1. A function $\varphi: \llbracket k \rrbracket^{s} \rightarrow \llbracket k \rrbracket^{d}$ is the same as a tuple $\varphi=\left(\varphi_{1}, \ldots, \varphi_{d}\right)$ of functions φ_{j} : $\llbracket k \rrbracket^{s} \rightarrow \llbracket k \rrbracket$. Such a function φ is called a combinatorial mapping if every component φ_{j} is either a constant function or a coordinate function, i.e. $\varphi_{j}\left(x_{1}, \ldots, x_{s}\right)=x_{i}$ for some i. An s-dimensional combinatorial subspace of $\llbracket k \rrbracket^{d}$ is the image of a combinatorial mapping $\varphi: \llbracket k \rrbracket^{s} \rightarrow \llbracket k \rrbracket^{d}$ which is furthermore injective.
(a) Prove that a 1-dimensional combinatorial subspace is the same as a combinatorial line, and convince yourself that this is a reasonable generalization of combinatorial lines for $s \geqslant 2$.
(b) Show that s-dimensional combinatorial subspaces of $\llbracket k \rrbracket^{d}$ are in bijection with s-roots, which are words $\rho \in\left\{1, \ldots, k, *_{1}, \ldots, *_{s}\right\}^{d}$ in which each star symbol $*_{i}$ appears at least once.
(c) Prove that for every $k, s, q \geqslant 1$, there exists some d such that any q-coloring of $\llbracket k \rrbracket^{d}$ contains a monochromatic s-dimensional combinatorial subspace. Hint: Prove that $d=s \cdot \operatorname{HJ}\left(k^{s} ; q\right)$ suffices.
2. (a) Suppose that there is a coloring $\chi: \llbracket N \rrbracket^{t} \rightarrow \llbracket q \rrbracket$ with no homothetic copy of

$$
S:=\{(1,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)\} .
$$

Using χ, construct a protocol for t players to compute the exactly- N function using at most $t\lceil\log q\rceil$ bits of communication in the number-on-the-forehead model.
(b) Reinterpret the result of (a) as saying the following: If the Gallai-Witt theorem is false for this choice of S, then there is a protocol to compute the exactly- N function using only a constant number of bits of communication.
In other words, we proved in Theorem 9.4.1 that the Gallai-Witt theorem implies a super-constant lower bound for this communication complexity, and (a) gives a converse: a super-constant lower bound for this communication complexity implies the Gallai-Witt theorem for this choice of S.
(c) Improve your protocol in (a) to one using only $t+\lceil\log q\rceil$ bits of communication.
3. Prove the density Hales-Jewett theorem for $k=2$. In other words, prove that for every $\delta>0$ and every sufficiently large d, every subset $A \subseteq \llbracket 2 \rrbracket^{d}$ with $|A| \geqslant \delta 2^{d}$ contains a combinatorial line.
4. Prove that there is no density version of Schur's theorem.
5. Let us say that a graph H has the density Ramsey property if for every $\delta>0$ and every sufficiently large N, any N-vertex graph G with at least $\delta\binom{N}{2}$ edges has a copy of H.
(a) Show that if H has the density Ramsey property, then $r(H ; q)$ is finite for all q, by applying the definition with $\delta=\frac{1}{q}$.
[This exercise is of course a bit silly, since we already know that $r(H ; q)$ is finite the point is just to understand how such density results are stronger than the
corresponding coloring results, just as Szemerédi's theorem is stronger than van der Waerden's theorem.]
(b) Prove that if H is bipartite, then H has the density Ramsey property.
(c) Prove that if H is not bipartite, then H does not have the density Ramsey property.
6. The finite unions theorem states the following. For every $m, q \geqslant 2$, there exists some N such that in any q-coloring of $2^{\llbracket N \rrbracket}$ (that is, every subset of $\llbracket N \rrbracket$ receives some color), there exist disjoint sets $S_{1}, \ldots, S_{m} \subseteq \llbracket N \rrbracket$ such that all of the unions $\bigcup_{i \in I} S_{i}$, for $\varnothing \neq I \subseteq \llbracket m \rrbracket$, receive the same color.
(a) Prove that the finite unions theorem implies Theorem 9.3.1.

* (b) Prove the finite unions theorem.

7. For a bipartite graph H and a number $\delta>0$, let $r_{d}(H ; \delta)$ denote the minimum integer N such that every N-vertex graph with at least $\delta\binom{N}{2}$ edges has a copy of H. (Note that this is a well-defined quantity, by problem 5(b).)
(a) By examining your solution to problem 5(b), show that for every bipartite graph H, there exists some $C>0$ such that

$$
r_{d}(H ; \delta) \leqslant\left(\frac{1}{\delta}\right)^{C}
$$

for all $0<\delta \leqslant \frac{1}{2}$.
(b) Let H be a graph, and suppose G is an N-vertex graph with $\delta\binom{N}{2}$ edges and with no copy of H. Prove that if q is an integer satisfying $(1-\delta)^{q}\binom{N}{2}<1$, then

$$
r(H ; q)>N
$$

Hint: Randomly permute the vertices of G to obtain q copies G_{1}, \ldots, G_{q}. Show that with positive probability, every edge of K_{N} appears in at least one G_{i}.
(c) Fix a bipartite graph H, and let C be the constant from part (a). Show that

$$
r_{d}\left(H ; \frac{2 C \ln q}{q}\right) \leqslant r(H ; q) \leqslant r_{d}\left(H ; \frac{1}{q}\right)
$$

where the lower bound uses part (b) and the upper bound uses your solution to problem 5(a). This shows that $r(H ; q)$ and $r_{d}(H ; 1 / q)$ are closely related for bipartite H.
\star (d) Let $\mathrm{Sz}(k ; \delta)$ denote the least N such that every $A \subseteq \llbracket N \rrbracket$ with $|A| \geqslant \delta N$ contains a k-AP. Using similar arguments, try to relate $W(k ; q)$ to $\mathrm{Sz}(k ; \delta)$, proving both upper and lower bounds involving $\delta \approx 1 / q$.
Hint: It may be helpful to work in \mathbb{Z} / N rather than in $\llbracket N \rrbracket$.

