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We saw that r,(k; 2) = r(k;2) and that r,(k; q) < r(k;q) for all k, q. Prove an inequality
in the other direction, namely that

r(k;q) < ro(ro(- - ro(ro(k;q)ig—1) -+ ;3);2).
for any ¢ > 3.

(a) Prove that
ro(k +1;2k — 1) = 2k + 1

for all £ > 2.

*(b) Determine r,(k; q) exactly for all ¢ > 2k.

x(c) For any fixed « € (0,2), determine
ro(k; ak)

o 5

Let 1 < ¢ < ¢—1 be integers, and let ([[Z]]) denote the collection of all /-element subsets
of [¢q]. A (q,¢)-set coloring is a function x : E(Ky) — ([[‘éﬂ); in other words, rather
than assigning every edge of Ky a single color out of ¢ options, we assign every edge
a list of ¢ colors from a palette of size . We say that vy,...,v, € V(Ky) form a
color-intersecting clique if there is a color that appears in all of the (’;) lists associated
to the edges they span, that is, if (), ;_; x(viv;) # @. The set coloring Ramsey
number r4(k; (q,£)) is the least N such that every (g, £)-set coloring of E(K ) contains
a color-intersecting clique of order k.

(a) Prove that ry(k;(q,1)) = r(k;q).

(b) Prove that r(k;(q,¢)) < rs(k; (g, — 1)) for any 2 < ¢ < ¢ — 1. Conclude that
rs(k; (q,0)) < r(k;q) forall 1 << q—1.

(¢) Prove that rs(k;(q,q — 1)) = ro(k; q).

(d) Combining parts (a) and (c) with our known bounds on r(k;q) and 7,(k;q),
conclude the following. There exist absolute constants ¢, C' such that for any
k > q > 2, we have

2% L ry(k; (g, 1)) < 2kaloea and 2% < rs(k; (g, —1)) < 9 loga,
In other words, at both extremes ¢ = 1 and ¢ = ¢ — 1, we have a O(logq) gap

between the upper and lower bounds.

(e) Prove that, for every ¢ > 0 there exists some B > 0 such that the following holds.
If ¢ > eq, then r(k; (¢, ¢)) < 2Bk,

(f) Using Theorem 8.1.4, prove the following. For every x > 1, there exists D > 0
such that .
ro(ks (q,q — x)) < 270 59,

Note that this bound is much stronger than that given in (e).
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*(g)

(b)

Prove that, for every € > 0, there exists some 6 > 0 such that the following holds.
If eq < €< (1—¢€)g, then
ro(k; (g,0)) = 2°1.

This shows that the bound in (e) is tight up to the value of B when eq < ¢ <
(1 —¢)q. On the other hand, (f) shows that the upper bound ¢ < (1 — ¢)q cannot
be entirely removed.

Prove that Theorem 8.2.4 is equivalent to the following statement. For every
C > 0,k € N, the following holds for sufficiently large N. Consider a coloring
X : E(Ky) — {red, blue}, and suppose that y contains no monochromatic clique
of order C'log N. Then for every coloring ¢ : E(Kj) — {red, blue}, there is
a k-vertex subset S of Ky such that the restriction of x to S equals ¢ (up to
permutations of the vertices).

State and prove a generalization of (a) to colorings with more than two colors.

4 5. Prove that if G is a k-universal graph, then G has at least 2(*~1)/2 vertices.



