1. (a) Prove that for any positive integer q, there exists a positive integer $N=N(q)$ such that the following holds. For any q-coloring of $\llbracket N \rrbracket$, there exist $x, y, z \in \llbracket N \rrbracket$ such that $x, y, z, x+y, y+z, x+y+z$ all receive the same color. (Note that $x+z$ is omitted!)
(b) Generalize the previous part as follows. Prove that for all positive integers q, t, there exists a positive integer $N=N(q, t)$ such that the following holds. For any q-coloring of $\llbracket N \rrbracket$, there exist $x_{1}, \ldots, x_{t} \in \llbracket N \rrbracket$ such that the sums $\sum_{i=a}^{b} x_{i}$ all receive the same color, for all non-empty $1 \leqslant a \leqslant b \leqslant t$.
(c) Prove that in part (b), one can moreover ensure that the numbers x_{1}, \ldots, x_{t} are all distinct.
$\uparrow 2$. In class, we proved that $r(k)<4^{k}$ using the Erdős-Szekeres argument. Ramsey's original proof used a different argument, which yielded the worse bound $r(k) \leqslant k$!. Find a natural argument yielding this bound. (That is, don't simply quote or rederive the Erdős-Szekeres argument!)
2. (a) Prove that $r(3,3)=6, r(3,4)=9$, and $r(4,4) \leqslant 18$.
\star (b) Prove that $r(4,4)=18$.
? (c) The best known bounds on $r(5,5)$ are $43 \leqslant r(5,5) \leqslant 48$. Can you improve either of these bounds?
3. (a) By more carefully analyzing the proof of Theorem 2.2.2 in the notes, prove that

$$
r(k)>\left(\frac{1}{e \sqrt{2}}-o(1)\right) k 2^{k / 2}
$$

* (b) Improve this bound by a constant factor.
? (c) Improve this bound by a super-constant factor.

5. Given two graphs G, H, their lexicographic product $G \cdot H$ is defined as follows. Its vertex set is $V(G \cdot H)=V(G) \times V(H)$, and two vertices $(a, b),(c, d)$ are adjacent if either $a c \in E(G)$ or $a=c$ and $b d \in E(H)$.
(a) Compute the size of the largest clique and the largest independent set in $G \cdot H$.
(b) Prove that the Ramsey number $r(k)$ satisfies $r(k+1)>k^{\log _{2}(5)}$ for all k that are powers of 2 .
[Note that this already disproves Turán's belief that $r(k)$ may grow only quadratically as a function of k.]
\star means that a problem is hard.
? means that a problem is open.
$\overleftrightarrow{\jmath}$ means that a problem is not directly related to the topic of the course.

* (c) Using the same approach, find an explicit construction of a coloring witnessing that $r(k)$ grows super-polynomially in k. In other words, for any $C>0$ and any sufficiently large k, find an explicit 2-coloring of $E\left(K_{N}\right)$, where $N=k^{C}$, with no monochromatic clique of order k.
\star (d) By carefully working through the dependencies in (c), prove via an explicit coloring that

$$
r(k)>k^{c \frac{\log \log \log k}{\log \log \log \log k}}
$$

for some absolute constant $c>0$. Can you further improve this bound?
? (e) Can you use such an approach to resolve Open problem 2.2.3?

