1. There is a natural analogue of the stepping-up construction going from uniformity 2 to 3. Namely, given a coloring $\chi: E\left(K_{M}^{(2)}\right) \rightarrow\{$ red, blue $\}$, we can define $\psi: E\left(K_{N}^{(2)}\right) \rightarrow$ \{red, blue\}, where $N=2^{M}$, by

$$
\psi(\{x, y, z\}):=\chi(\delta(x, y), \delta(y, z))
$$

for $x<y<z$. Prove that this construction does not work, in the following sense: if χ contains a monochromatic $K_{k}^{(2)}$, then ψ contains a monochromatic $K_{2^{k}}^{(3)}$. Conclude that this contstruction cannot prove a better lower bound than $r_{3}(m) \geqslant 2^{\Omega(m)}$.
2. (a) Let $V\left(K_{M}\right)=\left\{v_{1}, \ldots, v_{M}\right\}$. Prove that if $M \geqslant(k-1)^{2}+1$, then in every coloring $E\left(K_{M}\right) \rightarrow\{$ red, blue $\}$, there is a blue K_{k} or a vertex v_{i} with at least $k-1$ red neighbors v_{j}, where $j>i$.
[Note that this is a stronger statement than saying $r\left(K_{1, k-1}, K_{k}\right) \leqslant(k-1)^{2}+1$, since in the second case we are finding an ordered copy of $K_{1, k-1}$.]
(b) Let S_{k} be the 3-uniform hypergraph with vertex set w_{0}, \ldots, w_{k} whose hyperedges are all triples $\left\{w_{0}, w_{i}, w_{j}\right\}$ for $1 \leqslant i, j \leqslant k$. By following the proof of Theorem 10.1.4, prove that

$$
r_{3}\left(S_{k}, K_{k+1}^{(3)}\right) \leqslant 2^{C k^{4}}
$$

for some absolute constant $C>0$.
(c) By coloring randomly, prove that

$$
r_{3}\left(S_{k}, K_{k+1}^{(3)}\right) \geqslant 2^{a k^{c}}
$$

for some absolute constants $a, c>0$. What is the largest value of c you can obtain?
3. A hyperforest is a t-uniform hypergraph \mathcal{H} with the following property. The hyperedges of h may be ordered as e_{1}, \ldots, e_{m} so that, for every $2 \leqslant i \leqslant m$, we have $e_{i} \cap \bigcup_{j=1}^{i-1} e_{j} \subset e_{j^{\prime}}$ for some $1 \leqslant j^{\prime} \leqslant i-1$. In other words, each edge e_{i} is obtained as follows: we pick some $e_{j^{\prime}}$, for $1 \leqslant j^{\prime} \leqslant i-1$, pick some subset $S \subset e_{j^{\prime}}$, and define e_{i} to consist of S plus $t-|S|$ new vertices, which were not yet used in any of e_{1}, \ldots, e_{i-1}.
(a) Prove that in case $t=2$, a graph is a 2-uniform hyperforest if and only if it is a forest in the usual sense, i.e. a graph with no cycles.
(b) Prove that for any $t, q \geqslant 2$, there exists some $C_{t, q}>0$ such that the following holds. If \mathcal{H} is a t-uniform hyperforest on n vertices, then

$$
r_{t}(\mathcal{H} ; q) \leqslant C_{t, q} n
$$

Hints: What are good analogues of Lemmas 5.2.2 and 5.2.3 in the t-uniform setting? Why do we require e_{i} to be glued along a subset of some $e_{j^{\prime}}$, rather than on a subset of $\bigcup_{j=1}^{i-1} e_{j}$?
\star means that a problem is hard.
? means that a problem is open.
\leftrightarrow means that a problem is on a topic beyond the scope of the course.
$\star 4$. Let \mathcal{H} be the 3 -uniform hypergraph with vertex set $\left\{v_{1}, \ldots, v_{k}\right\}$ whose hyperedges are all triples $\left\{v_{i}, v_{i+1}, v_{j}\right\}$, where $i, j \in \llbracket k \rrbracket$ with $j \notin\{i, i+1\}$. Here, indices are taken modulo k, so that $\left\{v_{k}, v_{1}, v_{j}\right\}$ is a hyperedge of \mathcal{H} for all $j \notin\{1, k\}$.
Prove that there exist constants $c, C>0$ such that

$$
2^{2^{c k}} \leqslant r_{3}(\mathcal{H} ; 4) \leqslant 2^{2^{C k}}
$$

In other words, $r_{3}(\mathcal{H} ; 4)$ is roughly as large as $r\left(K_{k}^{(3)} ; 4\right)$, even though \mathcal{H} has $\Theta\left(k^{2}\right)$ edges while $K_{k}^{(3)}$ has $\Theta\left(k^{3}\right)$ edges.
[In the case of graphs, no such example can exist-any graph with substantially fewer edges than $K_{k}^{(2)}$ has a much smaller Ramsey number than $K_{k}^{(2)}$.]
*5. A 3-uniform hypergraph \mathcal{H} is tripartite if its vertex set can be partitioned as $V_{1} \cup V_{2} \cup V_{3}$, so that every hyperedge of \mathcal{H} uses exactly one vertex from each V_{i}. The complete tripartite 3-uniform hypergraph $K_{k, k, k}^{(3)}$ is the tripartite hypergraph where $\left|V_{1}\right|=\left|V_{2}\right|=$ $\left|V_{3}\right|=k$ and in which every triple in $V_{1} \times V_{2} \times V_{3}$ is a hyperedge.
(a) Prove that there exist absolute constants $c, C>0$ such that

$$
2^{c k^{2}} \leqslant r_{3}\left(K_{k, k, k}^{(3)}\right) \leqslant 2^{C k^{2}}
$$

\star (b) Let \mathcal{H} be a tripartite 3-uniform hypergraph with $\left|V_{1}\right|=\left|V_{2}\right|=\left|V_{3}\right|=k$, and suppose that every vertex of \mathcal{H} lies in at most Δ hyperedges. Prove that

$$
r_{3}(\mathcal{H}) \leqslant k^{1+o(1)},
$$

where the $o(1)$ term tends to 0 as $k \rightarrow \infty$, while keeping Δ constant.
\star (c) Extend these results to uniformity $t \geqslant 4$.
$\leftrightarrow 6$. Let $K_{\mathbb{N}}^{(t)}$ denote the (countably) infinite complete t-uniform hypergraph, whose vertex set is \mathbb{N} and whose hyperedges are all t-tuples of distinct integers. Prove the infinite hypergraph Ramsey theorem: for all $t, q \geqslant 2$, and for every q-coloring of $E\left(K_{\mathbb{N}}^{(t)}\right)$, there is an infinite monochromatic clique.
$\leftrightarrow 7$. Prove that for all $q, t \geqslant 2$, there exists an integer N such that the following holds. Identify the vertex set of $K_{N}^{(t)}$ with $\llbracket N \rrbracket$. For any q-coloring of $E\left(K_{N}^{(t)}\right)$, there is a set $S \subseteq \llbracket N \rrbracket$ such that S forms a monochromatic clique, and $|S|>t+\min S$, where $\min S$ denotes the smallest element of S.

Hint: Although this is a purely "finitary" statement, you should apply the infinite hypergraph Ramsey theorem. In fact, the famous Paris-Harrington theorem states that this statement cannot be proved in Peano arithmetic.

