1. Prove that, for any $r \geqslant 1$,

$$
r(\underbrace{3,3, \ldots, 3}_{r \text { times }}, k)=\Omega\left(\frac{k^{r+1}}{(\log k)^{C_{r}}}\right),
$$

for some constant C_{r} depending only on r. Note that this matches the upper bound of Theorem 2.1.5 up to the logarithmic factor.
$\star 2$. Prove that the graph Λ_{q} has no O'Nan configuration.
3. Let q be a prime power. Construct a graph Π_{q} with vertex set $V\left(\Pi_{q}\right)=\mathbb{F}_{q}^{2}$, in which two vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ are adjacent if and only if $x_{1} x_{2}+y_{1} y_{2}=1$.
(a) Prove that Π_{q} is C_{4}-free.
*(b) Prove that Π_{q} satisfies the assumptions of Lemma 4.3.1 with $\beta=\Theta(1 / q)$ and $R=\Theta\left(q^{3 / 2}\right)$.
Remark: You should feel free to prove this with logarithmic losses in the value of R. The only way I know how to prove this involves techniques (from spectral graph theory) that we will not cover in this class, but I believe there should be an "elementary" proof. Please let me know if you find one!
4. Let q be a prime power. We define a graph $\Gamma_{q}^{(5)}$ to be the natural five-dimensional analogue of Γ_{q}. Namely, $\Gamma_{q}^{(5)}$ is a bipartite graph with parts $P \cup L$, where P is identified with \mathbb{F}_{q}^{5}, and L comprises all lines in \mathbb{F}_{q}^{5} whose direction is of the form $\left(1, z, z^{2}, z^{3}, z^{4}\right)$ for some $z \in \mathbb{F}_{q}$.
(a) Prove that $\Gamma_{q}^{(5)}$ is C_{4}-free and C_{10}-free.
(b) Define a natural analogue $G_{q}^{(5)}$ of G_{q}. It is natural to suppose that $G_{q}^{(5)}$ is C_{5}-free with probability 1 ; show that this is not the case.
Hint: Show that $\Gamma_{q}^{(5)}$ is not C_{8}-free. Use this to find a C_{5} in $G_{q}^{(5)}$.
5. Verify that Lemmas 4.3.8 and 4.3.9 imply Theorem 4.3.10.
$\leftrightarrow 6$. A subdivision of a graph H is obtained from H by replacing every edge of H by a path of some length (not necessarily the same length for all edges, and paths of length 1 are allowed, so that H is a subdivision of itself). A famous conjecture of Hajós asserts that if $\chi(G) \geqslant k$, then G contains a subdivision of K_{k} as a subgraph.
(a) Prove that Hajós' conjecture is true for $k \leqslant 3$.
\star (b) Prove that Hajós' conjecture is true for $k=4$.
\star means that a problem is hard.
? means that a problem is open.
$\widehat{\checkmark}$ means that a problem is on a topic beyond the scope of the course.
(c) Prove that Hajós' conjecture for $k=5$ implies the four-color theorem. Conclude that it is probably pretty hard to prove the $k=5$ case.
(d) Prove that if Hajós' conjecture is true, then $r(k) \leqslant 3 k^{3}$. Conclude that Hajós' conjecture is false.
(e) Prove that if Hajós' conjecture is true, then $r(3, k) \leqslant 12 k$. Conclude that Hajós' conjecture is false.
$\leftrightarrow 7$. A classical fact in graph theory is that there exist triangle-free graphs of arbitrarily high chromatic number. A standard proof, taught in most introductory graph theory courses, uses the Mycielski construction. In this exercise, you will see two alternative Ramsey-theoretic proofs.
(a) For an integer N, let S_{N} be a graph with vertex set $\binom{\llbracket N \rrbracket}{2}$, where we think of the vertices of S_{N} as ordered pairs (a, b) with $1 \leqslant a<b \leqslant N$. The edges of S_{N} consist of all pairs of the form $((a, b),(b, c))$ for $a<b<c$. Prove that S_{N} is triangle-free, and that $\chi\left(S_{N}\right) \rightarrow \infty$ as $N \rightarrow \infty$.
(b) The graph G_{q} constructed in class is triangle-free; prove that $\chi\left(G_{q}\right) \rightarrow \infty$ as $q \rightarrow \infty$.
$\oint 8$. (a) Let $K_{\mathbb{N}}$ denote the complete graph whose vertex set is \mathbb{N}. Prove the "infinite Ramsey theorem": for any positive integer q, and any q-coloring of $K_{\mathbb{N}}$, there is an infinite monochromatic clique.

* (b) Prove that the finite and infinite Ramsey theorems are equivalent.

Hint: This fact is often called "compactness", and you may want to use something else called compactness in the proof.
$\leftrightarrow 9$. Prove that there is an infinite set $S \subseteq \mathbb{N}$ such that for every $a, b \in S$, the number $a+b$ has an even number of prime factors (counted without multiplicity).

