1. There is a natural analogue of the stepping-up construction going from uniformity 2 to 3. Namely, given a coloring $\chi : E(K_M^{(2)}) \to \{\text{red}, \text{blue}\}$, we can define $\psi : E(K_N^{(2)}) \to \{\text{red}, \text{blue}\}$, where $N = 2^M$, by

$$\psi(\{x, y, z\}) \coloneqq \chi(\delta(x, y), \delta(y, z)),$$

for x < y < z. Prove that this construction does not work, in the following sense: if χ contains a monochromatic $K_k^{(2)}$, then ψ contains a monochromatic $K_{2^k}^{(3)}$. Conclude that this contstruction cannot prove a better lower bound than $r_3(m) \ge 2^{\Omega(m)}$.

2. (a) Let $V(K_M) = \{v_1, \ldots, v_M\}$. Prove that if $M \ge (k-1)^2 + 1$, then in every coloring $E(K_M) \rightarrow \{\text{red}, \text{blue}\}$, there is a blue K_k or a vertex v_i with at least k-1 red neighbors v_j , where j > i.

[Note that this is a stronger statement than saying $r(K_{1,k-1}, K_k) \leq (k-1)^2 + 1$, since in the second case we are finding an *ordered* copy of $K_{1,k-1}$.]

(b) Let S_k be the 3-uniform hypergraph with vertex set w_0, \ldots, w_k whose hyperedges are all triples $\{w_0, w_i, w_j\}$ for $1 \leq i, j \leq k$. By following the proof of Theorem 10.1.4, prove that

$$r_3(S_k, K_{k+1}^{(3)}) \leq 2^{Ck^4}$$

for some absolute constant C > 0.

(c) By coloring randomly, prove that

$$r_3(S_k, K_{k+1}^{(3)}) \ge 2^{ak^c},$$

for some absolute constants a, c > 0. What is the largest value of c you can obtain?

- 3. A hyperforest is a t-uniform hypergraph \mathcal{H} with the following property. The hyperedges of h may be ordered as e_1, \ldots, e_m so that, for every $2 \leq i \leq m$, we have $e_i \cap \bigcup_{j=1}^{i-1} e_j \subset e_{j'}$ for some $1 \leq j' \leq i-1$. In other words, each edge e_i is obtained as follows: we pick some $e_{j'}$, for $1 \leq j' \leq i-1$, pick some subset $S \subset e_{j'}$, and define e_i to consist of S plus t - |S| new vertices, which were not yet used in any of e_1, \ldots, e_{i-1} .
 - (a) Prove that in case t = 2, a graph is a 2-uniform hyperformst if and only if it is a forest in the usual sense, i.e. a graph with no cycles.
 - (b) Prove that for any $t, q \ge 2$, there exists some $C_{t,q} > 0$ such that the following holds. If \mathcal{H} is a *t*-uniform hyperformation *n* vertices, then

$$r_t(\mathcal{H};q) \leqslant C_{t,q}n.$$

Hints: What are good analogues of Lemmas 5.2.2 and 5.2.3 in the *t*-uniform setting? Why do we require e_i to be glued along a subset of some $e_{j'}$, rather than on a subset of $\bigcup_{i=1}^{i-1} e_j$?

 $[\]star$ means that a problem is hard.

[?] means that a problem is open.

 $[\]oplus$ means that a problem is on a topic beyond the scope of the course.

*4. Let \mathcal{H} be the 3-uniform hypergraph with vertex set $\{v_1, \ldots, v_k\}$ whose hyperedges are all triples $\{v_i, v_{i+1}, v_j\}$, where $i, j \in [\![k]\!]$ with $j \notin \{i, i+1\}$. Here, indices are taken modulo k, so that $\{v_k, v_1, v_j\}$ is a hyperedge of \mathcal{H} for all $j \notin \{1, k\}$.

Prove that there exist constants c, C > 0 such that

$$2^{2^{ck}} \leqslant r_3(\mathcal{H}; 4) \leqslant 2^{2^{Ck}}.$$

In other words, $r_3(\mathcal{H}; 4)$ is roughly as large as $r(K_k^{(3)}; 4)$, even though \mathcal{H} has $\Theta(k^2)$ edges while $K_k^{(3)}$ has $\Theta(k^3)$ edges.

[In the case of graphs, no such example can exist—any graph with substantially fewer edges than $K_k^{(2)}$ has a much smaller Ramsey number than $K_k^{(2)}$.]

- *5. A 3-uniform hypergraph \mathcal{H} is *tripartite* if its vertex set can be partitioned as $V_1 \cup V_2 \cup V_3$, so that every hyperedge of \mathcal{H} uses exactly one vertex from each V_i . The *complete tripartite* 3-uniform hypergraph $K_{k,k,k}^{(3)}$ is the tripartite hypergraph where $|V_1| = |V_2| =$ $|V_3| = k$ and in which every triple in $V_1 \times V_2 \times V_3$ is a hyperedge.
 - (a) Prove that there exist absolute constants c, C > 0 such that

$$2^{ck^2} \leqslant r_3(K_{k,k,k}^{(3)}) \leqslant 2^{Ck^2}$$

 \star (b) Let \mathcal{H} be a tripartite 3-uniform hypergraph with $|V_1| = |V_2| = |V_3| = k$, and suppose that every vertex of \mathcal{H} lies in at most Δ hyperedges. Prove that

$$r_3(\mathcal{H}) \leqslant k^{1+o(1)},$$

where the o(1) term tends to 0 as $k \to \infty$, while keeping Δ constant.

- \star (c) Extend these results to uniformity $t \ge 4$.
- $\oplus 6$. Let $K_{\mathbb{N}}^{(t)}$ denote the (countably) infinite complete *t*-uniform hypergraph, whose vertex set is \mathbb{N} and whose hyperedges are all *t*-tuples of distinct integers. Prove the infinite hypergraph Ramsey theorem: for all $t, q \ge 2$, and for every *q*-coloring of $E(K_{\mathbb{N}}^{(t)})$, there is an infinite monochromatic clique.
- \oplus 7. Prove that for all $q, t \ge 2$, there exists an integer N such that the following holds. Identify the vertex set of $K_N^{(t)}$ with $[\![N]\!]$. For any q-coloring of $E(K_N^{(t)})$, there is a set $S \subseteq [\![N]\!]$ such that S forms a monochromatic clique, and $|S| > t + \min S$, where $\min S$ denotes the smallest element of S.

Hint: Although this is a purely "finitary" statement, you should apply the infinite hypergraph Ramsey theorem. In fact, the famous *Paris-Harrington theorem* states that this statement cannot be proved in Peano arithmetic.