
ETH Zürich Ramsey Theory—Spring 2024 Homework #10

1. A function φ : JkKs → JkKd is the same as a tuple φ = (φ1, . . . , φd) of functions φj :
JkKs → JkK. Such a function φ is called a combinatorial mapping if every component φj

is either a constant function or a coordinate function, i.e. φj(x1, . . . , xs) = xi for some
i. An s-dimensional combinatorial subspace of JkKd is the image of a combinatorial
mapping φ : JkKs → JkKd which is furthermore injective.

(a) Prove that a 1-dimensional combinatorial subspace is the same as a combinatorial
line, and convince yourself that this is a reasonable generalization of combinatorial
lines for s ⩾ 2.

(b) Show that s-dimensional combinatorial subspaces of JkKd are in bijection with
s-roots, which are words ρ ∈ {1, . . . , k, ∗1, . . . , ∗s}d in which each star symbol ∗i
appears at least once.

(c) Prove that for every k, s, q ⩾ 1, there exists some d such that any q-coloring of
JkKd contains a monochromatic s-dimensional combinatorial subspace.

Hint: Prove that d = s · HJ(ks; q) suffices.

2. (a) Suppose that there is a coloring χ : JNKt → JqK with no homothetic copy of

S := {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}.

Using χ, construct a protocol for t players to compute the exactly-N function using
at most t⌈log q⌉ bits of communication in the number-on-the-forehead model.

(b) Reinterpret the result of (a) as saying the following: If the Gallai–Witt theorem
is false for this choice of S, then there is a protocol to compute the exactly-N
function using only a constant number of bits of communication.

In other words, we proved in Theorem 9.4.1 that the Gallai–Witt theorem implies
a super-constant lower bound for this communication complexity, and (a) gives
a converse: a super-constant lower bound for this communication complexity
implies the Gallai–Witt theorem for this choice of S.

(c) Improve your protocol in (a) to one using only t+ ⌈log q⌉ bits of communication.

3. Prove the density Hales–Jewett theorem for k = 2. In other words, prove that for every
δ > 0 and every sufficiently large d, every subset A ⊆ J2Kd with |A| ⩾ δ2d contains a
combinatorial line.

4. Prove that there is no density version of Schur’s theorem.

5. Let us say that a graph H has the density Ramsey property if for every δ > 0 and every
sufficiently large N , any N -vertex graph G with at least δ

(
N
2

)
edges has a copy of H.

(a) Show that if H has the density Ramsey property, then r(H; q) is finite for all q,
by applying the definition with δ = 1

q
.

[This exercise is of course a bit silly, since we already know that r(H; q) is finite—
the point is just to understand how such density results are stronger than the
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corresponding coloring results, just as Szemerédi’s theorem is stronger than van
der Waerden’s theorem.]

(b) Prove that if H is bipartite, then H has the density Ramsey property.

(c) Prove that if H is not bipartite, then H does not have the density Ramsey prop-
erty.

6. The finite unions theorem states the following. For every m, q ⩾ 2, there exists some
N such that in any q-coloring of 2JNK (that is, every subset of JNK receives some color),
there exist disjoint sets S1, . . . , Sm ⊆ JNK such that all of the unions

⋃
i∈I Si, for

∅ ̸= I ⊆ JmK, receive the same color.

(a) Prove that the finite unions theorem implies Theorem 9.3.1.

⋆ (b) Prove the finite unions theorem.

7. For a bipartite graph H and a number δ > 0, let rd(H; δ) denote the minimum integer
N such that every N -vertex graph with at least δ

(
N
2

)
edges has a copy of H. (Note

that this is a well-defined quantity, by problem 5(b).)

(a) By examining your solution to problem 5(b), show that for every bipartite graph
H, there exists some C > 0 such that

rd(H; δ) ⩽

(
1

δ

)C

for all 0 < δ ⩽ 1
2
.

(b) Let H be a graph, and suppose G is an N -vertex graph with δ
(
N
2

)
edges and with

no copy of H. Prove that if q is an integer satisfying (1− δ)q
(
N
2

)
< 1, then

r(H; q) > N.

Hint: Randomly permute the vertices of G to obtain q copies G1, . . . , Gq. Show
that with positive probability, every edge of KN appears in at least one Gi.

(c) Fix a bipartite graph H, and let C be the constant from part (a). Show that

rd

(
H;

2C ln q

q

)
⩽ r(H; q) ⩽ rd

(
H;

1

q

)
,

where the lower bound uses part (b) and the upper bound uses your solution
to problem 5(a). This shows that r(H; q) and rd(H; 1/q) are closely related for
bipartite H.

⋆ (d) Let Sz(k; δ) denote the least N such that every A ⊆ JNK with |A| ⩾ δN contains
a k-AP. Using similar arguments, try to relate W (k; q) to Sz(k; δ), proving both
upper and lower bounds involving δ ≈ 1/q.

Hint: It may be helpful to work in Z/N rather than in JNK.


