- 1. A function $\varphi : [\![k]\!]^s \to [\![k]\!]^d$ is the same as a tuple $\varphi = (\varphi_1, \ldots, \varphi_d)$ of functions $\varphi_j : [\![k]\!]^s \to [\![k]\!]$. Such a function φ is called a *combinatorial mapping* if every component φ_j is either a constant function or a coordinate function, i.e. $\varphi_j(x_1, \ldots, x_s) = x_i$ for some i. An s-dimensional combinatorial subspace of $[\![k]\!]^d$ is the image of a combinatorial mapping $\varphi : [\![k]\!]^s \to [\![k]\!]^d$ which is furthermore injective.
 - (a) Prove that a 1-dimensional combinatorial subspace is the same as a combinatorial line, and convince yourself that this is a reasonable generalization of combinatorial lines for $s \ge 2$.
 - (b) Show that s-dimensional combinatorial subspaces of $[\![k]\!]^d$ are in bijection with s-roots, which are words $\rho \in \{1, \ldots, k, *_1, \ldots, *_s\}^d$ in which each star symbol $*_i$ appears at least once.
 - (c) Prove that for every $k, s, q \ge 1$, there exists some d such that any q-coloring of $[\![k]\!]^d$ contains a monochromatic s-dimensional combinatorial subspace. Hint: Prove that $d = s \cdot \mathrm{HJ}(k^s;q)$ suffices.
- 2. (a) Suppose that there is a coloring $\chi: [N]^t \to [q]$ with no homothetic copy of

$$S := \{(1, 0, \dots, 0), (0, 1, 0, \dots, 0), \dots, (0, \dots, 0, 1)\}.$$

Using χ , construct a protocol for t players to compute the exactly-N function using at most $t\lceil \log q \rceil$ bits of communication in the number-on-the-forehead model.

- (b) Reinterpret the result of (a) as saying the following: If the Gallai–Witt theorem is false for this choice of S, then there is a protocol to compute the exactly-N function using only a constant number of bits of communication.

 In other words, we proved in Theorem 9.4.1 that the Gallai–Witt theorem implies a super-constant lower bound for this communication complexity, and (a) gives a converse: a super-constant lower bound for this communication complexity implies the Gallai–Witt theorem for this choice of S.
- (c) Improve your protocol in (a) to one using only $t + \lceil \log q \rceil$ bits of communication.
- 3. Prove the density Hales–Jewett theorem for k=2. In other words, prove that for every $\delta > 0$ and every sufficiently large d, every subset $A \subseteq [2]^d$ with $|A| \ge \delta 2^d$ contains a combinatorial line.
- 4. Prove that there is no density version of Schur's theorem.
- 5. Let us say that a graph H has the density Ramsey property if for every $\delta > 0$ and every sufficiently large N, any N-vertex graph G with at least $\delta\binom{N}{2}$ edges has a copy of H.
 - (a) Show that if H has the density Ramsey property, then r(H;q) is finite for all q, by applying the definition with $\delta = \frac{1}{q}$.

[This exercise is of course a bit silly, since we already know that r(H;q) is finite—the point is just to understand how such density results are stronger than the

corresponding coloring results, just as Szemerédi's theorem is stronger than van der Waerden's theorem.]

- (b) Prove that if H is bipartite, then H has the density Ramsey property.
- (c) Prove that if H is not bipartite, then H does not have the density Ramsey property.
- 6. The finite unions theorem states the following. For every $m, q \ge 2$, there exists some N such that in any q-coloring of $2^{\llbracket N \rrbracket}$ (that is, every subset of $\llbracket N \rrbracket$ receives some color), there exist disjoint sets $S_1, \ldots, S_m \subseteq \llbracket N \rrbracket$ such that all of the unions $\bigcup_{i \in I} S_i$, for $\varnothing \ne I \subseteq \llbracket m \rrbracket$, receive the same color.
 - (a) Prove that the finite unions theorem implies Theorem 9.3.1.
 - \star (b) Prove the finite unions theorem.
- 7. For a bipartite graph H and a number $\delta > 0$, let $r_d(H; \delta)$ denote the minimum integer N such that every N-vertex graph with at least $\delta\binom{N}{2}$ edges has a copy of H. (Note that this is a well-defined quantity, by problem 5(b).)
 - (a) By examining your solution to problem 5(b), show that for every bipartite graph H, there exists some C > 0 such that

$$r_d(H;\delta) \leqslant \left(\frac{1}{\delta}\right)^C$$

for all $0 < \delta \leqslant \frac{1}{2}$.

(b) Let H be a graph, and suppose G is an N-vertex graph with $\delta \binom{N}{2}$ edges and with no copy of H. Prove that if q is an integer satisfying $(1 - \delta)^q \binom{N}{2} < 1$, then

Hint: Randomly permute the vertices of G to obtain q copies G_1, \ldots, G_q . Show that with positive probability, every edge of K_N appears in at least one G_i .

(c) Fix a bipartite graph H, and let C be the constant from part (a). Show that

$$r_d\left(H; \frac{2C\ln q}{q}\right) \leqslant r(H; q) \leqslant r_d\left(H; \frac{1}{q}\right),$$

where the lower bound uses part (b) and the upper bound uses your solution to problem 5(a). This shows that r(H;q) and $r_d(H;1/q)$ are closely related for bipartite H.

 \star (d) Let $\operatorname{Sz}(k;\delta)$ denote the least N such that every $A\subseteq \llbracket N \rrbracket$ with $|A|\geqslant \delta N$ contains a k-AP. Using similar arguments, try to relate W(k;q) to $\operatorname{Sz}(k;\delta)$, proving both upper and lower bounds involving $\delta\approx 1/q$.

Hint: It may be helpful to work in \mathbb{Z}/N rather than in $[\![N]\!]$.