
ETH Zürich Ramsey Theory—Spring 2024 Homework #6

1. Prove the general dependent random choice lemma, Lemma 5.4.11.

2. Recall that Qd denotes the d-dimensional hypercube graph, with n = 2d vertices.

(a) Prove that Qd is a bipartite graph with maximum degree d on one side. Note
that we cannot directly apply Theorem 5.4.10, since n depends on d and Theo-
rem 5.4.10 requires n to be sufficiently large. However, if Theorem 5.4.10 is valid,
check that it implies r(Qd) ⩽ n25d

√
logn = 2d+5d3/2 = nΘ(

√
logn).

(b) By applying Lemma 5.4.11 and being more careful, prove that r(Qd) ⩽ 23d = n3.
Note that this bound is polynomial in n, whereas the bound in part (a) is super-
polynomial in n.

3. Let K̂k denote the 1-subdivision of Kk. This is a graph on k+
(
k
2

)
vertices, obtained by

introducing a new vertex in the middle of every edge of Kk. Equivalently, it is obtained
from Kk by replacing every edge by a 2-edge path.

(a) Prove that K̂k is a bipartite graph with maximum degree 2 on one side. Conclude

from Theorem 5.4.10 that r(K̂k) ⩽ k2215
√
log k.

(b) By applying Lemma 5.4.11 and being more careful, prove that r(K̂k) = O(k2).

Note that this bound is tight up to the implicit constant since K̂k has Θ(k2)
vertices.

⋆ 4. Prove that for every d ⩾ 1, there exists C > 0 such that the following holds for
sufficiently large n. If H is a d-degenerate bipartite graph, then r(H) ⩽ n2C(logn)2/3 =
n1+o(1).

5. Let G be an ε-quasirandom graph. Prove that for all disjoint S, T ⊆ V (G) with
|S|, |T | ⩾ ε|V (G)|, we have |d(S, T )− d(G)| ⩽ 2ε.

6. Prove the embedding lemma, Lemma 6.1.3, in the case H = K3.

Don’t worry too much about the exact assumptions d(G) ⩾ (2∆ε)1/∆ and N ⩾ 2n/ε—
it’s OK if you prove this under stronger assumptions of a similar flavor.

7. Prove Theorem 6.2.3, the linear bound on multicolor Ramsey numbers of bounded-
degree graphs.

⋆ 8. Prove that one cannot do better than exponential bounds in the ε-quasirandom set
lemma, Lemma 6.1.4. More precisely, show that there is an absolute constant c > 0
such that for every ε > 0 and every sufficiently large N , there exists an N -vertex graph
whose largest ε-quasirandom induced subgraph has at most 2−ε−c

N vertices.

9. The proof of Lemma 6.1.4 is not optimized quantitatively.

(a) What is the strongest bound on δ you can obtain by being more careful in the
proof?
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? (b) Prove that, for some absolute constant C > 0, one can take δ = 2−ε−C
in

Lemma 6.1.4. Note that by Exercise 8, this would be best possible up to the
value of C.

10. In this problem you will construct an explicit ε-quasirandom graph.

(a) Fix an odd prime p. Prove that for any T ⊆ Z/pZ, we have that

∑
z∈Z/pZ

∣∣∣∣∣∑
t∈T

e2πitz/p

∣∣∣∣∣
2

= p|T |.

(b) Let χ : Z/pZ → {−1, 0, 1} be the quadratic character mod p, namely the function

χ(x) =


1 if x is a quadratic residue mod p,

−1 if x is a quadratic non-residue mod p,

0 if x = 0.

Prove that if p ≡ 1 (mod 4), then χ(x) = χ(−x) for all x ∈ Z/pZ.
(c) Prove the Gauss sum formula,∣∣∣∣∣∣

∑
z∈Z/pZ

χ(z)e2πiz/p

∣∣∣∣∣∣ = √
p.

(d) Prove that for all X, Y ⊆ Z/pZ, we have that∣∣∣∣∣∑
x∈X

∑
y∈Y

χ(x− y)

∣∣∣∣∣ ⩽ √
p|X||Y |.

(e) Let p ≡ 1 (mod 4) be prime. Define the following graph, called the Paley graph
Pp, whose vertex set is Z/pZ. For vertices a, b, we join them by an edge if and
only if b − a is a quadratic residue mod p; note that by part (b) this is indeed a
well-defined graph.

Fix some ε > 0. Prove that if p is sufficiently large with respect to ε, then Pp is
ε-quasirandom.


