ETH Ziirich Ramsey Theory—Spring 2024 Homework #10

1.

A function ¢ : [k]* — [k]? is the same as a tuple ¢ = (1, ..., @q) of functions ¢, :
[k]° — [k]. Such a function ¢ is called a combinatorial mapping if every component ¢;
is either a constant function or a coordinate function, i.e. ¢;(z1,...,z,) = x; for some
i. An s-dimensional combinatorial subspace of [k]? is the image of a combinatorial
mapping ¢ : [k]* — [k]?¢ which is furthermore injective.

(a) Prove that a 1-dimensional combinatorial subspace is the same as a combinatorial
line, and convince yourself that this is a reasonable generalization of combinatorial
lines for s > 2.

(b) Show that s-dimensional combinatorial subspaces of [k]? are in bijection with
s-roots, which are words p € {1,...,k,*1,...,*,}¢ in which each star symbol x;
appears at least once.

(c) Prove that for every k,s,q > 1, there exists some d such that any g-coloring of
[k]? contains a monochromatic s-dimensional combinatorial subspace.
Hint: Prove that d = s- HJ(k®; q) suffices.

(a) Suppose that there is a coloring x : [N]* — [¢] with no homothetic copy of
S =1{(1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)}.

Using y, construct a protocol for ¢ players to compute the exactly-N function using
at most t[log q] bits of communication in the number-on-the-forehead model.

(b) Reinterpret the result of (a) as saying the following: If the Gallai-Witt theorem
is false for this choice of S, then there is a protocol to compute the exactly-N
function using only a constant number of bits of communication.

In other words, we proved in Theorem 9.4.1 that the Gallai-Witt theorem implies
a super-constant lower bound for this communication complexity, and (a) gives

a converse: a super-constant lower bound for this communication complexity
implies the Gallai-Witt theorem for this choice of S.

(¢) Improve your protocol in (a) to one using only ¢ + [log ¢| bits of communication.

. Prove the density Hales—Jewett theorem for k = 2. In other words, prove that for every

§ > 0 and every sufficiently large d, every subset A C [2]¢ with |A| > 62 contains a
combinatorial line.

Prove that there is no density version of Schur’s theorem.

Let us say that a graph H has the density Ramsey property if for every 6 > 0 and every
sufficiently large N, any N-vertex graph G with at least ¢ (J;[ ) edges has a copy of H.

(a) Show that if H has the density Ramsey property, then r(H;q) is finite for all ¢,
by applying the definition with § = %.

[This exercise is of course a bit silly, since we already know that r(H; ¢) is finite—
the point is just to understand how such density results are stronger than the
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corresponding coloring results, just as Szemerédi’s theorem is stronger than van
der Waerden’s theorem.]

(b) Prove that if H is bipartite, then H has the density Ramsey property.
(c) Prove that if H is not bipartite, then H does not have the density Ramsey prop-
erty.

6. The finite unions theorem states the following. For every m,q > 2, there exists some
N such that in any g-coloring of 2I] (that is, every subset of [IV] receives some color),
there exist disjoint sets Si,..., S, C [IN] such that all of the unions (J,., S;, for
@ # I C [m], receive the same color.

(a) Prove that the finite unions theorem implies Theorem 9.3.1.
* (b) Prove the finite unions theorem.
7. For a bipartite graph H and a number § > 0, let r4(H;0) denote the minimum integer

N such that every N-vertex graph with at least 0 (];7 ) edges has a copy of H. (Note
that this is a well-defined quantity, by problem 5(b).)

(a) By examining your solution to problem 5(b), show that for every bipartite graph
H, there exists some C' > 0 such that

ra(H;6) < (%)C

fora110<(5<%.

(b) Let H be a graph, and suppose G is an N-vertex graph with ¢ (];) edges and with
no copy of H. Prove that if ¢ is an integer satisfying (1 — 5)‘1(];[) < 1, then

r(H;q) > N.
Hint: Randomly permute the vertices of G' to obtain ¢ copies Gy,...,G,. Show

that with positive probability, every edge of Ky appears in at least one Gj;.
(c) Fix a bipartite graph H, and let C' be the constant from part (a). Show that

2C'1 1
Td<H; nq><7’(H;q)<?"d<H;—>,
q q

where the lower bound uses part (b) and the upper bound uses your solution
to problem 5(a). This shows that r(H;q) and rq(H;1/q) are closely related for
bipartite H.

*(d) Let Sz(k; ) denote the least N such that every A C [N] with |A| > d N contains
a k-AP. Using similar arguments, try to relate W (k;q) to Sz(k;¢), proving both
upper and lower bounds involving § = 1/q.

Hint: Tt may be helpful to work in Z/N rather than in [N].




