1. We saw that $r_{o}(k ; 2)=r(k ; 2)$ and that $r_{o}(k ; q) \leqslant r(k ; q)$ for all k, q. Prove an inequality in the other direction, namely that

$$
r(k ; q) \leqslant r_{o}\left(r_{o}\left(\cdots r_{o}\left(r_{o}(k ; q) ; q-1\right) \cdots ; 3\right) ; 2\right) .
$$

for any $q \geqslant 3$.
2. (a) Prove that

$$
r_{o}(k+1 ; 2 k-1)=2 k+1
$$

for all $k \geqslant 2$.
\star (b) Determine $r_{o}(k ; q)$ exactly for all $q \geqslant 2 k$.
\star (c) For any fixed $\alpha \in(0,2)$, determine

$$
\lim _{k \rightarrow \infty} \frac{r_{o}(k ; \alpha k)}{k} .
$$

3. Let $1 \leqslant \ell \leqslant q-1$ be integers, and let $\binom{\llbracket q \rrbracket}{\ell}$ denote the collection of all ℓ-element subsets of $\llbracket q \rrbracket$. A (q, ℓ)-set coloring is a function $\chi: E\left(K_{N}\right) \rightarrow\binom{\llbracket q \rrbracket}{\ell}$; in other words, rather than assigning every edge of K_{N} a single color out of q options, we assign every edge a list of ℓ colors from a palette of size q. We say that $v_{1}, \ldots, v_{k} \in V\left(K_{N}\right)$ form a color-intersecting clique if there is a color that appears in all of the $\binom{k}{2}$ lists associated to the edges they span, that is, if $\bigcap_{1 \leqslant i<j \leqslant k} \chi\left(v_{i} v_{j}\right) \neq \varnothing$. The set coloring Ramsey number $r_{s}(k ;(q, \ell))$ is the least N such that every (q, ℓ)-set coloring of $E\left(K_{N}\right)$ contains a color-intersecting clique of order k.
(a) Prove that $r_{s}(k ;(q, 1))=r(k ; q)$.
(b) Prove that $r_{s}(k ;(q, \ell)) \leqslant r_{s}(k ;(q, \ell-1))$ for any $2 \leqslant \ell \leqslant q-1$. Conclude that $r_{s}(k ;(q, \ell)) \leqslant r(k ; q)$ for all $1 \leqslant \ell \leqslant q-1$.
(c) Prove that $r_{s}(k ;(q, q-1))=r_{o}(k ; q)$.
(d) Combining parts (a) and (c) with our known bounds on $r(k ; q)$ and $r_{o}(k ; q)$, conclude the following. There exist absolute constants c, C such that for any $k \geqslant q \geqslant 2$, we have

$$
2^{c k q} \leqslant r_{s}(k ;(q, 1)) \leqslant 2^{C k q \log q} \quad \text { and } \quad 2^{\frac{c k}{q}} \leqslant r_{s}(k ;(q, q-1)) \leqslant 2^{\frac{C k}{q} \log q} .
$$

In other words, at both extremes $\ell=1$ and $\ell=q-1$, we have a $\Theta(\log q)$ gap between the upper and lower bounds.
(e) Prove that, for every $\varepsilon>0$ there exists some $B>0$ such that the following holds. If $\ell \geqslant \varepsilon q$, then $r_{s}(k ;(q, \ell)) \leqslant 2^{B k q}$.
(f) Using Theorem 8.1.4, prove the following. For every $x \geqslant 1$, there exists $D>0$ such that

$$
r_{s}(k ;(q, q-x)) \leqslant 2^{\frac{D k}{q} \log q}
$$

Note that this bound is much stronger than that given in (e).
\star (g) Prove that, for every $\varepsilon>0$, there exists some $\delta>0$ such that the following holds. If $\varepsilon q \leqslant \ell \leqslant(1-\varepsilon) q$, then

$$
r_{s}(k ;(q, \ell)) \geqslant 2^{\delta k q} .
$$

This shows that the bound in (e) is tight up to the value of B when $\varepsilon q \leqslant \ell \leqslant$ $(1-\varepsilon) q$. On the other hand, (f) shows that the upper bound $\ell \leqslant(1-\varepsilon) q$ cannot be entirely removed.
4. (a) Prove that Theorem 8.2.4 is equivalent to the following statement. For every $C>0, k \in \mathbb{N}$, the following holds for sufficiently large N. Consider a coloring $\chi: E\left(K_{N}\right) \rightarrow\{$ red, blue $\}$, and suppose that χ contains no monochromatic clique of order $C \log N$. Then for every coloring $\psi: E\left(K_{k}\right) \rightarrow\{$ red, blue\}, there is a k-vertex subset S of K_{N} such that the restriction of χ to S equals ψ (up to permutations of the vertices).
(b) State and prove a generalization of (a) to colorings with more than two colors.
$\leftrightarrow 5$. Prove that if G is a k-universal graph, then G has at least $2^{(k-1) / 2}$ vertices.

