
ETH Zürich Ramsey Theory—Spring 2024 Homework #5

1. (a) Prove that r(T ; q) = O(qn) for every q > 2 and every n-vertex tree T .

? (b) Prove that r(T ; q) = ⇥(qn) for every q > 2 and every n-vertex tree T .

2. Prove that the o↵-diagonal graph Ramsey number r(C4, Kk) satisfies the bounds
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for some absolute constants c, C > 0.

Hint: You may assume the results of exercise 6 from Homework #3 and exercise 3
from Homework #4.

3. Prove that r(K1,k) = 2k if k is odd, and r(K1,k) = 2k � 1 if k is even.

4. Let kK2 denote a matching with k edges, that is, a disjoint union of k copies of the
single-edge graph K2. Prove that r(kK2) = 3k � 1 for all k > 1.

? 5. Let Pk denote a k-vertex path. Prove that for all k > ` > 2,
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6. Prove that for every integer k and for every n-vertex tree T , we have

r(Kk, T ) = (k � 1)(n� 1) + 1.

7. Prove that the two definitions of degeneracy in Definition 5.4.3 are equivalent.

8. Prove that there exist absolute constants C, c > 0 such that the following holds for all
n. There exists an n-vertex graph H with degeneracy d > c log n and r(H) 6 Cn.

Note that this result is close to optimal; by Theorem 5.4.4, such an upper bound on
r(H) cannot hold if c > 2.

9. (a) Prove that every 2-coloring of JNK2 contains a monochromatic k ⇥ k subgrid,
where k = ⌦(logN). Here, a subgrid is a collection of points {(xi, yj)}ki,j=1, for
some x1, . . . , xk, y1, . . . , yk 2 JNK.

(b) Prove that the 2-coloring in part (a) is somewhat of a red herring. Namely, show
that if S ✓ JNK2 has size |S| > N2/2, then S contains a k ⇥ k subgrid, where
k = ⌦(logN). Thus, part (a) simply follows by letting S consist of the larger
color class.

? means that a problem is hard.
? means that a problem is open.

means that a problem is on a topic beyond the scope of the course.
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(c) Prove that the result in part (a) is tight up to a constant factor, in the sense that
there exists an absolute constant C > 0, as well as a 2-coloring of JNK2 with no
monochromatic k ⇥ k subgrid, where k = C log n.

? 10. Prove that
2qk < r(C2k+1; q) 6 C(q + 2)!k,

for some absolute constant C.

?? 11. Prove that r(Kk,k) = O(2k log k).

12. In a red/blue coloring of E(KN), denote by degR(v), degB(v) the red and blue degrees,
respectively, of a vertex v.

(a) Prove that the number of monochromatic triangles in such a coloring is equal to
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(b) Prove that every 2-coloring of E(K6) contains at least two monochromatic trian-
gles, and in particular obtain a new proof that r(3) 6 6.

(c) As a function of N , what is the minimum number of monochromatic triangles in
a 2-coloring of E(KN)?

? (d) Prove that no analogue of (∗) is true for cliques of order k > 4, or if the number of
colors is q > 3. That is, in either of these settings, the number of monochromatic
copies of Kk cannot be expressed only in terms of the vertex degrees.

13. For a set S ✓ Z2, let us define its k-square density to be

dk(S) := max
A,B✓Z

|A|=|B|=k

|S \ (A⇥ B)|
|A||B| .

and its silly density to be
dsilly(S) := lim

k!1
dk(S).

Prove that the limit defining dsilly(S) exists, and that for every S ✓ Z2, we have that
dsilly(S) = 0 or dsilly(S) = 1. Conclude that this is a pretty silly way to define the
density of a set.


