1. For every $N \geqslant 3$, give N points in \mathbb{R}^{2} with no three in convex position. This shows that the assumption in Theorem 10.3.4 that no three points are collinear is necessary.
2. Let $N=r_{3}(k)$, and let p_{1}, \ldots, p_{N} be points in \mathbb{R}^{2} with no three collinear. Define $\chi: E\left(K_{N}^{(3)}\right) \rightarrow\{$ even, odd $\}$ by
$\chi(\{i, j, \ell\}):= \begin{cases}\text { even } & \text { if there are an even number of points } p_{m} \text { in the triangle } p_{i} p_{j} p_{\ell}, \\ \text { odd } & \text { otherwise. }\end{cases}$
Prove that a monochromatic $K_{k}^{(3)}$ under χ corresponds to k points in convex position. Conclude that $\mathrm{Kl}(k) \leqslant r_{3}(k)$, and in particular obtain a new proof of Theorem 10.3.4.
3. A collection of points in \mathbb{R}^{d} is said to be in general position if no $d+1$ of them lie on a $(d-1)$-dimensional hyperplane. (So in two dimensions, this says that no three are collinear, in three dimensions it says that no four are coplanar, etc.)
(a) Prove that among any $d+3$ points in \mathbb{R}^{d} which are in general position, there are $d+2$ in convex position.
(b) Given $k \geqslant d+2$, let $N=r_{d+2}(d+3, k)$. Prove that among any N points in \mathbb{R}^{d} in general position, there are k in convex position.
(c) Prove that among any $\mathrm{Kl}(k)$ points in \mathbb{R}^{d}, no three collinear, there are k in convex position.
[This is stronger than the result in (b) in two ways: the bound is independent of d, and the assumption is weakened from general position to no three collinear.]
4. (a) Let $k, \ell \geqslant 2$. Prove that in any sequence of $(k-1)(\ell-1)+1$ distinct real numbers, there is an increasing subsequence of length k or a decreasing subsequence of length ℓ.
(b) Prove that the result in (a) is best possible, by finding a sequence of $(k-1)(\ell-1)$ distinct real numbers with no increasing subsequence of length k and no decreasing subsequence of length ℓ.
5. Prove that any sequence of (not necessarily distinct) real numbers of length $(k-1)^{3}+1$ contains a subsequence of length k that is strictly increasing, strictly decreasing, or constant. Prove that this bound is best possible.
6. Let us say that a coloring of $E\left(K_{k}\right)$ is semi-starry if the vertices can be sorted as v_{1}, \ldots, v_{k} such that all edges $v_{i} v_{j}$, where $j>i$, are of the same color. (The only difference from a starry coloring is that we do not require these colors to be distinct.)
(a) Prove that if $N \geqslant(k-1)^{2}+1$, then any semi-starry coloring of $E\left(K_{N}\right)$ contains a monochromatic or starry K_{k}. Such a result was implicitly used in the proof of Theorem 11.2.2.
(b) Prove that if $N \geqslant k^{4 k}$, then any coloring of $E\left(K_{N}\right)$, with an arbitrary number of colors, contains a rainbow or a semi-starry K_{k}.
(c) Show that there exists a coloring of $E\left(K_{N}\right)$, where $N=k^{k}$, with no rainbow or semi-starry K_{k}. Thus, the result of part (b) is best possible up to the constant factor in the exponent.
7. Prove the bipartite canonical Ramsey theorem, which states the following. For every $k \geqslant 2$, there exists some N such that in any coloring of $E\left(K_{N, N}\right)$, with an arbitrary number of colors, there is a $K_{k, k}$ which is monochromatic, rainbow, or starry.
(Here, a $K_{k, k}$ is rainbow if all k^{2} edges receive different colors, and is starry if it is colored by exactly k distinct colors, each of whose color classes is a star $K_{1, k}$.)
$\oiint 8$. (a) Prove that any infinite sequence of distinct real numbers contains an infinite subsequence that is (non-strictly) increasing or (non-strictly) decreasing.
(b) Prove the Bolzano-Weierstrass theorem: every bounded sequence of real numbers has a convergent subsequence.
\star 9. Prove that $\mathrm{Kl}(5)=9$.
$\star 10$. Construct, for every $k \geqslant 4$, a collection of 2^{k-2} points in \mathbb{R}^{2}, no three collinear, with no k of them in convex position.
Hint: Here is a solution for $k=5$; try to generalize it.
