- 1. Prove that if G is an n-vertex graph with average degree d, then $\alpha(G) \ge n/(1+d)$.
- 2. In the proof of Lemma 4.1.3, we used a number of properties about the function f(d). In this problem you will verify that these properties hold.
 - (a) Prove that f is twice differentiable on $(0, \infty)$.
 - (b) Prove that $f'(d) \leq 0$ for all $d \in (0, \infty)$.
 - (c) Prove that $f''(d) \ge 0$ for all $d \in (0, \infty)$.
 - (d) Prove that f satisfies the differential equation

$$(d+1)f(d) = 1 + (d-d^2)f'(d).$$

- 3. Let n be an integer and let $0 \le d \le n$ be a real number. Consider a random n-vertex graph G formed by including each edge independently with probability d/n.
 - (a) Prove that if $d = \omega(1)$, then with probability 1 o(1), we have

$$\alpha(G) \leqslant (1 + o(1)) \frac{2n \ln d}{d}.$$

- (b) Prove that if $d = o(n^{1/3})$, then G is triangle-free with probability 1 o(1).
- (c) Prove that if $d = \omega(1)$, the average degree of G is (1 + o(1))d with probability 1 o(1).

Conclude that Lemma 4.1.3 is best possible up to a factor of 2 + o(1).

 $\star 4$. Prove that, for any fixed $s \ge 3$, we have

$$r(s,k) = O_s\left(\frac{k^{s-1}}{(\log k)^{s-2}}\right).$$

5. (a) Prove that, for any fixed $s \ge 3$, we have

$$r(s,k) \geqslant k^{\frac{s-1}{2} - o(1)},$$

where the o(1) term tends to 0 as $k \to \infty$.

- \star (b) Improve the exponent to $\frac{s}{2} o(1)$.
- $\star\star$ (c) Improve the exponent to $\frac{s+1}{2} o(1)$.
- ? (d) Improve the exponent to $\frac{s+1}{2} + \varepsilon o(1)$, for any $s \ge 5$ and any $\varepsilon > 0$.

^{*} means that a problem is hard.

[?] means that a problem is open.

 $[\]oplus$ means that a problem is on a topic beyond the scope of the course.

 $\div \star 6$. Prove that an *n*-vertex C_4 -free graph with average degree d has independence number at least

$$(1 - o(1))\frac{n \ln d}{d},$$

where the o(1) term tends to 0 as $d \to \infty$.

Hint: Consider the function

$$g(x) := \int_0^1 \frac{\sqrt{1-t}}{2+(x-2)t} dt.$$

- \div 7. In this problem, you will give an alternative proof of Lemma 4.1.3 (albeit with a worse constant factor). Let G be an n-vertex triangle-free graph with average degree d, and assume that $d \ge 16$. Let S be a uniformly random independent set in G.
 - (a) For every vertex $v \in V(G)$, let X_v be the indicator random variable for the event $v \in S$. Let Y_v be the random variable counting how many neighbors of v are in S. Prove that

$$\sum_{v \in V(G)} (dX_v + Y_v) \leqslant 2d|S|.$$

(Note that both sides of this inequality are random quantities—the statement is that this inequality is valid regardless of the random outcome.)

 \star (b) Prove that

$$\mathbb{E}\left[\sum_{v \in V(G)} (dX_v + Y_v)\right] \geqslant \frac{\log d}{4}.$$

- (c) Prove that G has an independent set of order at least $n \log d/(8d)$.
- \oplus 8. Recall that $\theta(d)$ denotes the maximum sphere packing density in \mathbb{R}^d . Prove that $\theta(d) \geqslant 2^{-d}$.