit, and thus has a different
number of digits from y.
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6. Prove that there is an absolute constant C > 0 such that

r(k) ⩽ C · r(k − 1)

for all k ⩾ 2.

Solution. Let τ be the constant from Theorem 8.1.4. Let ε > 0 be chosen so that

τ

ε log 1
ε

⩾ 4;

such an ε exists since the left-hand side tends to ∞ as ε→ 0. Finally, let C = 6/ε; we
claim that r(k) ⩽ C · r(k − 1) for all k.

Indeed, let N = C · r(k − 1), and fix a 2-coloring of E(KN). It suffices to find a
monochromatic Kk in this coloring. Fix a vertex v ∈ V (KN), and assume without loss
of generality that v is incident to at least N−1

2
⩾ N/3 red edges. Let S be the set of

red neighbors of S, and consider the induced coloring on S. Let G be the graph with
vertex set S comprising all blue edges in S.

Suppose first that at most ε
(|S|

2

)
edges in S are blue, that is, that d(G) ⩽ ε. In this

case, by Theorem 8.1.4, G contains a clique or an independent set of order

τ

ε log 1
ε

log |S| ⩾ 4 log
N

3
⩾ 4 log(r(k − 1)),

where in the final inequality we recall that N = C · r(k − 1) ⩾ 3r(k − 1). By The-

orem 2.2.2, we have that r(k − 1) ⩾ 2
k−1
2 , hence log(r(k − 1)) ⩾ k−1

2
⩾ k

4
. Thus, G

contains a clique or an independent set of order k; since G consists of the red edges in
S, in either case, we have found a monochromatic Kk in the original coloring.

Therefore, we may assume that d(G) > ε. This means that there is some vertex w ∈ S
which is incident to at least ε(|S| − 1) ⩾ εN/6 blue edges in S. Let T ⊆ S denote the
set of blue neighbors of w in S.

That is, we have found two vertices v, w, as well as a set T , such that v is adjacent in
red to all vertices of T , and w is adjacent in blue to all vertices in T . Moreover, we
have that

|T | ⩾ εN

6
=
εC · r(k − 1)

6
= r(k − 1).

Therefore, in the induced coloring on T , there is a monochromatic Kk−1. If it is red,
we may add v to it to obtain a red Kk; similarly, if it is blue, we may add w to it to
obtain a blue Kk. In either case, we have found the desired monochromatic Kk.


