1. Prove that if G is an n-vertex graph with average degree d, then $\alpha(G) \geqslant n /(1+d)$.
2. In the proof of Lemma 4.1.3, we used a number of properties about the function $f(d)$. In this problem you will verify that these properties hold.
(a) Prove that f istwice differentiable on $(0, \infty)$.
(b) Prove that $f^{\prime}(d) \leqslant 0$ for all $d \in(0, \infty)$.
(c) Prove that $f^{\prime \prime}(d) \geqslant 0$ for all $d \in(0, \infty)$.
(d) Prove that f satisfies the differential equation

$$
(d+1) f(d)=1+\left(d-d^{2}\right) f^{\prime}(d)
$$

3. Let n be an integer and let $0 \leqslant d \leqslant n$ be a real number. Consider a random n-vertex graph G formed by including each edge independently with probability d / n.
(a) Prove that if $d=\omega(1)$, then with probability $1-o(1)$, we have

$$
\alpha(G) \leqslant(1+o(1)) \frac{2 n \ln d}{d} .
$$

(b) Prove that if $d=o\left(n^{1 / 3}\right)$, then G is triangle-free with probability $1-o(1)$.
(c) Prove that if $d=\omega(1)$, the average degree of G is $(1+o(1)) d$ with probability $1-o(1)$.

Conclude that Lemma 4.1.3 is best possible up to a factor of $2+o(1)$.
$\star 4$. Prove that, for any fixed $s \geqslant 3$, we have

$$
r(s, k)=O_{s}\left(\frac{k^{s-1}}{(\log k)^{s-2}}\right)
$$

5. (a) Prove that, for any fixed $s \geqslant 3$, we have

$$
r(s, k) \geqslant k^{\frac{s-1}{2}-o(1)}
$$

where the $o(1)$ term tends to 0 as $k \rightarrow \infty$.
\star (b) Improve the exponent to $\frac{s}{2}-o(1)$.
$\star \star$ (c) Improve the exponent to $\frac{s+1}{2}-o(1)$.
? (d) Improve the exponent to $\frac{s+1}{2}+\varepsilon-o(1)$, for any $s \geqslant 5$ and any $\varepsilon>0$.

[^0]$\Psi \star 6$. Prove that an n-vertex C_{4}-free graph with average degree d has independence number at least
$$
(1-o(1)) \frac{n \ln d}{d}
$$
where the $o(1)$ term tends to 0 as $d \rightarrow \infty$.
Hint: Consider the function
$$
g(x):=\int_{0}^{1} \frac{\sqrt{1-t}}{2+(x-2) t} \mathrm{~d} t
$$
$\nleftarrow 7$. In this problem, you will give an alternative proof of Lemma 4.1.3 (albeit with a worse constant factor). Let G be an n-vertex triangle-free graph with average degree d, and assume that $d \geqslant 16$. Let S be a uniformly random independent set in G.
(a) For every vertex $v \in V(G)$, let X_{v} be the indicator random variable for the event $v \in S$. Let Y_{v} be the random variable counting how many neighbors of v are in S. Prove that
$$
\sum_{v \in V(G)}\left(d X_{v}+Y_{v}\right) \leqslant 2 d|S|
$$
(Note that both sides of this inequality are random quantities - the statement is that this inequality is valid regardless of the random outcome.)

* (b) Prove that

$$
\mathbb{E}\left[\sum_{v \in V(G)}\left(d X_{v}+Y_{v}\right)\right] \geqslant \frac{\log d}{4}
$$

(c) Prove that G has an independent set of order at least $n \log d /(8 d)$.
$\leftrightarrow 8$. Recall that $\theta(d)$ denotes the maximum sphere packing density in \mathbb{R}^{d}. Prove that $\theta(d) \geqslant 2^{-d}$.

[^0]: \star means that a problem is hard.
 ? means that a problem is open.
 $\overleftrightarrow{\checkmark}$ means that a problem is on a topic beyond the scope of the course.

