1. (a) Prove that $r(T ; q)=O(q n)$ for every $q \geqslant 2$ and every n-vertex tree T.
$\star(\mathrm{b})$ Prove that $r(T ; q)=\Theta(q n)$ for every $q \geqslant 2$ and every n-vertex tree T.
2. Prove that the off-diagonal graph Ramsey number $r\left(C_{4}, K_{k}\right)$ satisfies the bounds

$$
c \frac{k^{\frac{3}{2}}}{\log k} \leqslant r\left(C_{4}, K_{k}\right) \leqslant C \frac{k^{2}}{(\log k)^{2}}
$$

for some absolute constants $c, C>0$.
Hint: You may assume the results of exercise 6 from Homework $\# 3$ and exercise 3 from Homework \#4.
3. Prove that $r\left(K_{1, k}\right)=2 k$ if k is odd, and $r\left(K_{1, k}\right)=2 k-1$ if k is even.
4. Let $k K_{2}$ denote a matching with k edges, that is, a disjoint union of k copies of the single-edge graph K_{2}. Prove that $r\left(k K_{2}\right)=3 k-1$ for all $k \geqslant 1$.
$\star 5$. Let P_{k} denote a k-vertex path. Prove that for all $k \geqslant \ell \geqslant 2$,

$$
r\left(P_{k}, P_{\ell}\right)=k+\left\lfloor\frac{\ell}{2}\right\rfloor-1 .
$$

6. Prove that for every integer k and for every n-vertex tree T, we have

$$
r\left(K_{k}, T\right)=(k-1)(n-1)+1 .
$$

7. Prove that the two definitions of degeneracy in Definition 5.4.3 are equivalent.
8. Prove that there exist absolute constants $C, c>0$ such that the following holds for all n. There exists an n-vertex graph H with degeneracy $d \geqslant c \log n$ and $r(H) \leqslant C n$.
Note that this result is close to optimal; by Theorem 5.4.4, such an upper bound on $r(H)$ cannot hold if $c>2$.
9. (a) Prove that every 2-coloring of $\llbracket N \rrbracket^{2}$ contains a monochromatic $k \times k$ subgrid, where $k=\Omega(\log N)$. Here, a subgrid is a collection of points $\left\{\left(x_{i}, y_{j}\right)\right\}_{i, j=1}^{k}$, for some $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k} \in \llbracket N \rrbracket$.
(b) Prove that the 2-coloring in part (a) is somewhat of a red herring. Namely, show that if $S \subseteq \llbracket N \rrbracket^{2}$ has size $|S| \geqslant N^{2} / 2$, then S contains a $k \times k$ subgrid, where $k=\Omega(\log N)$. Thus, part (a) simply follows by letting S consist of the larger color class.
\star means that a problem is hard.
? means that a problem is open.
$\overleftrightarrow{~}$ means that a problem is on a topic beyond the scope of the course.
(c) Prove that the result in part (a) is tight up to a constant factor, in the sense that there exists an absolute constant $C>0$, as well as a 2 -coloring of $\llbracket N \rrbracket^{2}$ with no monochromatic $k \times k$ subgrid, where $k=C \log n$.
\star 10. Prove that

$$
2^{q} k<r\left(C_{2 k+1} ; q\right) \leqslant C(q+2)!k
$$

for some absolute constant C.
$\star \star$ 11. Prove that $r\left(K_{k, k}\right)=O\left(2^{k} \log k\right)$.
$\leftrightarrow 12$. In a red/blue coloring of $E\left(K_{N}\right)$, denote by $\operatorname{deg}_{R}(v), \operatorname{deg}_{B}(v)$ the red and blue degrees, respectively, of a vertex v.
(a) Prove that the number of monochromatic triangles in such a coloring is equal to

$$
\begin{equation*}
\sum_{v \in V\left(K_{N}\right)}\left[\binom{\operatorname{deg}_{R}(v)}{2}+\binom{\operatorname{deg}_{B}(v)}{2}\right]-\binom{N}{3} \tag{*}
\end{equation*}
$$

(b) Prove that every 2-coloring of $E\left(K_{6}\right)$ contains at least two monochromatic triangles, and in particular obtain a new proof that $r(3) \leqslant 6$.
(c) As a function of N, what is the minimum number of monochromatic triangles in a 2-coloring of $E\left(K_{N}\right)$?
\star (d) Prove that no analogue of $(*)$ is true for cliques of order $k \geqslant 4$, or if the number of colors is $q \geqslant 3$. That is, in either of these settings, the number of monochromatic copies of K_{k} cannot be expressed only in terms of the vertex degrees.
$\leftrightarrow 13$. For a set $S \subseteq \mathbb{Z}^{2}$, let us define its k-square density to be

$$
d_{k}(S):=\max _{\substack{A, B \subset \mathbb{Z} \\|A|=|B|=k}} \frac{|S \cap(A \times B)|}{|A||B|}
$$

and its silly density to be

$$
d_{\text {silly }}(S):=\lim _{k \rightarrow \infty} d_{k}(S)
$$

Prove that the limit defining $d_{\text {silly }}(S)$ exists, and that for every $S \subseteq \mathbb{Z}^{2}$, we have that $d_{\text {silly }}(S)=0$ or $d_{\text {silly }}(S)=1$. Conclude that this is a pretty silly way to define the density of a set.

