1. (a) Fix a q-coloring $\chi_{0}: E\left(K_{n}\right) \rightarrow \llbracket q \rrbracket$. Prove that for every $\sigma>0$, there exists $\delta>0$ such that the following holds. If a coloring $\chi: E\left(K_{N}\right) \rightarrow \llbracket q \rrbracket$ does not contain χ_{0} as an induced subcoloring, then there exists a set $S \subseteq V\left(K_{N}\right)$ with $|S| \geqslant \delta N$ and an index $i \in \llbracket q \rrbracket$, such that at most $\sigma\binom{|S|}{2}$ of the edges in S are colored by color i under χ.
(b) Prove that the $q=2$ case of part (a) is equivalent to Rödl's theorem, Theorem 6.3.3.
(c) You might have expected the multicolor generalization of Rödl's theorem to say that all colors but one have edge density at most σ in S. Prove that such a statement is false, even in the case $n=q=3$.
More precisely, show that there is a $E\left(K_{N}\right) \rightarrow \llbracket 3 \rrbracket$ such that no triangle receives all three colors, but such that every linearly-sized subset has edge density at least $\frac{1}{3}$ in at least two of the colors.
$\leftrightarrow 2$. Let G be a random N-vertex graph, where each edge is included independently with probability $\frac{1}{2}$. Prove that, with positive probability, G has the following property for sufficiently large N, where $C>0$ is an absolute constant. Every subset $S \subseteq V(G)$ with $|S| \geqslant C \log N$ satisfies $\frac{1}{3} \leqslant d(S) \leqslant \frac{2}{3}$.
This result shows that if we drop the assumption that G is induced- H-free, then nothing like Theorem 6.3.3 could possibly be true.
2. A graph H is said to have the Erdős-Hajnal property if there exists $\varepsilon>0$, depending only on H, such that every induced- H-free N-vertex graph has a clique or an independent set of size at least N^{ε}. Recall that the Erdős-Hajnal conjecture asserts that all graphs have the Erdős-Hajnal property.
(a) Prove that if $H=K_{k}$ is a complete graph, then H has the Erdős-Hajnal property.
(b) Prove that if H has the Erdős-Hajnal property, then so does its complement graph \bar{H}.
\star (c) Let P_{4} denote the four-vertex path graph. Prove that if G is an induced- P_{4}-free graph, then either G or \bar{G} is disconnected. Using this, prove that P_{4} has the Erdős-Hajnal property.
3. A graph G is minimally Ramsey for H if G is Ramsey for H, but any proper subgraph $G^{\prime} \subsetneq G$ is not Ramsey for $H . H$ is called Ramsey finite if there are only a finite number of minimally Ramsey graphs for H, and Ramsey infinite otherwise.
(a) Let $G=K_{3} * C_{\ell}$, where $\ell \geqslant 3$ is odd. Prove that G is minimally Ramsey for K_{3}. Conclude that K_{3} is Ramsey infinite.
(b) Determine the set of Ramsey minimal graphs for $K_{1,2}$.
(c) Prove that $K_{1, k}$ is Ramsey finite if and only if k is odd.

* (d) Prove that every tree which is not a star is Ramsey infinite.

5. A graph G is called q-minimally Ramsey for a graph H if G is Ramsey for H in q colors, but any proper subgraph $G^{\prime} \subsetneq G$ is not Ramsey for H in q colors.
(a) Prove that if G is q-minimally Ramsey for H, then every edge of G lies in at least q copies of H.
(b) Prove that if G is q-minimally Ramsey for H, then G has at least $q^{e(H)-1}$ copies of H.
(c) Prove Proposition 7.1.9.
6. Prove that for every $n, q \geqslant 2$, there exists some N such that $K_{N, N}$ is q-color induced Ramsey for $K_{n, n}$.
$\leftrightarrow 7$. (a) Prove that for any $\ell \geqslant 4$, the cycle C_{ℓ} is a subgraph of a triangle tree (and hence Ramsey obligatory for K_{3}).
(b) Prove that K_{4} is not a subgraph of any triangle tree.
$\Phi \star 8$. Prove Theorem 7.1.3 from Theorem 7.1.5. You should in fact assume the following strengthening of Theorem 7.1.5; in the same setup as in the theorem statement, we have that

$$
\operatorname{Pr}(G \text { is Ramsey for } H \text { in } q \text { colors }) \begin{cases}\geqslant 1-e^{-c p N^{2}} & \text { if } p \geqslant C N^{-1 / m_{2}(H)}, \\ \leqslant e^{-c p N^{2}} & \text { if } p \leqslant c N^{-1 / m_{2}(H)}\end{cases}
$$

Hint: Use Harris's inequality (or the FKG inequality).

