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Homework 3

Exercise 3(c): Let n be an integer and let 0 ⩽ d ⩽ n be a real number. Consider a random
n-vertex graph G formed by including each edge independently with probability d/n.

Prove that if d = ω(1), the average degree of G is (1 + o(1))d with probability 1− o(1).

Solution. Let X denote the number of edges of G. This is a binomial random variable with
distribution Bin(

(
n
2

)
, p), where p = d/n. In particular, the expectation of X is

E[X] = p

(
n

2

)
=
d

n
·
(
n

2

)
=
d(n− 1)

2
=
dn

2
− d

2
.

We first claim that with probability 1− o(1), we have that X = (1+ o(1))dn/2. This follows
from essentially any of the standard concentration results for the binomial distribution; for
concreteness, we give an elementary proof using only Chebyshev’s inequality.

Since X is binomially distributed, its variance is given by

Var(X) = p(1− p)

(
n

2

)
⩽ p

(
n

2

)
⩽
dn

2
.

Chebyshev’s inequality thus implies that for any t > 0, we have

Pr

(
|X − E[X]| ⩾ t ·

√
dn

2

)
⩽

1

t2
. (1)

We now note that

Pr

(∣∣∣∣X − dn

2

∣∣∣∣ ⩾ d

√
n

2

)
⩽ Pr

(
|X − E[X]| ⩾ d

√
n

2
− d

2

)
⩽ Pr

(
|X − E[X]| ⩾ d

2

√
n

2

)
= Pr

(
|X − E[X]| ⩾

√
d

2

√
dn

2

)
⩽

4

d
,

where the first inequality uses the fact that |E[X] − dn
2
| = d

2
, the second holds for n ⩾ 2

(which we are allowed to assume since we are working in the n → ∞ limit), and the final
holds by plugging in t =

√
d/2 into (1).

Recall that the average degree of any n-vertex graph G is equal to 2e(G)/n. Hence the
average degree in our random graph is 2X/n. Let Y = 2X/n be this average degree, and
note that the above implies

Pr

(
|Y − d| ⩾ d

√
2

n

)
= Pr

(∣∣∣∣X − dn

2

∣∣∣∣ ⩾ d

√
n

2

)
⩽

4

d
.

To conclude the proof, we note that d
√
2/n = o(d) as n→ ∞, and that 4/d = o(1) since we

assume d = ω(1). Hence this implies that Y = (1 + o(1))d with probability 1− o(1).
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Exercise 5(a) Prove that, for any fixed s ⩾ 3, we have

r(s, k) ⩾ k
s−1
2

−o(1),

where the o(1) term tends to 0 as k → ∞.

Solution. Let G be a random graph on N := ( k
s ln k

)
s−1
2 vertices, where each pair of vertices is

included as an edge independently with probability p := N− 2
s−1 . We begin by claiming that

G is Ks-free with probability at least 5
6
. Indeed, any given set of s vertices forms a copy of

Ks in G with probability p(
s
2), and there are

(
N
s

)
options for such a set of s vertices. Hence,

by the union bound, we have that the probability that G contains a Ks is at most(
N

s

)
p(

s
2) ⩽

N s

s!
p

s2−s
2 =

1

s!

(
Np

s−1
2

)s
=

1

s!
⩽

1

6
,

where we use our definition of p to see that Np
s−1
2 = 1 and use the fact that s ⩾ 3 to

conclude that s! ⩾ 6. Thus, G is Ks-free with probability at least 5
6
.

We now claim that G has no independent set of order k with probability at least 1
2
. Any

set of k vertices forms an independent set with probability (1 − p)(
k
2), and there are

(
N
k

)
choices for such a set. Applying the union bound, we find that the probability that G has
an independent set of order k is at most(

N

k

)
(1− p)(

k
2) ⩽

Nk

k!
(1− p)

k2−k
2 =

1

(1− p)
k
2 k!

·
(
N(1− p)

k
2

)k
(2)

Note that p → 0 as k → ∞, hence p ⩽ 1
2
for sufficiently large k. Thus, for sufficiently large

k, we have that

(1− p)
k
2 k! ⩾

(
1

2

) k
2

k! ⩾

(
1

2

) k
2

·
(
k

2

) k
2

⩾

(
k

4

) k
2

⩾ 2,

where the second inequality uses the simple bound k! ⩾ (k/2)k/2, and the final inequality
also holds for sufficiently large k. On the other hand, using the bound 1− x ⩽ e−x, we have
that

N(1− p)
k
2 ⩽ Ne−p k

2 = exp

(
lnN − p

k

2

)
= exp

(
lnN − k

2
N− 2

s−1

)
.

Note that, by our choice of N , we have that

k

2
N− 2

s−1 =
k

2
· s ln k

k
=
s ln k

2

and that

lnN ⩽ ln
(
k

s−1
2

)
=

(s− 1) ln k

2
.
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Therefore, lnN − k
2
N− 2

s−1 ⩽ − ln k
2

⩽ 0, so N(1− p)
k
2 ⩽ 1. Plugging all of this back into (2),

we find that the probability that G has an independent set of order k is at most

1

(1− p)
k
2 k!

·
(
N(1− p)

k
2

)k
⩽

1

2
· 1 =

1

2
.

Putting this all together, we find that with probability at least 1
2
, G has no independent set

of order k, and with probability at least 5
6
, G is Ks-free. Thus, with positive probability, G

satisfies both these properties simultaneously, hence there exists an N -vertex graph which is
Ks-free and has no independent set of order k. Therefore,

r(s, k) > N =

(
k

s ln k

) s−1
2

= k
s−1
2

−o(1),

since for fixed s and for k → ∞, we have that s ln k = ko(1).
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Homework 4

Exercise 3(a) Let q be a prime power. Construct a graph Πq with vertex set V (Πq) = F2
q,

in which two vertices (x1, y1), (x2, y2) are adjacent if and only if x1x2 + y1y2 = 1.
Prove that Πq is C4-free.

Solution. Suppose for contradiction that we have a C4 in Πq, namely four distinct vertices
(x1, y1), . . . , (x4, y4) which are pairwise adjacent in this cyclic order. Let

ℓ1 := {(x, y) ∈ F2
q : xx1 + yy1 = 1} and ℓ3 := {(x, y) ∈ F2

q : xx3 + yy3 = 1}.

Note that by definition, ℓ1 is precisely the neighborhood of (x1, y1) in Πq, and similarly ℓ3 is
the neighborhood of (x3, y3). Moreover, by construction, ℓ1, ℓ3 are both lines in F2

q.
However, we know that two lines in F2

q intersect in at most one point. Formally, suppose
that (x, y) ∈ ℓ1 ∩ ℓ3. Then (x, y) satisfies the two equations

xx1 + yy1 = 1

xx3 + yy3 = 1.

Subtracting the second equation from the first, we conclude that

x(x3 − x1) = y(y1 − y3).

We assumed that the points (x1, y1) and (x3, y3) were distinct, so either x1 ̸= x3 or y1 ̸= y3
(or both). Let us assume the first case happens; the second case is essentially identical.
Since x1 ̸= x3, we may divide the equation above by x3 − x1 to conclude that

x =
y1 − y3
x3 − x1

y. (3)

Plugging this in to the equation xx1 + yy1 = 1, we find that

y

(
x1
y1 − y3
x3 − x1

+ y1

)
= 1.

Note that there is at most one choice of y satisfying this. Indeed, if x1
y1−y3
x3−x1

+ y1 = 0 then

there is no solution to this equation, and if x1
y1−y3
x3−x1

+ y1 ̸= 0 then the unique solution is

y = 1/(x1
y1−y3
x3−x1

+ y1). Plugging this back into (3) shows that, given the value of y, we can
also determine the value of x.

In other words, we have proven that there is at most one point (x, y) in the intersection
ℓ1 ∩ ℓ3. Therefore, the points (x1, y1) and (x3, y3) have at most one common neighbor in Πq,
as their common neighborhood is precisely ℓ1 ∩ ℓ3. However, our starting assumption was
that (x2, y2) and (x4, y4) are distinct points, both of which are common neighbors of (x1, y1)
and (x3, y3); this is a contradiction.
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Homework 6

Exercise 3(b) Let K̂k denote the 1-subdivision of Kk. This is a graph on k+
(
k
2

)
vertices,

obtained by introducing a new vertex in the middle of every edge of Kk. Equivalently, it is
obtained from Kk by replacing every edge by a 2-edge path.

By applying Lemma 5.4.11 and being more careful, prove that r(K̂k) = O(k2). Note that

this bound is tight up to the implicit constant since K̂k has Θ(k2) vertices.

Solution. By choosing the implicit constant in the big-O appropriately, we may assume that
k is sufficiently large. We will assume that k ⩾ 100.

LetN = 81k2, and fix a two-coloring of E(KN). We may assume without loss of generality
that at least half the edges are red; let G be the red graph, and note that the average degree
d of G satisfies d ⩾ N−1

2
⩾ N

3
.

Let t = log3 k, let ∆ = 2, and let r = k +
(
k
2

)
⩽ k2. Note that

dt

N t−1
−
(
N

∆

)( r
N

)t
⩾ N

(
d

N

)t

−N2

(
k2

N

)t

⩾ N

(
1

3

)t

−N2

(
1

81

)t

=
N

k
− N2

k4

= 81k − 812

⩾ k,

where the final step holds since we assumed k ⩾ 100. Therefore, we are in the position to
apply Lemma 5.4.11 with the parameters above and with s = k. We conclude that there is
a set T ⊆ V (G) of size |T | ⩾ k such that every pair of vertices in T has at least r = k +

(
k
2

)
common neighbors.

We now argue exactly as in the proof of Theorem 5.4.10. K̂k is a bipartite graph with
one part of size k (corresponding to the original vertices of Kk) and the other of size

(
k
2

)
(corresponding to the original edges of Kk). We embed the part of size k into T arbitrarily.
We then arbitrarily order the vertices in the part of size

(
k
2

)
. Each vertex v in this part

has exactly two neighbors in K̂k, which were already embedded into T . By the way we
constructed T , this pair of embedded vertices has at least k +

(
k
2

)
common neighbors, and

in particular at least one common neighbor that was not yet used in the embedding. We
embed v arbitrarily into one of these common neighbors, and continuing in this process we
find a red copy of of K̂k.

Exercise 5 Let G be an ε-quasirandom graph. Prove that for all disjoint S, T ⊆ V (G)
with |S|, |T | ⩾ ε|V (G)|, we have |d(S, T )− d(G)| ⩽ 3ε.

Note: There was a typo in this homework exercise—it originally said 2ε, rather than 3ε.
I’m really sorry about that!
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Solution. Let S and T be disjoint sets. We begin by assuming that |S| = |T |; we will later
get rid of this assumption. Note that every edge in S ∪ T is either in S, or in T , or between
S and T , hence

e(S ∪ T ) = e(S) + e(T ) + e(S, T ).

If |S| ⩾ ε|V (G)| and |T | ⩾ ε|V (G)|, then also |S ∪ T | ⩾ ε|V (G)|. Therefore, the ε-
quasirandomness of G implies that

d(G)−ε ⩽ d(S) ⩽ d(G)+ε, d(G)−ε ⩽ d(T ) ⩽ d(G)+ε, d(G)−ε ⩽ d(S∪T ) ⩽ d(G)+ε.

Therefore,

e(S ∪ T ) ⩾ (d(G)− ε)

(
|S ∪ T |

2

)
and

e(S) ⩽ (d(G) + ε)

(
|S|
2

)
, e(T ) ⩽ (d(G) + ε)

(
|T |
2

)
.

Combining these inequalities, we find that

e(S, T ) = e(S ∪ T )− e(S)− e(T )

⩾ d(G)

[(
|S ∪ T |

2

)
−
(
|S|
2

)
−
(
|T |
2

)]
− ε

[(
|S ∪ T |

2

)
+

(
|S|
2

)
+

(
|T |
2

)]
.

Note that
(|S∪T |

2

)
−
(|S|

2

)
−
(|T |

2

)
= |S||T |. This can be checked by expanding the binomial

coefficients, or by a simple combinatorial argument:
(|S∪T |

2

)
counts all pairs in S ∪ T , and

if we remove the pairs inside S and inside T , we are only left with the |S||T | pairs between
the sets. On the other hand, recalling that we assumed |S| = |T |, we have(

|S ∪ T |
2

)
+

(
|S|
2

)
+

(
|T |
2

)
⩽

1

2

(
(|S|+ |T |)2 + |S|2 + |T |2

)
= 3|S|2 = 3|S||T |.

Combining this with the above, we conclude that

e(S, T ) ⩾ d(G)|S||T | − 3ε|S||T | = (d(G)− 3ε)|S||T |,

implying that d(S, T ) ⩾ d(G)− 3ε. An identical computation, just swapping some plus and
minus signs, shows that d(S, T ) ⩽ d(G) + 3ε.

This concludes the proof in the case that |S| = |T |. In case |S| < |T |, we argue as
follows. Let us suppose for contradiction that d(S, T ) > d(G) + 3ε (the other case, where
d(S, T ) < d(G) − 3ε, follows similarly). Let T ′ be a random subset of T , chosen uniformly
at random among all subsets of size exactly |S|. Every vertex v ∈ T has probability exactly
|S|/|T | of being included in T ′, hence every edge in S × T has probability of exactly |S|/|T |
of being included in S × T ′ (since all that matters is whether its T -endpoint gets included
in T ′). By linearity of expectation, this implies that

E[e(S, T ′)] =
|S|
|T |

e(S, T ) =
|T ′|
|T |

e(S, T ).
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Therefore, there exists some fixed T ′ ⊆ T , with |T ′| = |S|, such that e(S, T ′) ⩾ |T ′|
|T | e(S, T ).

Therefore,

d(S, T ′) =
e(S, T ′)

|S||T ′|
⩾

|T ′|
|T | e(S, T )

|S||T ′|
=
e(S, T )

|S||T |
= d(S, T ) > d(G) + 3ε.

However, this contradicts our previous argument, since |S| = |T |′, so we know that d(S, T ′) ⩽
d(G) + 3ε.

Exercise 7 Prove Theorem 6.2.3, the linear bound on multicolor Ramsey numbers of
bounded-degree graphs.

Solution. First we pick some parameters depending on ∆ and q. Let ε = q−∆/(2∆), which
is chosen so that 1

q
= (2∆ε)1/∆. Let δ(ε, q) be the constant from Lemma 6.2.1. Finally, let

C = 2/(εδ), and note that C depends only on ∆ and q.
Fix an n-vertex graph H with maximum degree at most ∆, and let N = Cn. Consider

a q-coloring of E(KN), and let G1, . . . , Gq be the q color classes. Applying Lemma 6.2.1, we
find a subset Q ⊆ V (KN) with |Q| ⩾ δN such that G1[Q], . . . , Gq[Q] are all ε-quasirandom.
By the pigeonhole principle, among the edges in Q, at least a 1

q
fraction have the same

color. So we may pick some i ∈ JqK such that at least 1
q

(|Q|
2

)
of the edges in Q have color i;

equivalently, this says that d(Gi[Q]) ⩾ 1
q
= (2∆ε)1/∆. Note that

|Q| ⩾ δN = δCn =
2n

ε
.

Thus, we are in the setting of Lemma 6.1.3, which immediately tells us that H is a subgraph
of Gi[Q]. Thus, we have found a monochromatic copy of H in color i, implying that r(H) ⩽
N .

Homework 7

Exercise 1

(a) Fix a q-coloring χ0 : E(Kn) → JqK. Prove that for every σ > 0, there exists δ > 0
such that the following holds. If a coloring χ : E(KN) → JqK does not contain χ0 as an
induced subcoloring, then there exists a set S ⊆ V (KN) with |S| ⩾ δN and an index
i ∈ JqK, such that at most σ

(|S|
2

)
of the edges in S are colored by color i under χ.

(b) Prove that the q = 2 case of part (a) is equivalent to Rödl’s theorem, Theorem 6.3.3.

(c) You might have expected the multicolor generalization of Rödl’s theorem to say that
all colors but one have edge density at most σ in S. Prove that such a statement is
false, even in the case n = q = 3.
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More precisely, show that there is a E(KN) → J3K such that no triangle receives all
three colors, but such that every linearly-sized subset has edge density at least 1

3
in at

least two of the colors.

Solution.

(a) Fix χ0 and σ > 0. Let ε = σn/(2n), and let δ0 > 0 be the parameter from Lemma 6.2.1
applied with this choice of ε and q. Let δ = εδ0/(2n).

Now fix χ : E(KN) → JqK, and let G1, . . . , Gq be the graphs of the edges in colors
1, . . . , q, respectively. If N ⩽ 1

δ
then we are done, since we may set S to be a single

vertex, so we assume henceforth that N ⩾ 1
δ
. We apply Lemma 6.2.1 to χ to find

a set Q ⊆ V (KN) with |Q| ⩾ δN such that all of the graphs G1[Q], . . . , Gq[Q] are
ε-quasirandom. If d(Gi[Q]) < σ for some i, we are done: we may set S = Q, and then
we know that at most σ

(|S|
2

)
edges in S are colored with color i. So we may assume

that d(Gi[Q]) ⩾ σ for all i. But by our choice of ε and our assumption that N ⩾ 1/δ,
we may now apply Lemma 6.3.4 to conclude that there is a copy of Kn in KN which
is colored according to χ0. This contradiction completes the proof.

(b) A 2-coloring χ0 of E(Kn) is the same as an n-vertex graph H—we just view the red
edges as H and the blue edges as the complement of H. Moreover, a copy of χ0 inside
a coloring of E(KN) is the same as finding H as an induced subgraph of the N -vertex
graph G, since being a copy of χ0 means that edges of H yield edges of G, and non-
edges of H yield non-edges of G. Moreover, since there are only two colors, saying that
one of the colors has density at most σ is precisely the same as saying that d(G[S]) ⩽ σ
or d(G[S]) ⩾ 1− σ.

(c) Consider a random coloring of E(KN), where each edge is made red or blue with
probability 1

2
. We can view this as a 3-coloring of E(KN), where no edge receives

the color green. In particular, this coloring has no copy of a colored K3, where all
three edges are colored green. Therefore we are in the setting of part (a), but with
high probability, every subset S ⊆ V (KN) of size δN has at least 1

3

(|S|
2

)
red and at

least 1
3

(|S|
2

)
blue edges. Thus we cannot ensure that all but one color has very low

density.

Exercise 3(a) A graph H is said to have the Erdős–Hajnal property if there exists ε > 0,
depending only on H, such that every induced-H-free N -vertex graph has a clique or an
independent set of size at least N ε. Recall that the Erdős–Hajnal conjecture asserts that all
graphs have the Erdős–Hajnal property.

Prove that if H = Kk is a complete graph, then H has the Erdős–Hajnal property.

Solution. By Theorem 2.1.4, the off-diagonal Ramsey number r(k, t) satisfies r(k, t) ⩽
(
k+t
k

)
.

Note that, if k ⩽ t, we have

r(k, t) ⩽

(
k + t

k

)
⩽

(
2t

k

)
⩽ (2t)k ⩽ t2k.
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On the other hand, if 2 ⩽ t ⩽ k, then

r(k, t) ⩽

(
k + t

k

)
⩽

(
2k

k

)
⩽ 4k = 22k ⩽ t2k,

so in either case we have r(k, t) ⩽ t2k.
We now claim that Kk has the Erdős–Hajnal property with parameter ε = 1/(2k).

Indeed, let G be an N -vertex graph which is induced-Kk-free. Let t = N1/(2k). By the
above, we have that r(k, t) ⩽ t2k = N , meaning that G contains a Kk or an independent set
of size t, and by the assumption it does not contain the former. This shows that G contains
an independent set of size t = N1/(2k) = N ε, as claimed.

Exercise 5 A graph G is called q-minimally Ramsey for a graph H if G is Ramsey for H
in q colors, but any proper subgraph G′ ⊊ G is not Ramsey for H in q colors.

(a) Prove that if G is q-minimally Ramsey for H, then every edge of G lies in at least q
copies of H.

(b) Prove that if G is q-minimally Ramsey for H, then G has at least qe(H)−1 copies of H.

(c) Prove Proposition 7.1.9.

Solution.

(a) Let G be q-minimally Ramsey for H, and fix some edge e ∈ E(G). Consider the graph
G− e. Since G is minimally Ramsey for H, there exists a coloring χ : E(G− e) → JqK
with no monochromatic copy of H. For each i ∈ JqK, let χi : E(G) → JqK be the
coloring of E(G) obtained from i by coloring all edges other than e the same as in χ,
and coloring e in color i. Since G is Ramsey for H, there must exist a monochromatic
copy of H in each of the q colorings χi. Moreover, since e gets a different color in each
of these colorings, we must get q distinct copies of H, each containing e, as claimed.

(b) Suppose that G is a graph with fewer than qe(H)−1 copies of H. Let χ : E(G) → JqK be
a uniformly random q-coloring of E(G). For each copy of H in G, the probability that
it is monochromatic under χ is exactly q1−e(H). By the union bound, the probability
that there is no monochromatic copy ofH is therefore at most q1−e(H) times the number
of copies of H in G, which is strictly less than 1 by assumption. Hence, there exists a
q-coloring of E(G) with no monochromatic H, showing that G is not Ramsey for H.

(c) Note that if F is Ramsey obligatory for K3, then so is any subgraph of it, hence it
suffices to prove that if F is a triangle tree, then F is Ramsey obligatory for K3.
We prove this by induction on the number of triangles forming F . In fact, we prove
the following stronger statement: if F is a triangle tree composed of t triangles, then
F ⊆ G for every graph which is (3t)-color Ramsey for K3. In particular, this implies
that every triangle tree is Ramsey obligatory for K3.
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The base case is when t = 1, and thus F = K3. Any graph which is 3-color Ramsey
for K3 must contain K3, hence the base case is proved. Inductively, suppose we have
proved the statement for t, and let F be a triangle tree composed of t + 1 triangles.
By definition, F is obtained from some triangle tree F ′ by adding a new triangle on
some edge e ∈ E(F ′), where F ′ is composed of t triangles.

Now, let G be a graph which is 3(t + 1)-color Ramsey for K3. In particular, it is
3t-color Ramsey for K3, so by the induction hypothesis there is a copy of F ′ in G.
Moreover, by part (a), the edge e ∈ E(F ′) ⊆ E(G) lies in at least 3(t+ 1) triangles in
G. Since F ′ has at most 3t vertices, at least one of these triangles containing e must
not use any other vertices of F ′. Hence we can extend the copy of F ′ to a copy of F by
adding one of these triangles along e, proving the statement for t + 1 and completing
the induction.

Exercise 6 Prove that for every n, q ⩾ 2, there exists some N such that KN,N is q-color
induced Ramsey for Kn,n.

Solution. Pick N sufficiently large so that

N2

q
⩾ n

1
n (2N)2−

1
n + 2nN.

Note that this inequality is satisfied for sufficiently large N (and fixed n, q), since the left-
hand side grows as N2 and the right-hand side grows as O(N2−1/n).

Now, fix a q-coloring of E(KN,N). One of the colors must contain at least N2/q edges.
Let G be the graph of the edges in this color, which has 2N vertices and at least N2/q
edges. By the choice of N and Theorem 5.3.2, we conclude that Kn,n ⊆ G, hence there is
a monochromatic copy of Kn,n in the coloring. Moreover, every copy of Kn,n in KN,N is an
induced copy, so we conclude that KN,N is induced Ramsey for Kn,n in q colors.

Homework 8

Exercise 3 Let 1 ⩽ ℓ ⩽ q−1 be integers, and let
(JqK

ℓ

)
denote the collection of all ℓ-element

subsets of JqK. A (q, ℓ)-set coloring is a function χ : E(KN) →
(JqK

ℓ

)
; in other words, rather

than assigning every edge of KN a single color out of q options, we assign every edge a list
of ℓ colors from a palette of size q. We say that v1, . . . , vk ∈ V (KN) form a color-intersecting
clique if there is a color that appears in all of the

(
k
2

)
lists associated to the edges they span,

that is, if
⋂

1⩽i<j⩽k χ(vivj) ̸= ∅. The set coloring Ramsey number rs(k; (q, ℓ)) is the least N
such that every (q, ℓ)-set coloring of E(KN) contains a color-intersecting clique of order k.

(e) Prove that, for every ε > 0 there exists some B > 0 such that the following holds. If
ℓ ⩾ εq, then rs(k; (q, ℓ)) ⩽ 2Bkq.
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(f) Using Theorem 8.1.4, prove the following. For every x ⩾ 1, there exists D > 0 such
that

rs(k; (q, q − x)) ⩽ 2
Dk
q

log q.

Note that this bound is much stronger than that given in (e).

Solution.

(e) Consider a (q, ℓ)-set coloring of E(KN), where ℓ ⩾ εq. For a fixed vertex v, there are
N − 1 edges incident to v, hence a total of ℓ(N − 1) colors used on its edges. However,
since the total palette has only q colors, there must exist some color which appears on
at least ⌈ℓ(N − 1)/q⌉ ⩾ ε

2
N of the edges incident to v, where the last inequality holds

as long as N ⩾ 1
ε
.

Now, let N = 2Bkq, where B = 2
ε
. We repeatedly apply the observation above, as

follows. We start with some vertex v1, and find a color c1 that lies on at least ε
2
N of

the edges incident to v1. We now restrict to this c1-colored neighborhood, find a new
vertex v2 and a new color c2, and so on. By our choice of N , we can continue this
process for at least kq steps, since we lose a factor of ε/2 at every step. At the end of the
process, at least k of these kq colors must be equal, hence we find a color-intersecting
Kk.

Exercise 4

(a) Prove that Theorem 8.2.4 is equivalent to the following statement. For every C >
0, k ∈ N, the following holds for sufficiently large N . Consider a coloring χ : E(KN) →
{red, blue}, and suppose that χ contains no monochromatic clique of order C logN .
Then for every coloring ψ : E(Kk) → {red, blue}, there is a k-vertex subset S of KN

such that the restriction of χ to S equals ψ (up to permutations of the vertices).

(b) State and prove a generalization of (a) to colorings with more than two colors.

Solution.

(a) A red/blue coloring of a graph is the same as a graph. In particular, χ containing
no monochromatic clique of order C logN is the same as saying that the graph G of
red edges contains no clique or independent set of order C logN , that is, that G is
C-Ramsey. So the assumptions of the two statements are equivalent. The conclusions
are equivalent too, since containing a copy of ψ is the same as having the red graph H
of ψ as an induced subgraph.

(b) The general statement is as follows. For every C > 0, k, q ∈ N, the following holds
for sufficiently large N . If a q-coloring χ : E(KN) → JqK contains no subset of order
C logN which is colored with at most q − 1 colors, then for every ψ : E(Kk) → JqK,
there is a k-vertex subset S ⊆ V (KN) with χ|S = ψ.
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To prove this, let G1, . . . , Gq be the graphs of edges in each of the q colors, and fix
some ψ : E(Kk) → JqK. Our assumption implies that each Gi is C-Ramsey; indeed, if
some Gi had a clique or an independent set of order C logN , this would yield a set of
size C logN which uses at most q − 1 colors. By Theorem 8.2.3, there is some σ > 0
such that every S ⊆ V (KN) with |S| ⩾

√
N satisfies σ ⩽ d(Gi[S]) ⩽ 1 − σ for every

i ∈ JqK. Moreover, by exercise 1(a) on Homework 7, we know if that if χ does not
contain ψ as an induced sub-coloring, then there is some S ⊆ V (KN) with |S| ⩾ δN
such that, for some i ∈ JqK, we have d(Gi[S]) < σ. But if we pick N sufficiently large
so that δN ⩾

√
N , this is a contradiction.

Homework 9

Exercise 2

(a) Prove that, for every k, q ⩾ 2, there exists some N such that any q-coloring of JNK
contains a k-term geometric progression. That is, there exist numbers a, r with r ⩾ 2
such that

a, ar, ar2, . . . , ark−1

all receive the same color.

Hint: This is a one-line corollary of van der Waerden’s theorem.

(b) Prove the following multiplicative analogue of Theorem 9.3.1. For every m, q ⩾ 2,
there exists N such that in any q-coloring of JNK, there exist distinct x1, . . . , xm ∈ JNK
such that all the subset products

∏
i∈I xi, for ∅ ̸= I ⊆ JmK, receive the same color.

Solution.

(a) Let N = 2W (k;q), and consider a q-coloring χ : JNK → JqK. Define χ′ : JW (k; q)K → JqK
by χ′(x) = χ(2x), and note that this is well-defined since 2x ∈ JNK for all x ∈ JW (k; q)K,
by our choice of N . By the definition ofW (k; q), there is a monochromatic k-AP under
χ′, say

χ′(a0) = χ′(a0 + r0) = · · · = χ′(a0 + (k − 1)r0).

Recalling the definition of χ′, this implies that

χ(2a0) = χ(2a0+r0) = · · · = χ(2a0+(k−1)r0).

Letting a = 2a0 and r = 2r0 , this is the same as saying

χ(a) = χ(ar) = · · · = χ(ark−1),

and thus we have found a monochromatic k-term geometric progression under χ.
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(b) The proof is very similar. Let N0 be sufficiently large so that Theorem 9.3.1 holds,
that is, so that any q-coloring of JN0K contains a set of size m all of whose subset sums
have the same color. Let N = 2N0 , and fix a coloring χ : JNK → JqK. This defines a
coloring χ′ : JN0K → JqK by χ′(x) = χ(2x). By the choice of N0 we obtain x

′
1, . . . , x

′
m all

of whose subset sums receive the same color under χ′, meaning that if we set xi = 2x
′
i

we obtain the desired conclusion.

Exercise 4(b) Prove that there are at most N2/(2(k−1)) arithmetic progressions of length
k in JNK. Using this, prove that

W (k; q) >
√

2(k − 1)q
k−1
2 .

Solution. For x ∈ JNK, let f(x) denote the number of k-APs in JNK whose last element is
x. Then the total number of k-APs in JNK is just

∑
x∈JNK f(x). Consider a k-AP ending at

x, say that this k-AP is a, a+ r, . . . , a+ (k − 1)r = x. Since a ⩾ 1, we conclude that

x = a+ (k − 1)r ⩾ 1 + (k − 1)r,

which implies that r ⩽ (x − 1)/(k − 1). Moreover, once we fix x as the last element of a
k-AP, as well as fixing the common difference, we have completely determined the k-AP. We
thus conclude that f(x) ⩽ (x− 1)/(k − 1). Therefore, the total number of k-APs in JNK is
at most

N∑
x=1

f(x) ⩽
N∑

x=1

x− 1

k − 1
=

1

k − 1

N∑
x=1

(x− 1) =
1

k − 1

(
N

2

)
<

N2

2(k − 1)
.

Now let N =
√

2(k − 1)q
k−1
2 . To deduce a lower bound on W (k; q), we consider a

uniformly random q-coloring of JNK. For any fixed k-AP in JNK, the probability that it
is monochromatic is exactly q1−k, since there are k elements that must receive the same
color and q choices for this color. By the union bound, the probability that some k-AP is
monochromatic is at most q1−k times the number of k-APs, which by the above is strictly
less than

q1−k · N2

2(k − 1)
= q1−k · 2(k − 1)qk−1

2(k − 1)
= 1.

Hence with positive probability there is no monochromatic k-AP in this random coloring,
implying that W (k; q) > N .

Homework 10

Exercise 1 A function φ : JkKs → JkKd is the same as a tuple φ = (φ1, . . . , φd) of functions
φj : JkKs → JkK. Such a function φ is called a combinatorial mapping if every component
φj is either a constant function or a coordinate function, i.e. φj(x1, . . . , xs) = xi for some i.
An s-dimensional combinatorial subspace of JkKd is the image of a combinatorial mapping
φ : JkKs → JkKd which is furthermore injective.



ETH Zürich Ramsey Theory—Spring 2024 Solutions to selected exercises

(b) Show that s-dimensional combinatorial subspaces of JkKd are in bijection with s-roots,
which are words ρ ∈ {1, . . . , k, ∗1, . . . , ∗s}d in which each star symbol ∗i appears at
least once.

(c) Prove that for every k, s, q ⩾ 1, there exists some d such that any q-coloring of JkKd
contains a monochromatic s-dimensional combinatorial subspace.

Hint: Prove that d = s · HJ(ks; q) suffices.

Solution.

(b) Let φ = (φ1, . . . , φd) : JkKs → JkKd be a combinatorial mapping. Define an s-root
ρ as follows. If φj is a constant function, say φj(x) = aj ∈ JkK, then let the jth
coordinate of ρ be aj. On the other hand, if φj is a coordinate function xi, set the jth
coordinate of ρ be ∗i. Note that since ϕ is injective, every coordinate function xi must
appear as some coordinate of φ, hence every star symbol is used at least once, so ρ is
a valid s-root. Moreover, this process is reversible: given a root ρ we construct φ by
simply undoing the operations above. This shows the bijection between combinatorial
mappings and s-roots. Finally, there is a bijection between combinatorial mappings
and their images, proving the desired result.

(c) Let d0 = HJ(ks; q) and d = s · d0, and consider a coloring χ : JkKd → JqK. We may
identify JkKd with (JkKs)d0 . Moreover, we may identify JkKs with JksK. By the choice
of d0, there is a monochromatic combinatorial line under χ, where a combinatorial
line is with respect to the alphabet JkKs, that is, it has length ks and the moving
coordinates take on each of the elements of JkKs in turn. But this is nothing more
than (a special kind of) s-dimensional combinatorial subspace, implying that we have
a monochromatic s-dimensional combinatorial subspace.

Exercise 2

(a) Suppose that there is a coloring χ : JNKt → JqK with no homothetic copy of

S := {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}.

Using χ, construct a protocol for t players to compute the exactly-N function using at
most t⌈log q⌉ bits of communication in the number-on-the-forehead model.

(b) Reinterpret the result of (a) as saying the following: If the Gallai–Witt theorem is false
for this choice of S, then there is a protocol to compute the exactly-N function using
only a constant number of bits of communication.

In other words, we proved in Theorem 9.4.1 that the Gallai–Witt theorem implies a
super-constant lower bound for this communication complexity, and (a) gives a con-
verse: a super-constant lower bound for this communication complexity implies the
Gallai–Witt theorem for this choice of S.
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(c) Improve your protocol in (a) to one using only t+ ⌈log q⌉ bits of communication.

Solution.

(a) Let the players receive input a = (a1, . . . , at) ∈ JNKt, where player i sees all the
coordinates except for ai. Using this information, player i computes the value

bi := N − a1 − · · · − ai−1 − ai+1 − · · · − at.

That is, bi is the unique possible value of the ith coordinate that makes the exactly-N
function evaluate to 1.

Now, for every i ∈ JtK, the ith player communicates the value of

χ((a1, . . . , ai−1, bi, ai+1, . . . , at)).

Since there are q colors, it takes ⌈log q⌉ bits to communicate this value, and since all
t players do it this costs a total of t⌈log q⌉ bits of communcation. Finally, the players
output the value 1 if all t players communicated the same thing, and the output 0
otherwise.

We claim that this is a valid protocol. First of all, note that if
∑
ai = N (in which

case the players are supposed to output 1), we have bi = ai for all i. Hence all t players
simply say χ(a), and in particular they all agree, so they do indeed output the correct
answer.

The remaining case is if
∑
ai ̸= N . In this case, the points

{(a1, . . . , ai−1, bi, ai+1, . . . , at) : i ∈ JtK}

form a homothetic copy of S. So by the assumption on χ, it must be that not all of
these points receive the same color under χ. That is, the things said by the t players
will not all be equal, so they will correctly output the answer 0.

(b) If the Gallai–Witt theorem were false for this choice of S, then that means that there
exists some q such that for all N , there exists a q-coloring JNKt → JqK with no homo-
thetic copy of S. But by part (a), this means that one can compute the exactly-N
function using only t⌈log q⌉ bits, regardless of the value of N . Since t and q are inde-
pendent of N , this shows that there is a constant-complexity communication protocol
for the exactly-N function.

(c) It is wasteful for all t players to say the full value of χ((a1, . . . , ai−1, bi, ai+1, . . . , at)).
Instead, the first player could communicate this (i.e. with i = 1), and then each
subsequent player can say whether that agrees with what they would have said. Thus
the first player communicates ⌈log q⌉ bits, and all subsequent players only communicate
one bit, leading to a total complexity of (t − 1) + ⌈log q⌉. At the end of the process,
the players still know whether to output 0 or 1, for the same reason as in (a).
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Exercise 3 Prove the density Hales–Jewett theorem for k = 2. In other words, prove that
for every δ > 0 and every sufficiently large d, every subset A ⊆ J2Kd with |A| ⩾ δ2d contains
a combinatorial line.

Solution. We will actually show that if A ⊆ J2Kd satisfies |A| >
(

d
⌊d/2⌋

)
, then A contains a

combinatorial line. This is a result known as Sperner’s theorem, but we will give a short
proof. Note that this implies the desired result, since by Stirling’s approximation we have
that (

d

⌊d/2⌋

)
= O

(
1√
d
2d
)
.

In particular, if d is sufficiently large with respect to δ, then we have that
(

d
⌊d/2⌋

)
< δ2d,

implying the desired result.
Fix a set A ⊆ J2Kd, and suppose that A contains no combinatorial line. We pick a random

permutation π of JdK, and define a sequence of vectors x(0), . . . , x(d) ∈ J2Kd as follows. The
ith vector x(i) has a 1 in the entries {π(1), π(2), . . . , π(i)}, and a 0 in all other entries. In
other words, x(0) is the all 0s vector, x(1) is obtained from x(0) by flipping a single random
entry to a 1, x(2) is obtained by flipping a new random entry to a 1, and so on, all the way
up to x(d) being the all-1s vector.

Note that every pair x(i), x(j) with i < j forms a combinatorial line. Indeed, x(j) is
obtained from x(i) by flipping some set of the coordinates from 0 to 1. So if we make
these the moving coordinates and all other coordinates constant, we see that we have a
combinatorial line. In particular, since we assume that A has no combinatorial line, we must
have that x(i) ∈ A for at most one i. In particular,

d∑
i=0

Pr(x(i) ∈ A) ⩽ 1,

since these events are mutually exclusive.
For 0 ⩽ i ⩽ d, let Ai be the set of elements of A with exactly i entries equal to 1. If we

just consider x(i), it is a random vector, chosen uniformly at random among those vectors
with exactly i ones. That is,

Pr(x(i) ∈ A) = Pr(x(i) ∈ Ai) =
|Ai|(
d
i

) ⩾
|Ai|(
d

⌊d/2⌋

) ,
where in the final step we used the fact that the central binomial coefficient

(
d

⌊d/2⌋

)
is the

largest binomial coefficient in the dth row of Pascal’s triangle. Combining these two inequal-
ities, we find that

1 ⩾
d∑

i=0

Pr(x(i) ∈ A) ⩾
d∑

i=0

|Ai|(
d

⌊d/2⌋

) =
1(
d

⌊d/2⌋

) d∑
i=0

|Ai| =
|A|(
d

⌊d/2⌋

) .
Rearranging shows that |A| ⩽

(
d

⌊d/2⌋

)
, yielding the desired result.
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Exercise 5 Let us say that a graph H has the density Ramsey property if for every δ > 0
and every sufficiently large N , any N -vertex graph G with at least δ

(
N
2

)
edges has a copy of

H.

(b) Prove that if H is bipartite, then H has the density Ramsey property.

(c) Prove that if H is not bipartite, then H does not have the density Ramsey property.

Solution.

(b) Let H be a bipartite graph with parts of size s, t, where s ⩽ t. This means that H
is a subgraph of Ks,t. By Theorem 5.3.2, if G is an N -vertex graph with at least

t
1
sN2− 1

s + sN edges, then Ks,t ⊆ G. Note that if δ, s, t are fixed and N is sufficiently
large, then

δ

(
N

2

)
> t

1
sN2− 1

s + sN,

since the left-hand side grows quadratically in N and the right-hand side grows as
O(N2− 1

s ). This shows that if N is sufficiently large, every graph G with at least δ
(
N
2

)
edges contains a copy of Ks,t, and in particular a copy of H ⊆ Ks,t.

(c) Let H be a non-bipartite graph. For any N , let G be the complete bipartite graph with
parts of sizes ⌊N/2⌋, ⌈N/2⌉, which has at least 1

2

(
N
2

)
edges. Since H is not bipartite,

G has no copy of H. This shows that the density Ramsey property fails for H, with
δ = 1

2
.

Exercise 6(a) The finite unions theorem states the following. For every m, q ⩾ 2, there
exists some N such that in any q-coloring of 2JNK (that is, every subset of JNK receives some
color), there exist disjoint sets S1, . . . , Sm ⊆ JNK such that all of the unions

⋃
i∈I Si, for

∅ ̸= I ⊆ JmK, receive the same color.
Prove that the finite unions theorem implies Theorem 9.3.1.

Solution. Let N0 be such that every q-coloring of 2JN0K contains m disjoint sets such that
all the unions receive the same color. Let N = 2N0 , and fix a q-coloring χ : JNK → JqK.
We define a q-coloring χ′ : 2JN0K → JqK as follows. Given a set S ∈ 2JN0K, we may write the
indicator vector of S, which is a vector in {0, 1}N0 whose ith coordinate is 1 if i ∈ S, and
0 otherwise. We may then interpret this indicator vector as a number written in binary, to
obtain an integer nS ∈ JNK. We then define χ′(S) := χ(nS).

By the choice of N0, there exist disjoint S1, . . . , Sm ∈ 2JN0K such that all of their subset
unions receive the same color. Note that since S1, . . . , Sm are disjoint, we have that nS1∪S2 =
nS1 + nS2 , since if we do the addition on the right-hand side in base 2, we are precisely
summing up the indicator vectors of S1 and S2, with no carries since the sets are disjoint.
More generally, for every ∅ ̸= I ⊆ JmK, we have

n⋃
i∈I Si

=
∑
i∈I

nSi
.
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By the choice of χ′, this implies that all the non-empty subset sums of nS1 , . . . , nSm receive
the same color under χ, proving Theorem 9.3.1.

Exercise 7 For a bipartite graph H and a number δ > 0, let rd(H; δ) denote the minimum
integer N such that every N -vertex graph with at least δ

(
N
2

)
edges has a copy of H. (Note

that this is a well-defined quantity, by problem 5(b).)

(a) By examining your solution to problem 5(b), show that for every bipartite graph H,
there exists some C > 0 such that

rd(H; δ) ⩽

(
1

δ

)C

for all 0 < δ ⩽ 1
2
.

(b) Let H be a graph, and suppose G is an N -vertex graph with δ
(
N
2

)
edges and with no

copy of H. Prove that if q is an integer satisfying (1− δ)q
(
N
2

)
< 1, then

r(H; q) > N.

Hint: Randomly permute the vertices of G to obtain q copies G1, . . . , Gq. Show that
with positive probability, every edge of KN appears in at least one Gi.

(c) Fix a bipartite graph H, and let C be the constant from part (a). Show that

rd

(
H;

2C ln q

q

)
⩽ r(H; q) ⩽ rd

(
H;

1

q

)
,

where the lower bound uses part (b) and the upper bound uses your solution to problem
5(a). This shows that r(H; q) and rd(H; 1/q) are closely related for bipartite H.

Solution.

(a) Recall that our proof of exercise 5(b) showed that rd(H; δ) is at most the least N such
that

δ

(
N

2

)
> t

1
sN2− 1

s + sN,

where H has parts of sizes s ⩽ t. Solving this inequality for N shows that it holds
when N = O((1

δ
)s). By defining C ⩾ s sufficiently large to absorb the big-O term in

the exponent, we get the claimed result.

(b) Let G′ be a random copy of G, obtained by randomly permuting the vertices of G. For
every fixed edge e ∈ E(KN), the probability that e ∈ E(G′) is exaclty δ, since each of
the

(
N
2

)
edges of KN are equally likely to appear in G′, and there are δ

(
N
2

)
edges of G′.

Now, let G1, . . . , Gq be independently random copies of G. By the above, for any
fixed edge e ∈ E(KN), we have that Pr(e /∈ E(Gi)) = 1 − δ. Since G1, . . . , Gq are
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independent, this implies that Pr(e /∈ E(G1) ∪ · · · ∪ E(Gq)) = (1− δ)q. By the union
bound, the probability that some edge of KN does not appear in G1, . . . , Gq is at most
(1− δ)q

(
N
2

)
, which is less than 1 by assumption.

Therefore, there exist some G1, . . . , Gq, each a copy of G, whose edges cover all edges
of KN . We may now define a q-coloring of E(KN), by coloring an edge e according to
the first index i ∈ JqK such that e ∈ E(Gi). Note that the ith color class is a subgraph
of Gi, so since Gi

∼= G is H-free, there is no monochromatic copy of H in this coloring.
This shows that r(H; q) > N .

(c) The upper bound r(H; q) ⩽ rd(H; 1
q
) is immediate, since if N = rd(H; 1

q
), then in

any q-coloring of E(KN), one of the color classes must have at least 1
q

(
N
2

)
edges, and

hence we obtain a monochromatic copy of H. For the lower bound, let δ = 2C ln q
q

and

N = rd(H; δ) − 1. By definition, there is a graph G on N vertices with at least δ
(
N
2

)
edges and no copy of H. Note that

(1− δ)q
(
N

2

)
< e−δqN2 = q−2CN2 ⩽ q−2Cδ−2C =

(
1

qδ

)2C

,

where the final inequality uses that N < rd(H; δ) ⩽ δ−C by part (a). Moreover, by our
choice of δ, we have that δq ⩾ 1, hence we conclude that (1− δ)q

(
N
2

)
< 1. So by part

(b), we conclude that r(H; q) > N , which implies the claimed lower bound.

Homework 11

Exercise 1 There is a natural analogue of the stepping-up construction going from uni-
formity 2 to 3. Namely, given a coloring χ : E(K

(2)
M ) → {red, blue}, we can define ψ :

E(K
(2)
N ) → {red, blue}, where N = 2M , by

ψ({x, y, z}) := χ(δ(x, y), δ(y, z)),

for x < y < z. Prove that this construction does not work, in the following sense: if χ
contains a monochromatic K

(2)
k , then ψ contains a monochromatic K

(3)

2k
. Conclude that this

contstruction cannot prove a better lower bound than r3(m) ⩾ 2Ω(m).

Solution. Suppose there is a monochromatic K
(2)
k in χ, and suppose for simplicity that the

vertices of this K
(2)
k are M − k + 1, . . . ,M , where we identify V (KM) with JMK. Recall

that we think of V (KN) as the leaves of a complete binary tree of depth M . Note that
among the first 2k leaves in this tree, that is among the vertices v1, . . . , v2k , we have that
δ(vi, vj) ∈ {M − k+1, . . . ,M}. Indeed, these first 2k vertices are all descendants of a single
node in the tree at depth M − k+1, hence the δ of any pair—the depth of the first common
ancestor—is at least M − k+1. But by the definition of ψ, this shows that these 2k vertices
form a monochromatic K

(3)

2k
under ψ.
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In particular, if we want to obtain a lower bound on r3(m) in this way, we would need
to set m = 2k + 1 for some k. But then this construction would only show that

r3(m) ⩾ 2r2(k+1)−1.

But since k is logarithmic in m, this cannot do better than proving an exponential lower
bound on r3(m).

Exercise 2

(b) Let Sk be the 3-uniform hypergraph with vertex set w0, . . . , wk whose hyperedges are
all triples {w0, wi, wj} for 1 ⩽ i, j ⩽ k. By following the proof of Theorem 10.1.4, prove
that

r3(Sk, K
(3)
k+1) ⩽ 2Ck4

for some absolute constant C > 0.

(c) By coloring randomly, prove that

r3(Sk, K
(3)
k+1) ⩾ 2ak

c

,

for some absolute constants a, c > 0. What is the largest value of c you can obtain?

Solution.

(b) Let N = 2Ck4 for an appropriate constant C, and fix a 2-coloring of E(K
(3)
N ). As

in the proof of Theorem 10.1.4, we begin by constructing a sequence of vertices
w1, . . . , wt, wt+1 with the property that there is a coloring χ : E(K

(2)
t ) such that

ψ({wi, wj, wℓ}) = χ({wi, wj})

for all 1 ⩽ i < j < ℓ ⩽ t + 1. As in the proof of Theorem 10.1.4, we have to pay a
factor of 2i in order to find vertex i in this sequence. In other words, we can construct

this sequence up to wt+1 so long as N ⩾ 21+(
t
2). By our choice of N , we conclude that

we can do this up to t = k2.

We now consider the coloring χ of E(K
(2)
t ). By part (a), this coloring either contains a

blue Kk or a red red ordered K1,k−1 (where the central vertex precedes the k−1 leaves
in the ordering). In the first case, as in the proof of Theorem 10.1.4, this blue Kk in χ

yields a blue K
(3)
k+1 in ψ. In the second case, we claim that we obtain a red copy of Sk.

Indeed, say for simplicity that w1, . . . , wk form the ordered red copy of K1,k−1 under
χ. Then every hyperedge of the form {w1, wi, wj}, where 2 ⩽ i < j ⩽ k is red under
ψ. Moreover, we can also add wt+1 to this, and obtain the desired red copy of Sk.
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(c) Let N = kk/18 and p = 1√
k
= N−9/k. We color every edge of K

(3)
N randomly, giving it

color red with probability p and blue with probability 1− p, and making these choices
independently.

First, we estimate the probability that there is a red copy of Sk. For a given set of

k + 1 vertices, the probability that it forms a copy of Sk is at most (k + 1)p(
k
2), where

we have k + 1 choices for which vertex is w0, and then we need
(
k
2

)
edges to all be

colored red. By the union bound, the probability that some set of k + 1 vertices form
a red Sk is at most(

N

k + 1

)
· (k + 1) · p(

k
2) ⩽ N2kpk

2/3 = (N2pk/3)k = (N2N−3)k <
1

2
,

where we plug in our choice of p = N−9/k. On the other hand, the probability that
there is a blue K

(3)
k+1 is similarly at most(

N

k + 1

)
(1− p)(

k+1
3 ) ⩽ N2ke−pk3/6 = (N2e−pk2/6)k = exp

(
2 lnN − pk2

6

)k

.

Now, we have that

2 lnN − pk2

6
=
k

9
ln k − k3/2

6
,

which is a quantity tending to −∞ as k → ∞. Hence, for sufficiently large k, we have
that this quantity is less than −1, and hence the probability of having a blue K

(3)
k+1 is

also less than 1
2
. This shows that r3(Sk, K

(3)
k+1) > N for k sufficiently large. This in

particular implies the claimed bound, with c = 1.

Exercise 3(b) A hyperforest is a t-uniform hypergraph H with the following property.
The hyperedges of H may be ordered as e1, . . . , em so that, for every 2 ⩽ i ⩽ m, we have
ei∩

⋃i−1
j=1 ej ⊂ ej′ for some 1 ⩽ j′ ⩽ i−1. In other words, each edge ei is obtained as follows:

we pick some ej′ , for 1 ⩽ j′ ⩽ i− 1, pick some subset S ⊂ ej′ , and define ei to consist of S
plus t− |S| new vertices, which were not yet used in any of e1, . . . , ei−1.

Prove that for any t, q ⩾ 2, there exists some Ct,q > 0 such that the following holds. If
H is a t-uniform hyperforest on n vertices, then

rt(H; q) ⩽ Ct,qn.

Hints: What are good analogues of Lemmas 5.2.2 and 5.2.3 in the t-uniform setting? Why
do we require ei to be glued along a subset of some ej′ , rather than on a subset of

⋃i−1
j=1 ej?

Solution. Let G be a t-uniform hypergraph on N ⩾ n vertices and with at least tnN t−1

hyperedges. Let us call a set S ⊆ V (G) poor if |S| ⩽ t− 1 and if |S| lies at least 1 but fewer
than n

(
N

t−1−|S|

)
hyperedges (that is, the number of vertices x such that S ∪ {x} ∈ E(G) is

between 1 and n
(

N
t−1−|S|

)
− 1). We repeatedly do the following operation: if there is a poor

set S, we delete from E(G) all hyperedges containing S.
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In each step of this process, we delete strictly fewer than n
(

N
t−1−|S|

)
hyperedges, by the

definition of a poor set. Moreover, if we delete all edges containing S, we will never do
so again, since at this point S will never again be poor (since it is now contained in zero
hyperedges). Sicne there are

(
N
s

)
sets S of size s, in this process, the total number of edges

we delete from G is less than

t−1∑
s=0

n

(
N

t− 1− s

)(
N

s

)
<

t−1∑
s=0

nN t−1−s ·N s = tnN t−1

In other words, we have proved the following lemma: if |E(G)| ⩾ tnN t−1, then there is a
subhypergraph G ′ ⊆ G with V (G ′) = V (G) and E(G ′) ̸= ∅, such that no set is poor in G ′.

Now, let H be any t-uniform hyperforest with n vertices. We claim that any G ′ with
the property above contains H as a subhypergraph. This is proved in essentially the same
way as Lemma 5.2.3, namely by induction on m, the number of edges of H. The base
case m = 1 is trivial, since we assumed that E(G ′) ̸= ∅ and that G ′ has N ⩾ n vertices.
Inductively, suppose we have proved the claim for m − 1, and let H have m edges. Order
these edges as e1, . . . , em, as in the definition of a hyperforest. Let H′ be obtained from H
by deleting em and all vertices which are used in no hyperedge other than em. H′ is another
hyperforest, now with m − 1 hyperedges, so by the inductive hypothesis we have H′ ⊆ G ′.
By the definition of a hyperforest, we have that em ∩ V (H′) ⊆ ej′ for some j′ ⩽ m− 1, that
is, that em contains some set S ⊆ ej′ , plus t − |S| new vertices not appearing in V (H′).
Consider how ej′ is embedded into G ′. The set S is contained in ej′ ∈ E(G ′), hence it is
contained in at least one hyperedge of G ′, implying that it is contained in at least n

(
N

t−1−|S|

)
such hyperedges, as it is not poor. However, the total number of these hyperedges that use
at least one vertex already used in embedding V (H′) \S is at most (n− 1)

(
N

t−1−|S|

)
, since we

have |V (H′) \ S| ⩽ n− 1 choices for this repeated vertex, and then at most
(

N
t−1−|S|

)
choices

for the remaining vertices. In other words, we are able to find a hyperedge of G ′ containing
S and which uses no vertices of V (H′) \ S. Then we may extend the embedding of H′ to an
embedding of H by sending em to this new hyperedge.

What we have proved, therefore, is that if V (G) = N ⩾ n and |E(G)| ⩾ tnN t−1, then
G contains every n-vertex hyperforest as a subhypergraph (because it contains a non-empty
subhypergraph G ′ with no poor sets, which in turn containsH). Finally, let Ct,q be sufficiently
large so that

1

q

(
Ct,qn

t

)
⩾ tn(Ct,qn)

t−1

for all n ⩾ t. Note that such a Ct,q exists, and depends only on t, q, since the main term of
the left-hand side is Ct

t,qn
t/(t!q), whereas the main term of the right-hand side is Ct−1

t,q tn
t,

which is of lower order in Ct,q. Then let N = Ct,qn, and consider any q-coloring of E(K
(t)
N ).

One of the color classes must have at least 1
q

(
N
t

)
edges, which by the above implies that this

color contains any n-vertex hyperforest as a subgraph.
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Homework 12

Exercise 2 Let N = r3(k), and let p1, . . . , pN be points in R2 with no three collinear.

Define χ : E(K
(3)
N ) → {even, odd} by

χ({i, j, ℓ}) :=

{
even if there are an even number of points pm in the triangle pipjpℓ,

odd otherwise.

Prove that a monochromatic K
(3)
k under χ corresponds to k points in convex position. Con-

clude that Kl(k) ⩽ r3(k), and in particular obtain a new proof of Theorem 10.3.4.

Solution. Let p1, p2, p3, p4 be four points not in convex position, say p4 is contained in the
convex hull of p1, p2, p3. Every point pm in the convex hull of p1, p2, p3, apart from p4 itself,
must lie in exactly one of the three triangles {p1, p2, p4}, {p1, p3, p4}, {p2, p3, p4}. That is, the
total number of points in the triangle {p1, p2, p3} is the sum of the number of points in the
three smaller triangles, plus one (for the point p4). In particular, if all three smaller triangles
contain an even number of points, then the large triangle contains an odd number of points,
and vice versa.

Therefore, in any monochromatic K
(3)
k under χ, every set of 4 points is in convex position.

Therefore, every monochromatic K
(3)
k under χ yields a set of k points in convex position, by

Lemma 10.3.5. That shows that if N = r3(k), then any collection of N points in the plane,
no three collinear, contains k in convex position. This proves Kl(k) ⩽ r3(k).

Exercise 3 A collection of points in Rd is said to be in general position if no d+1 of them
lie on a (d− 1)-dimensional hyperplane. (So in two dimensions, this says that no three are
collinear, in three dimensions it says that no four are coplanar, etc.)

(a) Prove that among any d+3 points in Rd which are in general position, there are d+2
in convex position.

(b) Given k ⩾ d + 2, let N = rd+2(d + 3, k). Prove that among any N points in Rd in
general position, there are k in convex position.

(c) Prove that among any Kl(k) points in Rd, no three collinear, there are k in convex
position.

[This is stronger than the result in (b) in two ways: the bound is independent of d,
and the assumption is weakened from general position to no three collinear.]

Solution.

(a) Fix points p1, . . . , pd+3 in Rd which are in general position. Let P be their convex hull;
P is a convex polytope in Rd, so it has at least d + 1 vertices. If P has at least d + 2
vertices, then these vertices form a collection of at least d+2 points in convex position,
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and we are done. Therefore, we may assume that P has exactly d + 1 vertices, say
p1, . . . , pd+1, and that the remaining two points pd+2, pd+3 are in the interior of P .

Consider the hyperplane H passing through the points p1, . . . , pd−2, pd+2, pd+3 (this is
a collection of d points in general positions, so there is a unique hyperplane pass-
ing through them). By the general position assumption, the three remaining points
pd−1, pd, pd+1 do not lie on H. Therefore, at least two of them must lie on the same
side of H. Say without loss of generality that pd and pd+1 lie on the same side of H.

We now claim that p1, . . . , pd−2, pd+2, pd+3, pd, pd+1 (i.e. all points except pd−1) are in
convex position. Geometrically, this should hopefully be clear (the picture in any
dimension is essentially the same as the 2-dimensional picture, where we encountered
the same fact in the proof of Proposition 10.3.3). For a formal proof, it suffices to show
that each of these points is a vertex of their convex hull. For the original vertices of
P , that is, all points except pd+2, pd+3, this is immediate—the vertices of P are not in
the convex hull of all of the remaining points, hence they are also not in the convex
hull of any subset of the remaining points. So we only need to verify that pd+2, pd+3

are vertices.

By translating rotating Rd, we may assume that H is the hyperplane defined by the
equation xd = 0, and that pd, pd+1, which lie on one side ofH, both have final coordinate
that is positive. But this shows that they cannot be used in any convex combination
yielding pd+2 or pd+3, both of which have final coordinate equal to 0. So it suffices to
prove that pd+2, pd+3 are vertices of the convex hull of the points in H. But this is
clear, since H is a copy of Rd−1, and we have put on it d points in general position,
which must therefore be in convex position.

(b) Let N = rd(d + 3, k), and let p1, . . . , pN be points in general position in Rd. Define

a coloring χ : E(K
(d+2)
N ) → {red, blue} by coloring a (d + 2)-tuple red if it is in

convex position, and blue otherwise. By part (a), there cannot be a red K
(d+2)
d+3 in this

coloring, so there must exist a blue K
(d+2)
k . But by the d-dimensional generalization of

Lemma 10.3.5, this is a set of k points in convex position.

(c) Let N = Kl(k), and let p1, . . . , pN be N points in Rd with no three collinear. Pick
a random 2-dimensional plane H through the origin in Rd and let q1, . . . , qN be the
orthogonal projections of p1, . . . , pN onto H. Note that for every triple i, j, ℓ, it is a
measure-zero event that qi, qj, qℓ are collinear (this event is precisely the event that
the plane containing these points is orthogonal to H). Since there are finitely many
such triples, we see that with probability 1, the points q1, . . . , qn ∈ H ∼= R2 have no
collinear triples. By Theorem 10.3.4, there exist k of these points in convex position,
say q1, . . . , qk. But this implies that p1, . . . , pk are also in convex position, since if, say,
pk were in the convex hull of p1, . . . , pk−1, then also qk would be in the convex hull of
q1, . . . , qk−1.
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Exercise 5 Prove that any sequence of (not necessarily distinct) real numbers of length
(k−1)3+1 contains a subsequence of length k that is strictly increasing, strictly decreasing,
or constant. Prove that this bound is best possible.

Solution. Let N = (k − 1)3 + 1, and let a1, . . . , aN be a sequence of real numbers. Let
δ(m), ι(m), κ(m) be the length of the longest strictly decreasing, strictly increasing, and
constant sequence, respectively, ending at am. If δ(m) ⩾ k, ι(m) ⩾ k, or κ(m) ⩾ k for any
m, we are done, so we may assume that 1 ⩽ δ(m), ι(m), κ(m) ⩽ k − 1 for all m. So there
are only (k − 1)3 options for the triple (δ(m), ι(m), κ(m)), so there must exist two indices
ℓ < m such that δ(ℓ) = δ(m), ι(ℓ) = ι(m), κ(ℓ) = κ(m). But this is impossible: if aℓ < am
then ι(ℓ) < ι(m), if aℓ > am then δ(ℓ) < δ(m), and if aℓ = am then κ(ℓ) < κ(m). This
contradiction completes the proof.

To see that this bound is tight, we first consider the following sequence of numbers:

k−1, k−2, . . . , 2, 1, 2(k−1), 2(k−1)−1, . . . , k+1, k, . . . (k−1)2, (k−1)2−1, . . . , (k−1)2−(k−2).

In other words, we have k − 1 decreasing sequences of length k − 1, where these decreasing
sequences are arranged in increasing order. This is a sequence of (k − 1)2 distinct real
numbers. Note that the longest decreasing subsequence has length k − 1, since no sequence
intersecting two “blocks” can be decreasing. Moreover, the longest increasing subsequence
also has length k − 1, since no sequence using two elements from a single block can be
increasing.

Now, simply repeat each element of this sequence k−1 times. We thus obtain a sequence
of (k − 1)3 real numbers; we have not increased the length of the longest strictly increasing
or strictly decreasing subsequence, and of course every constant subsequence has length at
most k − 1. This shows that the result above is best possible, in that it becomes false if we
replace (k − 1)3 + 1 by (k − 1)3.

Exercise 6 Let us say that a coloring of E(Kk) is semi-starry if the vertices can be sorted
as v1, . . . , vk such that all edges vivj, where j > i, are of the same color. (The only difference
from a starry coloring is that we do not require these colors to be distinct.)

(a) Prove that if N ⩾ (k − 1)2 + 1, then any semi-starry coloring of E(KN) contains
a monochromatic or starry Kk. Such a result was implicitly used in the proof of
Theorem 11.2.2.

(b) Prove that if N ⩾ k4k, then any coloring of E(KN), with an arbitrary number of colors,
contains a rainbow or a semi-starry Kk.

(c) Show that there exists a coloring of E(KN), where N = kk, with no rainbow or semi-
starry Kk. Thus, the result of part (b) is best possible up to the constant factor in the
exponent.

Solution.
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(a) Let N ⩾ (k− 1)2 +1, and let E(KN) be colored in a semi-starry way. Let the vertices
of KN be v1, . . . , vN , sorted according to this semi-starry coloring. Let c1, . . . , cN be
the colors used in this coloring, i.e. all edges vivj where j > i receive color ci. If k
of these colors are equal, then the corresponding vertices form a monochromatic Kk.
If not, then every color is used at most k − 1 times, meaning that at least k distinct
colors are used; any k vertices using distinct colors form a starry Kk.

(b) We argue as in the proof of Theorem 11.2.2. Let N = k4k, and fix an arbitrary coloring
of E(KN). We let S0 = V (KN). We now run the following process, for all i ⩾ 1.

(a) If |Si−1| < 2, stop the process.

(b) If every vertex in Si−1 is incident to at most |Si−1|/k4 edges in each color, we apply
Lemma 11.2.3 to Si−1 with M = |Si−1| ⩾ 2. We conclude that Si−1 contains a
rainbow Kk, completing the proof.

(c) If not, there is some vertex vi ∈ Si−1 and some color ci such that vi is incident to at
least |Si−1|/k4 edges of color ci in Si−1. We let Si be the ci-colored neighborhood
of vi in Si−1.

(d) Increment i by 1 and return to step (a).

If we ever find a rainbow Kk in this process, we are done, so we may assume that
that never happens. Note that as long as the process continues, we have that |Si| ⩾
|Si−1|/k4, so by induction we have that |Si| ⩾ k4(k−i). Hence we can continue this
process at least until step i − 1 = k − 1. In other words, this process produces a
sequence v1, . . . , vk of vertices and c1, . . . , ck of colors, with the property that each vi
is adjacent in color ci to all vj with j > i. But this is precisely a semi-starry Kk, so we
are again done.

(c) By coloring randomly with
(
k
2

)
− 1 colors, we have no rainbow Kk, and one can show

that there is no semi-starry Kk with positive probability as long as N = kk−o(k). This is
almost the claimed bound, but to get the precise result claimed we use a deterministic
construction.

Let ℓ =
(
k
2

)
− 1. Divide V (KN) into ℓ parts A1, . . . , Aℓ. Define colors c0, . . . , cℓ−1, and

color all edges between Ai and Aj with color c(i+j) mod ℓ. Note that this implies that
each block Ai is joined by a distinct color to each other block.

We now iterate this construction inside each Ai. Namely, we divide each Ai into
Ai,1, . . . , Ai,ℓ, and color all edges between Ai,j and Ai,j′ by color c

(1)
(j+j′) mod ℓ, where the

colors c
(1)
0 , . . . , c

(1)
ℓ−1 are a set of ℓ new colors. We keep iterating this down to k − 1

layers. Thus, we can do this construction for N = ℓk−1.

We claim that this coloring has no rainbow or semi-starry Kk. To see this, consider k
vertices in V (KN). If they all lie in distinct parts Ai, then they do not form a semi-
starry Kk (since each vertex would be incident to k − 1 edges of different colors), and
they do not form a rainbow Kk since only ℓ <

(
k
2

)
colors are used between the parts
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A1, . . . , Aℓ. Therefore, at least two vertices must be in the same part Ai. We now claim
that in fact, at least k − 1 of the vertices have to be in the same part. Indeed, if this
is not the case, then there are either two parts, say A1, A2, each containing at least
two vertices, or there are three parts, say A1, A2, A3 such that there are two vertices
in A1 and at least one vertex in each of A2, A3. In the first case, we do not have a
rainbow Kk, since all four edges between A1 and A2 receive the same color, and we
do not have a semi-starry Kk since the edges inside A1, A2 receive distinct colors from
those between A1, A2. Similarly, in the second case, we do not have a rainbow or a
semi-starry Kk.

Therefore, it must be the case that at least k − 1 of the vertices lie in the same part
Ai. But we may now repeat this argument in the second layer of the construction, and
conclude that at least k − 2 vertices lie in the same part Ai,j. Continuing all the way
down, and recalling we only do k−1 layers of iteration, we see that there is no rainbow
or semi-starry Kk in this coloring.

The final thing is to note that

N = ℓk−1 =

((
k

2

)
− 1

)k−1

⩾ kk,

where the final inequality holds for all k ⩾ 5.

Exercise 7 Prove the bipartite canonical Ramsey theorem, which states the following. For
every k ⩾ 2, there exists some N such that in any coloring of E(KN,N), with an arbitrary
number of colors, there is a Kk,k which is monochromatic, rainbow, or starry.

(Here, a Kk,k is rainbow if all k2 edges receive different colors, and is starry if it is colored
by exactly k distinct colors, each of whose color classes is a star K1,k.)

Solution. We begin by proving the following lemma, a bipartite analogue of Lemma 11.2.3.
Consider a complete bipartite graph with parts X, Y , and suppose that its edges are colored
with an arbitrary number of colors. If every x ∈ X is incident to at most |Y |/k5 edges in
every color, and every y ∈ Y is incident to at most |X|/k5 edges in every color, then there
is a rainbow Kk,k in this coloring.

To prove this, we let x1, . . . , xk ∈ X, y1, . . . , yk ∈ Y be uniformly random sets of k distinct
vertices in each part (that is, the vertices in X are chosen uniformly at random from all

(|X|
k

)
options, and similarly for Y ). We claim that with positive probability they form a rainbow
Kk,k. To see this, let us first estimate the probability that xiyj and xiyℓ receive the same
color, for indices i, j, ℓ ∈ JkK. Conditioning on the outcome of xi, yj, there are at most |Y |/k5
vertices y ∈ Y such that xiy has the same color as xiyj, and yℓ is chosen uniformly at random
from Y \ {y}. Hence the conditional probability that χ(xiyℓ) = χ(xiyj) is at most

1

|Y | − 1
· |Y |
k5

<
2

k5
.
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Since this upper bound holds regardless of the outcome of the conditioning, we conclude that
it holds without conditioning. There are at most k3/2 choices for i, j, ℓ (since this event is
unchanged if we swap j and ℓ), so by the union bound the probability that χ(xiyj) = χ(xiyℓ)
for some such triple is at most (k3/2) · (2/k5) = 1/k2 ⩽ 1

4
, since k ⩾ 2. By the exact same

argument, the probability that χ(xjyi) = χ(xℓyi) for some such triple is at most 1
4
.

Similarly, we find that the probability that χ(xiyj) = χ(xℓym) is at most 2/k5. Since there
are at most k4/4 choices for these indices (since we may swap i, ℓ and j,m), the probability
that this happens for any such 4-tuple is at most (k4/4) · (2/k4) = 1/(2k) ⩽ 1

4
. So the

probability that our chosen Kk,k is not rainbow is at most 1
4
+ 1

4
+ 1

4
< 1, hence there must

exist a rainbow Kk,k in the coloring. This proves the lemma.
We now let N = k10k

2
, and argue as follows. Let X0, Y0 be sets of size N , and color

the complete bipartite graph between X0 and Y0 with an arbitrary number of colors. We
repeatedly do the following algorithm: if there is some xi ∈ Xi with at least |Yi|/k5 neighbors
in some color cXi , we set Xi+1 = Xi \ {xi} and set Yi to be the cXi -colored neighborhood of
xi in Yi. Similarly, if there is some yi ∈ Yi with at least |Xi|/k5 neighbors in some color cYi ,
we set Yi+1 = Yi \ {yi} and Xi+1 to be the cYi -colored neighborhood of yi in Xi. If neither
of these options is possible, then we apply the lemma above to find a rainbow Kk,k, so we
may assume that we can always keep this process going. Note that at each step, we have
|Xi+1| ⩾ |Xi|/k5, |Yi+1| ⩾ |Yi|/k5, since at every step we either remove one vertex from Xi

(resp. Yi) or shrink it by a factor of k5. Hence, by the choice of N , we can keep this process
going until step i = 2k2. By the pigeonhole principle, at least half of the steps must have
been done from one side, say X, so we pulled out k2 special vertices from X, associated with
k2 special colors. If k of these colors are identical we find a monochromatic Kk,k, and if not
then we must have used at least k distinct colors, yielding a starry Kk,k.


