1. (a) Using the fact that $r(k)<4^{k}$, prove that $r(k ; q)<4^{4^{4^{*}}}$, where the number of 4 s is $\left\lceil\log _{2} q\right\rceil$.
(b) Prove Theorem 2.1.5 in the notes. In particular, derive the bound $r(k ; q)<q^{q k}$, which is much stronger than that in part (a).
2. Prove that $r(3 ; q) \leqslant\lceil e \cdot q!\rceil$, where e is Euler's constant.
3. (a) Prove that, for any fixed $k \geqslant 3$, the limit

$$
\lim _{q \rightarrow \infty} r(k ; q)^{1 / q}
$$

exists. Conclude that Open problem 2.3.2 from the notes is a well-posed question. Hint: Use Fekete's lemma. If you've never heard of Fekete's lemma, look it up and try to prove it before using it!
? (b) Prove that, for any fixed $q \geqslant 2$, the limit

$$
\lim _{k \rightarrow \infty} r(k ; q)^{1 / k}
$$

exists.
4. The proof of Lemma 3.1.1 in the lecture notes is not 100% correct, as mentioned in Footnote 1. In this problem you will correct this.

Let G satisfy the assumptions of Lemma 3.1.1, and let $t=N / M$. Let H be a random induced subgraph of G obtained by picking exactly t vertices of G, uniformly at random (i.e. each of the $\binom{N}{t}$ choices is equally likely). Prove that with positive probability, H has no independent set of order k, and hence

$$
r(s, k)>t=\frac{N}{M} .
$$

5. In the approach using Lemma 3.2.1, we lower-bound $r(k ; q)$ by picking $q-2$ random homomorphisms to some K_{k}-free graph G, and using the last two colors to randomly color all remaining edges. Instead, we could have used $q-r$ random homomorphisms (for some $r<q$), and r random colors for the remaining edges. Prove that picking $r=2$ gives the strongest bounds, hence this extra generality ends up not being useful.
6. Let $f, g_{1}, \ldots, g_{q}: \mathbb{R} \rightarrow \mathbb{R}$ be functions. Suppose that there exist $\varepsilon, \delta>0$ such that whenever $x, y \in \mathbb{R}$ satisfy $f(x)-f(y) \geqslant \varepsilon$, then

$$
\max _{i \in \llbracket q \rrbracket}\left(g_{i}(x)-g_{i}(y)\right) \geqslant \delta
$$

Prove that if g_{1}, \ldots, g_{q} are all bounded, then f is bounded as well.

[^0]$\star 7$. Prove that $r(3,3,3)=17$.
\star 8. Prove Lemma 3.3.2 in the lecture notes. Use it to deduce Theorem 2.3.1, which remains the best known lower bound on $r(k ; q)$ for fixed $q \geqslant 3$.
$\leftrightarrow 9$. In this problem, you will see the original approach of Conlon-Ferber to the improved lower bounds on multicolor Ramsey numbers.
For a positive integer t, let $V_{t} \subseteq \mathbb{F}_{2}^{t}$ denote the subspace consisting of all vectors in \mathbb{F}_{2}^{t} with an even number of entries equal to 1 . Define a graph G_{t} with vertex set V_{t} by setting $x \sim y$ if $x \cdot y=1$, where $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$ denotes the usual dot product on \mathbb{F}_{2}^{t}.
(a) Prove that if t is even, then G_{t} is K_{t}-free.
(b) Prove that if t is odd, then G_{t} is K_{t+1}-free.
(c) Prove that every independent set in G_{t} is contained in a vector subspace of dimension at most $t / 2$.
\star (d) Prove that the number of independent sets in G_{t} of order at most t is at most $2^{\frac{5}{8} t^{2}+o\left(t^{2}\right)}$.
(e) Using the facts above and Lemma 3.2.1 from the notes, obtain a new proof that $r(k ; q) \geqslant\left(2^{\frac{3}{8} q-\frac{1}{4}}\right)^{k-o(k)}$ for $q \geqslant 3$.
\star (f) Working with $t=2 k$, and randomly sampling a subset of V_{t}, obtain a different proof that $r(k ; 2) \geqslant 2^{\frac{k}{2}-o(k)}$.
? (g) In the proof of (f), you showed that a random induced subgraph of G_{t}, where $t=2 k$, has no clique or independent set of order k. Can you find an explicit description of such a subset (thus resolving Open problem 2.2.3)?

[^0]: \star means that a problem is hard.
 ? means that a problem is open.
 \leftrightarrow means that a problem is on a topic beyond the scope of the course.

