1. Determine $\operatorname{HJ}(2 ; q)$ for every $q \geqslant 1$.
2. (a) Prove that, for every $k, q \geqslant 2$, there exists some $N$ such that any $q$-coloring of $\llbracket N \rrbracket$ contains a $k$-term geometric progression. That is, there exist numbers $a, r$ with $r \geqslant 2$ such that

$$
a, a r, a r^{2}, \ldots, a r^{k-1}
$$

all receive the same color.
Hint: This is a one-line corollary of van der Waerden's theorem.
(b) Prove the following multiplicative analogue of Theorem 9.3.1. For every $m, q \geqslant 2$, there exists $N$ such that in any $q$-coloring of $\llbracket N \rrbracket$, there exist distinct $x_{1}, \ldots, x_{m} \in$ $\llbracket N \rrbracket$ such that all the subset products $\prod_{i \in I} x_{i}$, for $\varnothing \neq I \subseteq \llbracket m \rrbracket$, receive the same color.
? (c) Prove the following "combined" version of (b) and Theorem 9.3.1. For every $q \geqslant 2$, there exists $N$ such that for any $q$-coloring of $\llbracket N \rrbracket$, there exist $x, y$ such that

$$
x, y, x+y, x y
$$

all receive the same color.
3. (a) Prove that for every $k \geqslant 3$, there exists some $N$ such that the following holds. In any 2-coloring of $\llbracket N \rrbracket$, there exists a $k$-AP such that all its terms, as well as its common difference, receive the same color. That is, there exist $a, r \in \llbracket N \rrbracket$ such that

$$
r, a, a+r, a+2 r, \ldots, a+(k-1) r
$$

all receive the same color.
Hint: Begin by applying van der Waerden's theorem to find a monochromatic $\left(k^{2}+1\right)$-AP.
(b) Prove a multicolor generalization of part (a). That is, for any $k, q \geqslant 3$, there exists some $N$ such that in any $q$-coloring of $\llbracket N \rrbracket$, there exists a $k$-AP such that all its terms, as well as its common difference, receive the same color.
4. (a) By coloring randomly, prove that

$$
W(k ; q)>q^{\frac{k-1}{2}} .
$$

(b) Prove that there are at most $N^{2} /(2(k-1))$ arithmetic progressions of length $k$ in $\llbracket N \rrbracket$. Using this, improve your bound in (a) to

$$
W(k ; q)>\sqrt{2(k-1)} q^{\frac{k-1}{2}} .
$$

[^0]$\leftrightarrow 5$. In $d$-dimensional tic-tac-toe, two players take turns putting an X or an O in one of the positions of the $d$-dimensional grid $\llbracket 3 \rrbracket^{d}$. A player wins when she constructs a line consisting entirely of her symbol. Prove that if $d$ is sufficiently large, then the first player has a winning strategy.
$\uparrow 6$. In this problem, you will see some better lower bounds on van der Waerden numbers, using some properties of finite fields. Let $p$ be prime, and consider the finite field $\mathbb{F}_{2^{p}}$. View $\mathbb{F}_{2^{p}}$ as a vector space over $\mathbb{F}_{2}$, and let $A$ be any codimension-one subspace of this vector space.
(a) Prove that $A$ does not contain $p$ elements in geometric progression, that is, there do not exist $a, r \in \mathbb{F}_{2^{p}}$ with $a \neq 0$ and $r \notin\{0,1\}$ such that
$$
a, a r, \ldots, a r^{p-1} \in A
$$
(b) Let $B=\mathbb{F}_{2^{p}} \backslash A$. Prove that $B$ does not contain $p+1$ elements in geometric progression, that is, there do not exist $a, r \in \mathbb{F}_{2^{p}}$ with $a \neq 0$ and $r \notin\{0,1\}$ such that
$$
a, a r, \ldots, a r^{p-1}, a r^{p} \in B .
$$
(c) Using the fact that the multiplicative group of $\mathbb{F}_{2^{p}}$ is cyclic, conclude from the above that
$$
W(p+1 ; 2)>2^{p}-1
$$

Note that this is substantially better than the bounds in problem 4 in the case that $q=2$ and that $k-1$ is prime.
$\star$ (d) Using more cleverly that the multiplicative group of $\mathbb{F}_{2^{p}}$ is cyclic, prove that

$$
W(p+1 ; 2)>p\left(2^{p}-1\right)
$$

? (e) Extend the above to work for all $k$, not just those that are one more than a prime. Namely, prove that

$$
W(k ; 2)=\Omega\left(k 2^{k}\right)
$$

for all $k$.
$\leftrightarrow 7$. (a) Prove that van der Waerden's theorem is equivalent to the following statement: in any coloring of $\mathbb{N}$ with a finite number of colors, there are monochromatic arithmetic progressions of every finite length.
(b) Construct a 2-coloring of $\mathbb{N}$ with no infinite monochromatic arithmetic progression, thus showing that the statement in (a) is best possible.
** (c) Prove that in any finite coloring of $\mathbb{N}$, there is an infinite set $A$ such that all finite sums of distinct elements of $A$ receive the same color.


[^0]:    $\star$ means that a problem is hard.
    ? means that a problem is open.
    $\stackrel{\leftrightarrow}{\triangleleft}$ means that a problem is on a topic beyond the scope of the course.

