
ETH Zürich Ramsey Theory—Spring 2024 Homework #9

1. Determine HJ(2; q) for every q ⩾ 1.

2. (a) Prove that, for every k, q ⩾ 2, there exists some N such that any q-coloring of
JNK contains a k-term geometric progression. That is, there exist numbers a, r
with r ⩾ 2 such that

a, ar, ar2, . . . , ark−1

all receive the same color.

Hint: This is a one-line corollary of van der Waerden’s theorem.

(b) Prove the following multiplicative analogue of Theorem 9.3.1. For every m, q ⩾ 2,
there exists N such that in any q-coloring of JNK, there exist distinct x1, . . . , xm ∈
JNK such that all the subset products

∏
i∈I xi, for ∅ ̸= I ⊆ JmK, receive the same

color.

? (c) Prove the following “combined” version of (b) and Theorem 9.3.1. For every
q ⩾ 2, there exists N such that for any q-coloring of JNK, there exist x, y such
that

x, y, x+ y, xy

all receive the same color.

3. (a) Prove that for every k ⩾ 3, there exists some N such that the following holds. In
any 2-coloring of JNK, there exists a k-AP such that all its terms, as well as its
common difference, receive the same color. That is, there exist a, r ∈ JNK such
that

r, a, a+ r, a+ 2r, . . . , a+ (k − 1)r

all receive the same color.

Hint: Begin by applying van der Waerden’s theorem to find a monochromatic
(k2 + 1)-AP.

(b) Prove a multicolor generalization of part (a). That is, for any k, q ⩾ 3, there
exists some N such that in any q-coloring of JNK, there exists a k-AP such that
all its terms, as well as its common difference, receive the same color.

4. (a) By coloring randomly, prove that

W (k; q) > q
k−1
2 .

(b) Prove that there are at most N2/(2(k− 1)) arithmetic progressions of length k in
JNK. Using this, improve your bound in (a) to

W (k; q) >
√

2(k − 1)q
k−1
2 .

⋆ means that a problem is hard.
? means that a problem is open.

means that a problem is on a topic beyond the scope of the course.
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5. In d-dimensional tic-tac-toe, two players take turns putting an X or an O in one of
the positions of the d-dimensional grid J3Kd. A player wins when she constructs a line
consisting entirely of her symbol. Prove that if d is sufficiently large, then the first
player has a winning strategy.

6. In this problem, you will see some better lower bounds on van der Waerden numbers,
using some properties of finite fields. Let p be prime, and consider the finite field F2p .
View F2p as a vector space over F2, and let A be any codimension-one subspace of this
vector space.

(a) Prove that A does not contain p elements in geometric progression, that is, there
do not exist a, r ∈ F2p with a ̸= 0 and r /∈ {0, 1} such that

a, ar, . . . , arp−1 ∈ A.

(b) Let B = F2p \ A. Prove that B does not contain p + 1 elements in geometric
progression, that is, there do not exist a, r ∈ F2p with a ̸= 0 and r /∈ {0, 1} such
that

a, ar, . . . , arp−1, arp ∈ B.

(c) Using the fact that the multiplicative group of F2p is cyclic, conclude from the
above that

W (p+ 1; 2) > 2p − 1.

Note that this is substantially better than the bounds in problem 4 in the case
that q = 2 and that k − 1 is prime.

⋆ (d) Using more cleverly that the multiplicative group of F2p is cyclic, prove that

W (p+ 1; 2) > p(2p − 1).

? (e) Extend the above to work for all k, not just those that are one more than a prime.
Namely, prove that

W (k; 2) = Ω(k2k)

for all k.

7. (a) Prove that van der Waerden’s theorem is equivalent to the following statement:
in any coloring of N with a finite number of colors, there are monochromatic
arithmetic progressions of every finite length.

(b) Construct a 2-coloring of N with no infinite monochromatic arithmetic progres-
sion, thus showing that the statement in (a) is best possible.

⋆⋆ (c) Prove that in any finite coloring of N, there is an infinite set A such that all finite
sums of distinct elements of A receive the same color.


