- 1. Determine HJ(2;q) for every $q \ge 1$.
- 2. (a) Prove that, for every $k, q \ge 2$, there exists some N such that any q-coloring of [N] contains a k-term geometric progression. That is, there exist numbers a, r with $r \ge 2$ such that

$$a, ar, ar^2, \ldots, ar^{k-1}$$

all receive the same color.

Hint: This is a one-line corollary of van der Waerden's theorem.

- (b) Prove the following multiplicative analogue of Theorem 9.3.1. For every $m, q \ge 2$, there exists N such that in any q-coloring of $[\![N]\!]$, there exist distinct $x_1, \ldots, x_m \in [\![N]\!]$ such that all the subset products $\prod_{i \in I} x_i$, for $\emptyset \ne I \subseteq [\![m]\!]$, receive the same color.
- ? (c) Prove the following "combined" version of (b) and Theorem 9.3.1. For every $q \ge 2$, there exists N such that for any q-coloring of [N], there exist x, y such that

$$x, y, x + y, xy$$

all receive the same color.

3. (a) Prove that for every $k \ge 3$, there exists some N such that the following holds. In any 2-coloring of $[\![N]\!]$, there exists a k-AP such that all its terms, as well as its common difference, receive the same color. That is, there exist $a, r \in [\![N]\!]$ such that

$$r, a, a + r, a + 2r, \dots, a + (k - 1)r$$

all receive the same color.

Hint: Begin by applying van der Waerden's theorem to find a monochromatic $(k^2 + 1)$ -AP.

- (b) Prove a multicolor generalization of part (a). That is, for any $k, q \ge 3$, there exists some N such that in any q-coloring of [N], there exists a k-AP such that all its terms, as well as its common difference, receive the same color.
- 4. (a) By coloring randomly, prove that

$$W(k;q) > q^{\frac{k-1}{2}}$$

(b) Prove that there are at most $N^2/(2(k-1))$ arithmetic progressions of length k in [N]. Using this, improve your bound in (a) to

$$W(k;q) > \sqrt{2(k-1)}q^{\frac{k-1}{2}}.$$

 $[\]star$ means that a problem is hard.

[?] means that a problem is open.

 $[\]Leftrightarrow$ means that a problem is on a topic beyond the scope of the course.

- $\oplus 5$. In *d*-dimensional tic-tac-toe, two players take turns putting an X or an O in one of the positions of the *d*-dimensional grid $[3]^d$. A player wins when she constructs a line consisting entirely of her symbol. Prove that if *d* is sufficiently large, then the first player has a winning strategy.
- $\oplus 6$. In this problem, you will see some better lower bounds on van der Waerden numbers, using some properties of finite fields. Let p be prime, and consider the finite field \mathbb{F}_{2^p} . View \mathbb{F}_{2^p} as a vector space over \mathbb{F}_2 , and let A be any codimension-one subspace of this vector space.
 - (a) Prove that A does not contain p elements in geometric progression, that is, there do not exist $a, r \in \mathbb{F}_{2^p}$ with $a \neq 0$ and $r \notin \{0, 1\}$ such that

$$a, ar, \ldots, ar^{p-1} \in A.$$

(b) Let $B = \mathbb{F}_{2^p} \setminus A$. Prove that B does not contain p + 1 elements in geometric progression, that is, there do not exist $a, r \in \mathbb{F}_{2^p}$ with $a \neq 0$ and $r \notin \{0, 1\}$ such that

$$a, ar, \ldots, ar^{p-1}, ar^p \in B.$$

(c) Using the fact that the multiplicative group of \mathbb{F}_{2^p} is cyclic, conclude from the above that

 $W(p+1;2) > 2^p - 1.$

Note that this is substantially better than the bounds in problem 4 in the case that q = 2 and that k - 1 is prime.

 \star (d) Using more cleverly that the multiplicative group of \mathbb{F}_{2^p} is cyclic, prove that

$$W(p+1;2) > p(2^p - 1).$$

? (e) Extend the above to work for all k, not just those that are one more than a prime. Namely, prove that

$$W(k;2) = \Omega(k2^k)$$

for all k.

- \oplus 7. (a) Prove that van der Waerden's theorem is equivalent to the following statement: in any coloring of N with a finite number of colors, there are monochromatic arithmetic progressions of every finite length.
 - (b) Construct a 2-coloring of N with no *infinite* monochromatic arithmetic progression, thus showing that the statement in (a) is best possible.
 - $\star\star$ (c) Prove that in any finite coloring of \mathbb{N} , there is an infinite set A such that all finite sums of distinct elements of A receive the same color.