1. Prove that, for any $r \ge 1$,

$$r(\underbrace{3,3,\ldots,3}_{r \text{ times}},k) = \Omega\left(\frac{k^{r+1}}{(\log k)^{C_r}}\right),$$

for some constant C_r depending only on r. Note that this matches the upper bound of Theorem 2.1.5 up to the logarithmic factor.

- *2. Prove that the graph Λ_q has no O'Nan configuration.
 - 3. Let q be a prime power. Construct a graph Π_q with vertex set $V(\Pi_q) = \mathbb{F}_q^2$, in which two vertices $(x_1, y_1), (x_2, y_2)$ are adjacent if and only if $x_1x_2 + y_1y_2 = 1$.
 - (a) Prove that Π_q is C_4 -free.
 - *(b) Prove that Π_q satisfies the assumptions of Lemma 4.3.1 with $\beta = \Theta(1/q)$ and $R = \Theta(q^{3/2})$. *Remark:* You should feel free to prove this with logarithmic losses in the value of R. The only way I know how to prove this involves techniques (from spectral graph theory) that we will not cover in this class, but I believe there should be an "elementary" proof. Please let me know if you find one!
 - 4. Let q be a prime power. We define a graph $\Gamma_q^{(5)}$ to be the natural five-dimensional analogue of Γ_q . Namely, $\Gamma_q^{(5)}$ is a bipartite graph with parts $P \cup L$, where P is identified with \mathbb{F}_q^5 , and L comprises all lines in \mathbb{F}_q^5 whose direction is of the form $(1, z, z^2, z^3, z^4)$ for some $z \in \mathbb{F}_q$.
 - (a) Prove that $\Gamma_q^{(5)}$ is C_4 -free and C_{10} -free.
 - (b) Define a natural analogue $G_q^{(5)}$ of G_q . It is natural to suppose that $G_q^{(5)}$ is C_5 -free with probability 1; show that this is *not* the case. *Hint:* Show that $\Gamma_q^{(5)}$ is *not* C_8 -free. Use this to find a C_5 in $G_q^{(5)}$.
 - 5. Verify that Lemmas 4.3.8 and 4.3.9 imply Theorem 4.3.10.
- $\oplus 6$. A subdivision of a graph H is obtained from H by replacing every edge of H by a path of some length (not necessarily the same length for all edges, and paths of length 1 are allowed, so that H is a subdivision of itself). A famous conjecture of Hajós asserts that if $\chi(G) \ge k$, then G contains a subdivision of K_k as a subgraph.
 - (a) Prove that Hajós' conjecture is true for $k \leq 3$.
 - \star (b) Prove that Hajós' conjecture is true for k = 4.

 $[\]star$ means that a problem is hard.

[?] means that a problem is open.

 $[\]Leftrightarrow$ means that a problem is on a topic beyond the scope of the course.

- (c) Prove that Hajós' conjecture for k = 5 implies the four-color theorem. Conclude that it is probably pretty hard to prove the k = 5 case.
- (d) Prove that if Hajós' conjecture is true, then $r(k) \leq 3k^3$. Conclude that Hajós' conjecture is false.
- (e) Prove that if Hajós' conjecture is true, then $r(3,k) \leq 12k$. Conclude that Hajós' conjecture is false.
- \oplus 7. A classical fact in graph theory is that there exist triangle-free graphs of arbitrarily high chromatic number. A standard proof, taught in most introductory graph theory courses, uses the *Mycielski construction*. In this exercise, you will see two alternative Ramsey-theoretic proofs.
 - (a) For an integer N, let S_N be a graph with vertex set $\binom{[N]}{2}$, where we think of the vertices of S_N as ordered pairs (a, b) with $1 \leq a < b \leq N$. The edges of S_N consist of all pairs of the form ((a, b), (b, c)) for a < b < c. Prove that S_N is triangle-free, and that $\chi(S_N) \to \infty$ as $N \to \infty$.
 - (b) The graph G_q constructed in class is triangle-free; prove that $\chi(G_q) \to \infty$ as $q \to \infty$.
- $\oplus 8$. (a) Let $K_{\mathbb{N}}$ denote the complete graph whose vertex set is \mathbb{N} . Prove the "infinite Ramsey theorem": for any positive integer q, and any q-coloring of $K_{\mathbb{N}}$, there is an infinite monochromatic clique.
 - * (b) Prove that the finite and infinite Ramsey theorems are equivalent.
 Hint: This fact is often called "compactness", and you may want to use something else called compactness in the proof.
- \oplus 9. Prove that there is an infinite set $S \subseteq \mathbb{N}$ such that for every $a, b \in S$, the number a + b has an even number of prime factors (counted without multiplicity).