ETH Ziirich Ramsey Theory—Spring 2024 Final exam solutions

1. (a)

(b)

Prove that for every k,q > 2, the following holds. If N > 4F, then in any g¢-
coloring of F(Ky) there is some copy of Kj whose edges receive at most [¢/2]
colors.

Prove that for any even integer ¢ > 2 and any sufficiently large k, there exists a
g-coloring of E(Ky), where N = 2¥/2 such that every K, receives more than q/2
colors.

Solution.

(a)

Fix a g-coloring x of E(Ky), where N > 4*. Arbitrarily divide the set of colors
into two sets C4, Cy, where |C1]| = [¢/2] and |Cs| = |¢/2]. We may define a new
coloring ¢ : E(Ky) — {1,2} by setting ¢ (e) = 1 if x(e) € C, and ¢(e) = 2 if
x(e) € Cy, for all e € E(Ky). By Theorem 2.1.4, we have that N > 4% > r(k),
so there exists a monochromatic K under . But this is precisely a set of k
vertices all of whose edges receive a color from the same set Cj; in particular,
since |Cy| < |Cy| < [q/2], this is a K}, whose edges receive at most [¢/2] colors.

Fix an even integer ¢ > 2 and let k be sufficiently large with respect to q. Consider
a random g-coloring of E(Ky), where N = 2%/2. For any given set of k vertices,
the probability that the edges they define receive at most ¢/2 colors is at most

(q%) 2-(5). Indeed, we have (q?z) choices for the ¢/2 colors to use, and having fixed
these colors, each edge receives one of them with probability exactly % Therefore,
by the union bound, the probability that some k-set receives at most ¢/2 colors

1s at most
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If & is sufficiently large in terms of ¢ (which we assumed), this quantity is less
than 1, since 2¥/2/k! — 0 as k — oo. Therefore, with positive probability, this
coloring contains no K} whose edges receive at most ¢/2 colors. Thus, there exists
a coloring with this property, as desired. O
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2. Prove that for every k > 3, there exists some N so that the following holds. Among
any N points in the plane, there are either k& points lying on a line, or £ points in
convex position.

Solution. Let N = r3(k,KI(k)), and fix N points py,...,py in the plane. Define a
2-coloring of (K](\‘;’)) as follows: if a triple p;p;py is collinear, we color {i, j, k} red, and
otherwise we color this triple blue. By the choice of N, there is either a red K ,E?’) in this
coloring, or a blue K1(<31)( ) In the former case, we have found £ points, such that every
three of them are collinear, which is precisely a set of k collinear points. In the latter
case, where we have a blue Kl(g)(k), we have found Kl(k) points such that no three of
them are collinear. But then, by the definition of KI(k) (that is, by Theorem 10.3.4),
these KI(k) points contain k points in convex position. O
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3. Prove that
lim —T(3’3’ k) _ 00
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Solution. By Theorem 2.1.4, we know that (3, k) < k. We now claim that (3, 3, k) >
ck?/(log k)® for an absolute constant ¢ > 0; note that this implies the claimed result,
since

r(3,3,k) _ .. ck¥/(logk)® . ck
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So it suffices to prove the claim. To do so, fix an integer k. By Bertrand’s postulate,
there exists a prime power ¢ satisfying k/(60(In k)?) < ¢ < k/(30(In k)?), which implies
k > 30qg(In¢)?. By Lemma 4.3.7, there exists a triangle-free N-vertex graph G, where
N = ¢3, with at most M* independent sets of order at most k, where M = 200¢/In q.

We now apply Lemma 3.1.2 to conclude that
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for some absolute constant ¢ > 0, where the last step follows from our lower bound on
g. This is exactly what we wanted to prove. 0
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4. Let k > 2 be an integer, let N = 16*, and let G be an N-vertex graph with at least
N?2/4 edges.

(a) Prove that there is a subset T C V(G) with |T| > v/N — 1 such that every set of
k vertices in T has at least v/N common neighbors in G.

(b) Prove that there are disjoint sets A, B C V(G) with |A| = |B| = k such that the
following properties hold:
e Ais a clique or an independent set in G,
e B is a clique or an independent set in G, and
e all pairs (a,b) € A x B are edges of G.

Solution.

(a) Note that since G has at least N?/4 edges, it has average degree d > N/2. Let
A=Fkr=+N=4% s =+N —1, and t = 2k. Notice that

dt N\ 7\ d\’ 1\
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Therefore, by Lemma 5.4.11, there exists a set T C V(G) with |T| > s such

that every A-element subset of T" has at least » common neighbors in G this is
precisely what we wanted to show.

(b) Let T be the set given by part (a). Recall that |T'| > v/N = 4*. By Theorem 2.1.4,
we have that (k) < v/N, thus there exists a set A C T such that A with |A| = &
such that A is either a clique or an independent set in G. By the definition of
T, there is a set W C V(@) with [IW| > v/N — 1 such that all vertices in A are
adjacent to all vertices in . Again applying the fact that r(k) < 4% — 1 < |W],
we find a set B C W with |B| = k which is a clique or an independent set in G.
Since all vertices of A are adjacent to all vertices of W DO B, this is the desired
configuration. O]
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5. Prove that for every ¢ > 2, there exists some N such that the following holds in any
coloring [N] — [q¢]. There exist three numbers z,y, z, all receiving the same color,
such that z +y = z and x and y have a different number of digits (when written in
base 10).

Solution. Let r = r(3;¢) and let N = 10", and fix a g-coloring x : [N] — [q]. We
define a coloring ¢ : E(K,) — [q] as follows. We identify the vertex set of K, with
[r], and color an edge ab, where a < b, with color

¥(ab) = x(10° — 10%).

Note that this is well-defined, since 10° — 10* € [N], hence this integer receives a color
under y; we assign the edge ab this same color.

By the definition of 7, there is a monochromatic triangle under ¢, say with vertices
a,b,c with a < b < ¢. Define x = 10° — 10%,y = 10° — 10°, and z = 10° — 10, which
definition implies that  +y = z. Moreover, since ¥ (ab) = ¥(bc) = ¥ (ac), we have
that x(z) = x(y) = x(2). To conclude the proof, we simply note that = has exactly
b — 1 digits in base 10, whereas y has exactly ¢ — 1 digits, and b — 1 # ¢ — 1. O

Alternate solution. By Theorem 9.3.1, we may pick N to have the following property:
for every x : [N] — [q], there exist distinct xq,...,21; € [IN] such that all their
non-empty subset sums receive the same color under y. We claim that this same N
satisfies the desired property. Indeed, fix a coloring x : [N] — [¢], and find x4, ..., z1;
as above. Suppose first that for some i,j € [11], the numbers z;,z; have distinct
numbers of digits. Then we may set = z;,y = x;, and z = z; + x;; these all have the
same color under x by assumption, they satisfy x + y = 2z by definition, and x and y
have distinct numbers of digits.

So we may assume that x1,...,x1; all have the same number of digits. Let z =
r1+--+2x10,y =11, and 2 = x4y =21+ -+x1;. We again have a monochromatic
solution to x +y = z; the only remaining observation is that x is the sum of 10 integers
with the same number of digits, so it must have one more digit, and thus has a different
number of digits from y. O
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6. Prove that there is an absolute constant C' > 0 such that
r(k) <C-r(k—1)

for all £k > 2.

Solution. Let 7 be the constant from Theorem 8.1.4. Let € > 0 be chosen so that

T

I

elog? =

such an ¢ exists since the left-hand side tends to oo as ¢ — 0. Finally, let C' = 6/¢; we
claim that r(k) < C - r(k — 1) for all k.

Indeed, let N = C' - r(k — 1), and fix a 2-coloring of F(Ky). It suffices to find a
monochromatic K, in this coloring. Fix a vertex v € V(K ), and assume without loss
of generality that v is incident to at least % > N/3 red edges. Let S be the set of
red neighbors of S, and consider the induced coloring on S. Let G be the graph with
vertex set S comprising all blue edges in S.

Suppose first that at most 5('“2') edges in S are blue, that is, that d(G) < e. In this
case, by Theorem 8.1.4, GG contains a clique or an independent set of order

-
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log || > 4log - > 4log(r(k — 1)),

where in the final inequality we recall that N = C - r(k — 1) > 3r(k — 1). By The-
orem 2.2.2, we have that r(k — 1) > 22", hence log(r(k — 1)) = &1 > & Thus, G
contains a clique or an independent set of order k; since GG consists of the red edges in

S, in either case, we have found a monochromatic Ky in the original coloring.

Therefore, we may assume that d(G) > €. This means that there is some vertex w € S
which is incident to at least €(|S| — 1) > eN/6 blue edges in S. Let T" C S denote the
set of blue neighbors of w in S.

That is, we have found two vertices v, w, as well as a set T, such that v is adjacent in
red to all vertices of T', and w is adjacent in blue to all vertices in 1. Moreover, we
have that N Ok 1)
€ eC-r(k—
R
6 6

Therefore, in the induced coloring on 7T, there is a monochromatic Ky ;. If it is red,
we may add v to it to obtain a red Kj; similarly, if it is blue, we may add w to it to
obtain a blue Kj. In either case, we have found the desired monochromatic Kj. O

=r(k—1).



