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Chapter 1

Introduction

Ramsey theory is the study of structure and of disorder. The main message of Ramsey
theory, which underlies all results we’ll study in this course, is that complete disorder is
impossible—any sufficiently large system, no matter how disordered, must contain within it
some highly structured component. This general, highly unintuitive, philosophy manifests
itself in topics as diverse as computer science, number theory, geometry, functional analysis,
and, of course, graph theory, which is the topic we will mostly be focused on.

However, as Ramsey theory has connections to so many other areas of mathematics and
beyond, we will also frequently pause to see how the results we have proved connect to these
other fields. This is, in fact, how we begin the course, with perhaps the first-ever Ramsey-
theoretic result, published by Issai Schur [123] while Frank Ramsey was only fourteen years
old.

1.1 Ramsey theory before Ramsey

Like many other people, Schur was interested in Fermat’s last theorem, the statement that
the equation xq + yq = zq has no non-trivial integer solutions x, y, z for any fixed q ⩾ 3,
where a solution is trivial if 0 ∈ {x, y, z} and non-trivial otherwise.

Proving Fermat’s last theorem is (very) hard, so let’s start with something simpler. There
are, of course, non-trivial integer solutions to the Pythagoras equation x2 + y2 = z2. What
if we change the equation slightly, to, say, x2 + y2 = 3z2? After playing around with it for a
bit, you might be tempted to conjecture that now, there are no non-trivial integer solutions.

This conjecture is indeed true, and there is a standard technique in number theory for
proving such results. Namely, if there were some non-trivial solution x, y, z ∈ Z to the
equation x2 +y2 = 3z2, then there would also be a non-trivial1 solution to the same equation
modulo 3, namely the equation x2+y2 ≡ 0 (mod 3). However, we know that that 12 ≡ 22 ≡ 1
(mod 3), and we can conclude that there do not exist non-trivial solutions modulo 3.

1One has to be a bit careful here, as a non-trivial solution over Z may become trivial in Z/3. However,
it is not hard to get around this issue, as one can argue that a minimal non-trivial solution over Z cannot
have all three of x, y, z divisible by 3.
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A similar argument can be used to prove that many other polynomial equations have
no non-trivial integer solutions, and a general phenomenon called the Hasse principle very
roughly says that in many instances, such a technique is guaranteed to work. So it is
natural to wonder whether Fermat’s last theorem can also be proved in this way. This is the
question that motivated Schur2, who proved that this technique cannot work for Fermat’s
last theorem.

Theorem 1.1.1 (Schur [123]). For any integer q ⩾ 3, there exists an integer N = N(q)
such that the following holds for any prime p > N . There exist non-zero x, y, z ∈ Z/p with

xq + yq ≡ zq (mod p).

As Schur himself realized, despite proving an important and impressive result in number
theory, his proof used almost no number theory! He wrote “daß [Theorem 1.1.1] sich fast
unmittelbar aus einem sehr einfachen Hilfssatz ergibt, der mehr der Kombinatorik als der
Zahlentheorie angehört.”3 This Hilfssatz is the following.

Theorem 1.1.2 (Schur [123]). For any positive integer q, there exists an integer N = N(q)
such that the following holds. If JNK is colored in q colors, then there exist x, y, z ∈ JNK, all
receiving the same color, such that x+ y = z.

In this theorem, and throughout the course, we use the notation JNK := {1, . . . , N}, and
the terminology of coloring. By a coloring of JNK with q colors, we just mean a partition
of JNK into q sets A1, . . . , Aq, where we think of the elements of A1 as receiving a first
color, the elements of A2 as receiving some second, distinct, color, and so on. We will also
frequently use the shorthand monochromatic for “receiving the same color”, so the conclusion
of Theorem 1.1.2 could also be stated as the existence of a monochromatic solution to
x+ y = z.

As Schur wrote, the derivation of Theorem 1.1.1 from Theorem 1.1.2 is almost immediate,
but as it requires a few ideas from number theory and group theory, we will defer it for the
moment. Let us first see how to prove Theorem 1.1.2. Schur proved Theorem 1.1.2 directly,
but the modern, Ramsey-theoretic, perspective is to reduce Theorem 1.1.2 to an even more
combinatorial lemma, which we now state.

Lemma 1.1.3. For any positive integer q, there exists an integer N = N(q) such that the
following holds. If the edges of the complete graph KN are q-colored, then there exists a
monochromatic triangle.

Proof. We will actually prove something stronger, namely an explicit upper bound on N(q);
we will show that N(q) = 3q! satisfies the desired condition. We proceed by induction on q.

2In fact, the same question had motivated Dickson [32] a few years earlier, and he was the first to prove
Theorem 1.1.1. However, his technique used very messy casework and does not at all connect to Ramsey
theory, so we won’t discuss it any further.

3“that [Theorem 1.1.1] follows almost immediately from a very simple lemma, which belongs more to
combinatorics than to number theory.”
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The base case q = 1 is immediate. We are claiming that any 1-coloring of the edges of
KN , where N = 3 ·1! = 3, contains a monochromatic triangle. But as there is only one color,
and the complete graph we are “coloring” is itself a triangle, this is certainly true.

For the inductive step, suppose the result is true for q−1, i.e. that any (q−1)-coloring of
E(K3(q−1)!) contains a monochromatic triangle. Fix a q-coloring of E(KN), where N = 3q!,
and let v be any vertex of KN . v is incident to N − 1 edges, each of which receives one of
q colors. Therefore, by the pigeonhole principle, there is some color, say red, which appears
on at least ⌈

N − 1

q

⌉
=

⌈
3q! − 1

q

⌉
=

⌈
3(q − 1)! − 1

q

⌉
= 3(q − 1)!

edges incident to v. Let R denote the set of endpoints of these red edges, and consider the
coloring restricted to R. If there is any red edge appearing in R, then it forms a red triangle
together with v, and we are done. If not, then R is a set of at least 3(q − 1)! vertices that
are colored by at most q − 1 colors, and we can find a monochromatic triangle in R by the
inductive hypothesis. In either case we are done.

With Lemma 1.1.3 in hand, the proof of Theorem 1.1.2 is almost immediate. All we need
to do is to translate the number-theoretic coloring into a graph-theoretic coloring.

Proof of Theorem 1.1.2. Let N(q) = 3q! be chosen so that Lemma 1.1.3 holds. We are given
a q-coloring χ of JNK, which we convert to a q-coloring χ̂ of E(KN) as follows. Identify the
vertices of KN with JNK, and then color an edge ab, where 1 ⩽ a < b ⩽ N , according to the
color of b− a ∈ JNK in χ.

As χ̂ is a q-coloring of E(KN), by Lemma 1.1.3, there is a monochromatic triangle in χ̂.
Let the vertices of this triangle be a, b, c, where a < b < c. Let x = b − a, y = c − b, and
z = c− a, and note that these satisfy x+ y = z. Finally, note that they all receive the same
color under χ, since χ(x) = χ̂(ab), χ(y) = χ̂(bc), and χ(z) = χ̂(ac), and we assumed that
a, b, c is a monochromatic triangle under χ̂.

This completes the combinatorial part of Schur’s work. For completeness, let’s see how
to derive Theorem 1.1.1 from Theorem 1.1.2. As this topic is somewhat outside the main
narrative of the class, it will not be covered in lecture; throughout the notes we use a gray
box, as follows, to indicate material that was skipped.

Deduction of Theorem 1.1.1 from Theorem 1.1.2

Proof of Theorem 1.1.1. Let N = N(q) be as in Theorem 1.1.2, and fix a prime p > N . We
recall the well-known fact that the set Γ := {xq : 0 ̸= x ∈ Z/p} forms a subgroup of the
multiplicative group (Z/p)×, and the index of this subgroup is at most† q. Therefore, there
are at most q cosets of Γ which partition the non-zero elements of Z/p. By identifying the
non-zero elements of Z/p with Jp− 1K ⊇ JNK, we obtain a q-coloring of JNK according to these
cosets.

Now, by Theorem 1.1.2, there must exist monochromatic a, b, c ∈ JNK such that a+ b = c.
As these three numbers receive the same color, they must lie in some single coset αΓ of Γ, for
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some α ∈ (Z/p)×. By the definition of Γ, this means that we can write

a ≡ αxq (mod p), b ≡ αyq (mod p), c ≡ αzq (mod p),

for some non-zero x, y, z ∈ Z/p. The equation a+ b = c remains true when we reduce it mod
p, so we conclude that

αxq + αyq ≡ αzq (mod p).

As α is invertible in Z/p, and as x, y, z ̸= 0, we obtained the desired non-trivial solution
xq + yq ≡ zq (mod p).

†More precisely, the index is exactly gcd(q, p− 1).
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Chapter 2

Classical Ramsey numbers

2.1 Ramsey’s theorem and upper bounds on Ramsey

numbers

While Schur’s theorem can be seen as an early example of Ramsey theory, the theory did
not really get going until Frank Ramsey’s pioneering work [109] in 1929. Ramsey’s theorem,
as it is now called, is a generalization of Lemma 1.1.3 from triangles to arbitrary cliques.

Theorem 2.1.1 (Ramsey [109]). For all positive integers k, q, there exists an integer N =
N(k, q) such that the following holds. If the edges of the complete graph KN are q-colored,
then there exists a monochromatic Kk, that is, k vertices such that all the

(
k
2

)
edges between

them receive the same color.

Given this theorem, which we will shortly prove, we can make a definition that will be
central for much of the rest of the course.

Definition 2.1.2. Given positive integers k, q, the q-color Ramsey number of Kk, denoted
r(k; q), is the least N such that the conclusion of Theorem 2.1.1 is true. That is, r(k; q) is
the minimum integer N such that every q-coloring of E(KN) contains a monochromatic Kk.

In case q = 2, we usually abbreviate r(k; 2) as simply r(k), and usually refer to the 2-color
Ramsey number as simply the Ramsey number.

In this language, Theorem 2.1.1 can equivalently be stated as saying that r(k; q) < ∞
for all k, q. In fact, for much of this course, we will be interested not just in the fact that
such Ramsey numbers are finite, but in quantitative estimates on how large they are.

For now, let’s focus on the case q = 2. Ramsey’s original proof of Theorem 2.1.1 showed
that r(k) ⩽ k! for all k. But a few years later, a different proof was found by Erdős and
Szekeres [52], in another foundational paper of the field. In order to present their proof, we
need to define a slightly more general notion of Ramsey number.

Definition 2.1.3. Given positive integers k, ℓ, we denote by r(k, ℓ) the off-diagonal Ramsey
number, defined to be the least N such that every 2-coloring of E(KN) with colors red and
blue contains a red Kk or a blue Kℓ.

7
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Note that r(k, ℓ) = r(ℓ, k) as the colors play symmetric roles, and that r(k) = r(k, k).

Theorem 2.1.4 (Erdős–Szekeres). For all positive integers k, ℓ, we have

r(k, ℓ) ⩽

(
k + ℓ− 2

k − 1

)
.

In particular, we have

r(k) ⩽

(
2k − 2

k − 1

)
< 4k.

Proof. We proceed by induction on k + ℓ, with the base case1 k = ℓ = 1 being trivial. For
the inductive step, the key claim is that the following inequality holds:

r(k, ℓ) ⩽ r(k − 1, ℓ) + r(k, ℓ− 1). (2.1)

To prove (2.1), fix a red/blue coloring of E(KN), where N = r(k − 1, ℓ) + r(k, ℓ − 1),
and fix some vertex v ∈ V (KN). Suppose for the moment that v is incident to at least
r(k− 1, ℓ) red edges, and let R denote the set of endpoints of these red edges. By definition,
as |R| ⩾ r(k − 1, ℓ), we know that R contains a red Kk−1 or a blue Kℓ. In the latter case
we have found a blue Kℓ (so we are done), and in the former case we can add v to this red
Kk−1 to obtain a red Kk (and we are again done).

So we may assume that v is incident to fewer than r(k − 1, ℓ) red edges. By the exact
same argument, just interchanging the roles of the colors, we may assume that v is incident
to fewer than r(k, ℓ− 1) blue edges. But then the total number of edges incident to v is at
most

(r(k − 1, ℓ) − 1) + (r(k, ℓ− 1) − 1) = N − 2,

which is impossible, as v is adjacent to all N − 1 other vertices. This is a contradiction,
proving (2.1).

We can now complete the induction. By (2.1) and the inductive hypothesis, we find that

r(k, ℓ) ⩽ r(k − 1, ℓ) + r(k, ℓ− 1) ⩽

(
(k − 1) + ℓ− 2

(k − 1) − 1

)
+

(
k + (ℓ− 1) − 2

k − 1

)
=

(
k + ℓ− 2

k − 1

)
,

where the final equality is Pascal’s identity for binomial coefficients.

A similar argument works when the number of colors is more than 2. If we denote by
r(k1, . . . , kq) the off-diagonal multicolor Ramsey number (defined in the natural way), we
obtain the following generalization of Theorem 2.1.4, which you will prove on the homework.

Theorem 2.1.5. For all positive integers q and k1, . . . , kq, we have

r(k1, . . . , kq) ⩽

(
k1 + · · · + kq − q

k1 − 1, . . . , kq − 1

)
,

where the right-hand side denotes the multinomial coefficient. In particular,

r(k; q) < qqk.
1If you don’t like starting the induction with k = ℓ = 1—what does a monochromaticK1 mean, exactly?—

you should convince yourself that the base case k = ℓ = 2 also works.
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2.2 Lower bounds on Ramsey numbers

The Erdős–Szekeres bound, Theorem 2.1.4, gives us the upper bound r(k) < 4k, which
improves on Ramsey’s earlier bound of r(k) ⩽ k!. To understand how good this bound is,
we would like to obtain some lower bounds on r(k).

Thinking about the definition of Ramsey numbers, we see that proving a lower bound
of r(k) > N boils down to exhibiting a 2-coloring of E(KN) with no monochromatic Kk.
Perhaps the simplest such coloring is the Turán coloring, which proves the following result
(and which we will meet again later in the course).

Proposition 2.2.1. For any positive integer k, we have r(k) > (k − 1)2.

Proof. Let N = (k − 1)2. We split the vertex set of KN into k − 1 parts, each of size k − 1.
We color all edges within a part red, and all edges between parts blue. The red graph is a
disjoint union of k − 1 copies of Kk−1, so there is certainly no red Kk. On the other hand,
as there are only k− 1 parts, the pigeonhole principle implies that any set of k vertices must
include two vertices in one part; these two vertices span a red edge, and thus there is no blue
Kk either.

Is Proposition 2.2.1 tight? It’s not too hard to see that the answer is no. Indeed, already
for k = 3, Proposition 2.2.1 implies that r(3) > 4, and it is not hard to show that in fact
r(3) > 5, as witnessed by the following coloring.

Nonetheless, it is not clear how to do much better than Proposition 2.2.1 in general. Indeed,
I’ve heard that in the 1940s, Turán believed that the Erdős–Szekeres bound is way off, and
that the truth is r(k) = Θ(k2) (i.e. that Proposition 2.2.1 is best possible up to a constant
factor). As it turns out, this belief was way off.

Theorem 2.2.2 (Erdős [51]). For any k ⩾ 2, we have r(k) ⩾ 2k/2.

Together with Theorem 2.1.4, this proves that r(k) really does grow as an exponential
function of k, although these theorems do not tell us the precise growth rate. Theorem 2.2.2
was a major breakthrough not only—or even primarily—because of the result itself. In
proving Theorem 2.2.2, Erdős introduced the so-called probabilistic method to combinatorics.
This method would quickly become one of the most important tools in combinatorics, and
will recur frequently throughout this course.

9
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Proof of Theorem 2.2.2. Fix k, and let2 N = 2k/2. The claimed bound is trivial for k = 2, so
let’s assume k ⩾ 3. Consider a random 2-coloring of E(KN). Namely, for each edge of KN ,
we assign it color red or blue with probability 1

2
, making these choices independently over all

edges. We begin by estimating the probability that this coloring contains a monochromatic
Kk.

For any fixed set of k vertices, the probability that it forms a monochromatic Kk is

precisely 21−(k
2). This is because we have

(
k
2

)
coin tosses, which we need to all agree, and we

have two options for the shared outcome (hence the extra +1 in the exponent). Moreover,
there are exactly

(
N
k

)
possible k-sets we need to consider. Therefore,

Pr(there is a monochromatic Kk) ⩽

(
N

k

)
21−(k

2),

where we have applied the union bound
(
N
k

)
times; this is the bound that says that the

probability that A or B happens is at most the sum of the probability that A happens and
the probability that B happens.

Note that
(
N
k

)
< Nk/k! and that k! > 21+k/2 for all k ⩾ 3. Therefore, we have(

N

k

)
21−(k

2) <
Nk

k!
· 21− k2−k

2 <
Nk

21+ k
2

· 21+ k
2
− k2

2 =
(
N · 2− k

2

)k
= 1, (2.2)

where the final equality is our choice of N .
Putting this all together, we find that in this random coloring, the probability that there

is a monochromatic Kk is strictly less than one. Therefore, there must exist some coloring
of E(KN) with no monochromatic Kk, as if such a coloring did not exist, the probability
above would be exactly one. This completes the proof.

It’s worth stressing the miraculous magic trick that takes place in the proof of Theo-
rem 2.2.2. Unlike in Proposition 2.2.1, Erdős does not give any sort of explicit description
of a coloring on 2k/2 vertices with no monochromatic Kk. Instead, he argues that such a
coloring must exist for probabilistic reasons, but this argument gives absolutely no indication
of what such a coloring looks like. In fact, the following remains a major open problem.

Open problem 2.2.3 (Erdős). For some ε > 0 and all sufficiently large k, explicitly con-
struct a 2-coloring on (1 + ε)k vertices with no monochromatic Kk.

There was a great deal of partial progress over the years, much of it exploiting a deep and
surprising connection to the topic of randomness extraction in theoretical computer science.
Just last year, there was a major breakthrough on this problem.

2The astute reader will notice that 2k/2 is not an integer unless k is even. Thus, we should really write
here N = ⌈2k/2⌉. However, once the computations we do become more complicated, keeping track of such
floor and ceiling signs becomes not just annoying, but actively confusing. Therefore, for the rest of the
course, we’ll omit floor and ceiling signs unless they are actually crucial, and it will be understood that any
quantity that should be an integer but doesn’t look like one should be rounded up or down to an integer.
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Theorem 2.2.4 (Li [90]). For some absolute constant ε > 0 and all sufficiently large k,
there is an explicit 2-coloring on 2kε vertices with no monochromatic Kk.

By using a random q-coloring, one can adapt the proof of Theorem 2.2.2 and prove that
for any k, q ⩾ 3, we have

r(k; q) > qk/2.

Together with Theorem 2.1.5, this shows that for any fixed r(k; q) grows exponentially as a
function of k for any fixed q. However, for fixed k, the upper and lower bounds are rather
far apart—the lower bound is merely polynomial in q, whereas the upper bound is super-
exponential in q. For several decades this was the state of the art, until Abbott3 [1] noticed
a simple trick that does much better.

Proposition 2.2.5 (Abbott [1]). For all positive integers k, q1, q2, we have

r(k; q1 + q2) − 1 ⩾ (r(k; q1) − 1)(r(k; q2) − 1). (2.3)

As a consequence, we have

r(k; q) > 2
k
2
⌊ q
2
⌋.

Proof. Let N1 = r(k; q1) − 1 and N2 = r(k; q2) − 1. By assumption, we have colorings
χi : V (KNi

) → JqiK, for i = 1, 2, both of which avoid monochromatic Kk. Let N = N1N2,
and identify the vertex set of KN with V (KN1) × V (KN2). We can now define a coloring
χ : E(KN) → Jq1 + q2K as follows. It is easiest to understand with the following picture,
which shows how to convert two 2-colorings of E(K5) into a 4-coloring of E(K25), maintaining
the property of having no monochromatic triangle.

Formally, given a pair of vertices (a1, b1), (a2, b2) ∈ V (KN1) × V (KN2)
∼= V (KN), we define

χ((a1, b1), (a2, b2)) =

{
χ1(a1, a2) if a1 ̸= a2,

q1 + χ2(b1, b2) otherwise.

This is a (q1 + q2)-coloring of E(KN), and one can readily verify that there is no monochro-
matic Kk, as such a monochromatic clique could be used to obtain a monochromatic Kk in
either χ1 or χ2. Thus proves the claimed inequality (2.3).

To use it, we recall that we proved in Theorem 2.2.2 that r(k; 2) ⩾ 2k/2 + 1. Applying
(2.3) ⌊q/2⌋ times, we conclude that r(k; q) > (2k/2)⌊q/2⌋, as claimed.

3An earlier version of these notes, as well as many papers on the topic, attribute this result to Lefmann
[87], and note that the trick goes back at least to work of Chung [16]. But the paper of Abbott is even
earlier.
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2.3 The past and the future

Let us now zoom out a bit and discuss both some history, and a preview of what is to come in
(part of) the rest of the course. Until five years ago, the results stated above were essentially
the state of the art. In the case of two colors, we knew

2
k
2 < r(k) < 4k,

and more generally for q colors we had (say for simplicity that q is even)

2
qk
4 < r(k; q) < qqk.

There were a number of important papers that obtained slight improvements on some of these
bounds [19, 119, 129], but no one knew how to improve any of the exponential constants
appearing above. But in recent years there have been a number of important breakthroughs
on the problems discussed above.

The first concerns the lower bound on r(k; q) when q ⩾ 3 is fixed. Here, there was a major
breakthrough of Conlon and Ferber in 2020 [24], followed shortly thereafter by improvements
of myself [142] and Sawin [122]. The current state of the art, due to Sawin, is the following
result.

Theorem 2.3.1 (Sawin [122]). For fixed q ⩾ 3, we have

r(k; q) >
(
20.383796q−0.267592

)k−o(k)
,

where the o(k) term grows asymptotically slower than k as k → ∞.

This is better than what is given by Proposition 2.2.5, because 0.384 > 1
4
. The proof is

ingeneous but quite simple, and we will see it later in the course. We remark that while these
recent breakthroughs have improved the lower bound given in Proposition 2.2.5, they have
so far been unable to answer the main question about multicolor Ramsey numbers, which
Erdős offered $100 for.

Open problem 2.3.2 (Erdős, $100). For fixed k ⩾ 3, does r(k; q) grow exponentially or
super-exponentially as a function of q?

The next breakthrough, chronologically, came in March 2023, when Campos, Griffiths,
Morris, and Sahasrabudhe [13] obtained the first improvement to the exponential constant
in Theorem 2.1.4.

Theorem 2.3.3 (Campos–Griffiths–Morris–Sahasrabudhe [13]). r(k) < 3.9999k for all suf-
ficiently large k.

This might seem like a small improvement, but this was a really major breakthrough,
since this problem had been intractably stuck for almost 90 years. The proof of Theorem 2.3.3

12
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is completely elementary, but rather involved; we will hopefully see a sketch of the argument
later in the course, time permitting.

The final breakthrough that I want to talk about came out just three months later,
in June 2023, and was a result of Mattheus and Verstraëte [93] about off-diagonal Ramsey
numbers. Before stating their result, let’s back up and learn a bit about off-diagonal Ramsey
numbers, which we have not yet seriously discussed.

Generally speaking, when we talk about off-diagonal Ramsey numbers, we are interested
in the function r(s, k) (as in Definition 2.1.3), where we think of s as fixed and k → ∞. If
we specialize Theorem 2.1.4 to this setting, we find that for any fixed s ⩾ 2, we have

r(s, k) ⩽

(
k + (s− 2)

s− 1

)
= Os(k

s−1).

Here, and throughout the course, we use the big-O notation f = O(g) to mean that f(x) ⩽
C ·g(x) for an absolute constant C > 0. In case we use a subscript, as the subscript s above,
this means that the constant C may depend on the parameter s, i.e. that this bound should
be thought of for fixed s. It is easy to see that r(2, k) = k for all k, hence this bound is tight
for s = 2. For all larger s, a polylogarithmic improvement to the upper bound was obtained
by Ajtai, Komlós, and Szemerédi [2], who proved that for fixed s ⩾ 3, we have

r(s, k) = Os

(
ks−1

(log k)s−2

)
.

We will see a proof of this result later in the course. In particular, in the case s = 3, their
result says that

r(3, k) = O

(
k2

log k

)
.

Even before the Ajtai–Komlós–Szemerédi theorem was proved, Erdős [37] used a very so-
phisticated and intricate probabilistic argument to obtain a nearly matching lower bound,

r(3, k) = Ω

(
k2

(log k)2

)
,

where the big-Ω notation f = Ω(g) is equivalent to g = O(f). Erdős’s result was re-proved
by Spencer [130] using a different (and simpler) probabilistic technique, but the logarithmic
gap remained for a long time until Kim [77] finally managed to prove that the upper bound
is correct, that is

r(3, k) = Θ

(
k2

log k

)
,

where the big-Θ notation f = Θ(g) means that f = O(g) and f = Ω(g). More recent im-
provements to the lower and upper bounds [10, 53, 125] have been able to almost completely
determine the asymptotics of r(3, k); we now know that(

1

4
− o(1)

)
k2

ln k
⩽ r(3, k) ⩽ (1 + o(1))

k2

ln k
,

13
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where ln denotes the natural logarithm, and where the little-o notation f = o(g) means that
limx→∞ f(x)/g(x) = 0.

Despite this string of successes, very little remains known about the asymptotics of r(s, k)
for fixed s ⩾ 4. The best known lower bound, again due to Spencer [130] (with polylog-

arithmic improvements due to Bohman–Keevash [9]) is of the form r(s, k) ⩾ k
1
2
(s+1)+o(1),

compared to the upper bound of r(s, k) ⩽ ks−1−o(1). In particular, for s = 4, there is a gap
of 1/2 in the exponent. Or at least, there was, until the Mattheus–Verstraëte breakthrough
[93].

Theorem 2.3.4 (Mattheus–Verstraëte [93]). We have

r(4, k) = Ω

(
k3

(log k)4

)
.

This matches the Ajtai–Komlós–Szemerédi upper bound up to a factor of Θ((log k)2).
Their proof builds on a long line of recent work [3, 20, 95], and happens to be closely related
to the techniques used to prove Theorem 2.3.1 (the improved lower bound for r(k; q)). As
such, we will see the proof of Theorem 2.3.4 later in the course.
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Chapter 3

Lower bounds on multicolor Ramsey
numbers

Recall that Abbott [1] proved that r(k; q) > 2
k
2
⌊ q
2
⌋; for even q we can write this as r(k; q) >

(2q/4)k. We will now see how to improve this bound for all q ⩾ 3. In so doing, we will also
lay the groundwork for proving lower bounds on the off-diagonal Ramsey numbers r(3, k)
and r(4, k). The ideas in this section go back at least to work of Alon–Rödl [3], and were
crystallized in a series of works [24, 73, 95, 122, 142].

3.1 Random sampling and random homomorphisms

Let’s suppose we wish to prove a lower bound on the two-color Ramsey number r(s, k). If
we can find a graph G that has no clique of order s and no independent set of order k, then
we’ve found such a lower bound: r(s, k) is greater than the number of vertices of G, since we
can color the edges of G red and the non-edges blue. But since finding such graphs is hard,
it would be nice to be able to lower-bound r(s, k) by finding a graph G with some weaker
property.

It turns out that this is possible. Suppose we now have a graph G with no Ks, but let’s
not assume that it has no independent sets of order k. Instead, let’s suppose that G has
“few” independent sets of order k. Concretely, assume that G has at most Mk independent
sets of order k, for some parameter M (note that it is natural to parametrize things in this
way, since there are exponentially many k-sets of vertices in G). It turns out that as long
as M is not too big, we can use this G to get a good lower bound on r(s, k), by random
sampling.

Lemma 3.1.1 (Random sampling). Let G be a Ks-free graph on N vertices, and suppose
that G has at most Mk independent sets of order k. Then

r(s, k) ⩾
N

4M
.

Proof. We will randomly sample a subgraph H of G, by keeping each vertex of G inde-
pendently with probability p, to be chosen later. Since G is Ks-free, its subgraph H is
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Ks-free as well. Additionally, each independent set of order k in G will survive in H with
probability pk. So the expected number of independent sets of order k in H is at most
pkMk = (pM)k. By choosing p = 1/(2M), this number is less than 1/2, so the probability
that H has no independent set of order k is at least 1/2. Additionally, with high probability,
H has at least pN/2 vertices, by standard probabilistic tail bounds1. So we find that with
positive probability, H is a graph on at least N/(4M) vertices with no Ks or Kk, proving
that r(s, k) ⩾ N/(4M), as claimed.

In order to extend these ideas further, it will be convenient to take a different perspective
on Lemma 3.1.1. Specifically, rather than keeping each vertex of G with probability p, we
will pick a random function from a set of pN vertices to V (G), and “pull back” the graph
structure. Of course, if p ≪ 1, then this random function will have no collisions with high
probability, and so we will exactly get the random induced subgraph we got before, except
that we’ll have exactly pN vertices (rather than a binomial distribution on the number of
vertices), but this difference is immaterial. The reason for taking this change of perspective
is that it is much more amenable to using more than two colors: we can just pick more
random functions and overlay them, as we’ll soon see.

Concretely, suppose that G is a Ks-free graph on N vertices with at most Mk independent
sets of order at most2 k. Let n = pN for some parameter p, and pick a uniformly random
function f : JnK → V (G). Define a graph H on vertex set JnK by setting {u, v} ∈ E(H) if
{f(u), f(v)} ∈ E(G); note that in particular we only connect u and v if f(u) ̸= f(v), which
implies that H is also Ks-free. Then for any given set K ⊂ JnK of order |K| = k, and any
fixed U ⊆ V (G) of order |U | ⩽ k, the probability that f(K) ⊆ U is at most (k/N)k. Thus,
the probability that K is independent in H is at most (kM/N)k, as there are at most Mk

choices for such a U that is independent in G. As there are
(
n
k

)
choices for this K, we see

by the union bound that

Pr(H has an independent set of order k) ⩽

(
n

k

)(
kM

N

)k

⩽

(
epN

k

kM

N

)k

= (epM)k,

and we can recover the result of Lemma 3.1.1—up to the constant factor—by setting p =
1/(2eM).

However, as indicated above, the power of this perspective is that it easily extends to
more colors. Indeed, suppose that we instead pick independent uniformly random functions
f1, . . . , fr : JnK → V (G). We color the edges of Kn in r + 1 colors, as follows. If there is
some i ∈ [r] such that {fi(u), fi(v)} ∈ E(G), then we color {u, v} by the minimum such i. If

1As I am not assuming any probabilistic background in this course, I won’t get into exactly what this
means, but if you’re curious you should look up Chebyshev’s inequality or the Chernoff bound, and verify
that either of them will suffice to prove this statement. Strictly speaking, to make this argument work,
we’d have to assume that N > 10M (or some other similar bound). But given that the lemma statement is
uninteresting if M and N have the same order, let’s not worry about this technicality.

2Note that we’ve slightly strengthened this assumption, bounding the number of independent sets of order
at most k. As it turns out, this is usually OK: many techniques that bound the number of independent sets
of order exactly k will also work here.
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not, we color {u, v} by color r + 1. Then each of the first r colors is Ks-free, by the above.
Additionally, the probability that some fixed k-set K is monochromatic in the last color is
at most (kM/N)rk, since we have a probability (kM/N)k for each function fi, and these
probabilities are independent. Therefore, by the union bound, we find that the probability
that the last color has a clique of order k is at most(

n

k

)(
kM

N

)rk

⩽

(
epN

k

)k ((
kM

N

)r)k

=

(
epkr−1M r

N r−1

)k

. (3.1)

We conclude the following generalization of Lemma 3.1.1.

Lemma 3.1.2 (Random homomorphisms). Let G be a Ks-free graph on N vertices, and
suppose that G has at most Mk independent sets of order at most k. Then

r(s, . . . , s︸ ︷︷ ︸
r times

, k) ⩾
N r

2ekr−1M r
.

Proof. We set p = N r−1/(2ekr−1M r), so that the quantity in (3.1) is less than 1. Then we
see that the coloring described above has no Ks in the first r colors, and no Kk in the final
color, and has n = pN vertices.

Of course, even this isn’t the most general form of this lemma that we could prove, since
there’s no real reason to have f1, . . . , fr all have the same codomain. Indeed, in [73], this
idea was used to obtain lower bounds on many off-diagonal multicolor Ramsey numbers.

The crucial thing to observe about Lemma 3.1.2 is that p is not a probability, and in
particular, it does not need to be less than 1! If p > 1, then n = pN will be larger than
N , and the functions f1, . . . , fr will no longer be making random subgraphs of G. Instead,
they will be forming random blowups of G, and thus the coloring we use in Lemma 3.1.2 is
obtained by randomly overlaying r random blowups of G, and then coloring all uncolored
edges with the final color. This idea of overlaying random blowups to obtain lower bounds
on multicolor Ramsey numbers goes back to Alon and Rödl [3], though they didn’t use the
perspective of random homomorphisms. The observation that the Alon–Rödl approach and
the Mubayi–Verstraëte approach are both instances of the same general technique is due to
Xiaoyu He, and our paper [73] uses this observation to combine the Alon–Rödl and Mubayi–
Verstraëte approaches and obtain unified bounds on multicolor Ramsey numbers. In my
opinion, the fact that random induced subgraphs and random blowups are “the same thing”
is a very powerful observation, and it’s the main message I’d like to get across in this section.

3.2 The Conlon–Ferber argument

In Lemma 3.1.2, we gave all remaining edges the same color, and then used a simple union
bound to estimate the probability of a monochromatic Kk. The Conlon–Ferber idea is to
actually use two colors for these remaining edges, choosing randomly for each edge. Since we
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ETH Zürich Ramsey Theory—Spring 2024 Yuval Wigderson

know that random colorings generally have small monochromatic cliques, it stands to reason
that doing this will improve the lower bound on the Ramsey number. Of course, doing this is
costly, in the sense that we have to add a new color, so we are obtaining a strengthened bound
on a different Ramsey number. The precise statement, implicit in [24, 142] and explicit in
[122], is as follows.

Lemma 3.2.1. Let G be a Ks-free graph on N vertices, and suppose that G has at most Mk

independent sets of order at most k. Then

r(s, . . . , s︸ ︷︷ ︸
r times

, k, k) ⩾
2k/2N r

4krM r
.

Proof. As indicated above, we pick a parameter p, set n = pN , and choose r random functions
f1, . . . , fr : JnK → V (G). We color E(Kn) by assigning the first r colors as before, with {u, v}
getting color i only if {fi(u), fi(v)} ∈ E(G). For the uncolored edges, we assign one of the
colors r + 1, r + 2 uniformly at random, independently for each uncolored edge. Then as
above, we know that the first r colors are Ks-free. For the final two colors, let’s estimate the
probability that a k-set K ⊂ JnK is monochromatic. For K to be monochromatic, it must
first not contain any edges of the first r colors, which we know happens with probability at

most (kM/N)rk. Then, there is a probability 21−(k
2) that all the pairs of K get assigned the

same color among {r+ 1, r+ 2}. Putting this all together with the union bound, we see that
the probability that Kn has a monochromatic Kk in one of the last two colors is at most(

n

k

)
21−(k

2)
(
kM

N

)rk

⩽

(
pN · 21− k

2 · k
rM r

N r

)k

=

(
p

2krM r

2k/2N r−1

)k

.

So if we take p = 2k/2N r−1/(4krM r), this probability will be less than 1, and we’ll obtain a
coloring with no Ks in the first r colors and no Kk in the final two colors. This gives that

r(s, . . . , s︸ ︷︷ ︸
r times

, k, k) ⩾ n = pN =
2k/2N r

4krM r
.

3.3 Actually getting a lower bound on r(k; q)

So far, all of the results proved above are of the form “if a graph G with certain properties
exists, then we obtain a lower bound on some Ramsey number”. But we haven’t yet proved
that any such graph G exists!

In many settings, such as the lower bounds on r(3, k) and r(4, k) that we will discuss
shortly, finding such graphs is quite difficult, and is basically the crux of the argument (see
also [3, 95]). In their work improving the lower bound on r(k; q), Conlon and Ferber [24]
used an ingeneous linear-algebraic construction of a graph with such properties, and you will
have the opportunity to explore this graph in the homework. However, as observed by Sawin
[122], it is more efficient to use a random graph.
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Lemma 3.3.1. For every k ⩾ 10, there exists a Kk-free graph G on N = 2k/2 vertices with
at most Mk independent sets of order at most k, where M = 2 · 2k/8.

Proof. We consider a uniformly random graph G on N vertices, i.e. where each pair is
included as an edge of G with probability 1

2
, independently over all choices. By the same

computation as in Theorem 2.2.2, we see that G is Kk-free with probability at least 2
3
. Any

set of order m is an independent set in G with probability 2−(m
2 ), hence the expected number

of independent sets of order at most k in G is

k∑
m=1

(
N

m

)
2−(m

2 ) ⩽ N +

(
N

2

)
+

k∑
m=3

(
N

m

)
2−(m

2 ) ⩽ N2 +
k∑

m=3

(
N · 2−m

2

)m
,

where the final step is the same computation as in equation (2.2). Recalling that we chose
N = 2k/2, we can write (

N · 2−m
2

)m
=
(

2
k−m

2

)m
=
(

2
k−m

2
·m
k

)k
.

The function (k − m)m/(2k) is a quadratic function of m, and it is easy to see that it is
maximized at m = k/2, where it takes on the value k/8. Therefore, the expected number of
independent set of order at most k in G is upper-bounded by

N2 + (k − 2) ·
(

2
k
8

)k
⩽

1

3

(
2 · 2

k
8

)k
=

1

3
Mk,

where the inequality holds by our assumption that k ⩾ 10.
Now, an application of Markov’s inequality shows that with probability at least 2

3
, G has

at most Mk independent sets of order at most k. As we also said that G is Kk-free with
probability at least 2

3
, we conclude that there exists a graph G with the claimed properties.

Plugging this result into Lemma 3.2.1 (with s = k and r = q − 2), we obtain

r(k; q) ⩾
2k/2N q−2

4kq−2M q−2
=

(2(q−1)/2)k

4(2k)q−2(2(q−2)/8)k
=
(

2
q−1
2

− q−2
8

)k−o(k)

=
(

2
3
8
q− 1

4

)k−o(k)

, (3.2)

where in the second equality we use the fact that 4(2k)q−2 is a polynomial in k, and thus
is of the form 2o(k) as k → ∞ (with q fixed). Note that this bound is already better than
that given by Proposition 2.2.5 for any q ⩾ 3, whereas (3.2) matches Proposition 2.2.5 (and
Theorem 2.2.2) for q = 2. This should not be surprising, since for q = 2 we use r = q−2 = 0
random homomorphisms, and thus this construction is simply the same as in Theorem 2.2.2!

The bound (3.2) was proved in [142], by using the linear-algebraic graph of Conlon–
Ferber rather than the random graph G constructed in Lemma 3.3.1 (both constructions
end up having the same value of N/M , and thus yield the same bound). One of Sawin’s
main observations in [122] is that by running the same argument with a random graph of
edge density p slightly less than 1/2, one can get the better exponent in Theorem 2.3.1.
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Lemma 3.3.2 (Sawin [122]). For any k ⩾ 4 and p ∈ (0, 1), there exists a Kk-free graph G
on N = p−k/2 vertices with at most Mk independent sets of order at most k, where

M = N · 2k· (4 log(1−p)−log(p)) log(p)
8 log(1−p)

−o(k),

and the logarithms are to base 2.

The proof of this lemma is the same as that of Lemma 3.3.1, except that now when
defining the random graph G, we include every pair as an edge with probability p. As our
goal is to pick M as small as possible, to obtain as strong a lower bound from Lemma 3.2.1
as possible, we wish to minimize the exponent as a function of p; one can check that this
minimum is attained at p ≈ 0.455, and plugging this into Lemma 3.2.1 yields the bound in
Theorem 2.3.1.
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Chapter 4

Off-diagonal Ramsey numbers

Let us now turn our attention to the off-diagonal Ramsey number r(3, k). Already in
Lemma 3.1.1, we saw the basic tool that we will use to obtain lower bounds on this func-
tion (the idea of applying Lemma 3.1.1 to this problem is due to Mubayi–Verstraëte [95]).
However, before we get there, let us discuss upper bounds.

4.1 Upper bounds on off-diagonal Ramsey numbers

Recall that as a consequence of the general Erdős–Szekeres bound, Theorem 2.1.4, we have

r(3, k) ⩽

(
k + 1

2

)
⩽ k2. (4.1)

In this section, we will prove a better upper bound, of the form r(3, k) = O(k2/log k),
originally due to Ajtai–Komlós–Szemerédi [2] (improving on earlier work of Graver–Yackel
[69]), although we will follow a somewhat more streamlined proof due to Shearer [125].
Before we do that, let’s spend a moment thinking about the bound r(3, k) ⩽ k2. Setting
n = k2, this bound can equivalently phrased as follows: any n-vertex triangle-free graph G
contains an independent set of order

√
n. In this language, this is rather easy to prove, as

follows. If G has a vertex v of degree at least
√
n, then the triangle-free condition implies that

the neighborhood of v is an independent set of order at least
√
n. On the other hand, if all

vertices of G have degree strictly less than
√
n, we can greedily build up an independent A set

as follows. We pick a vertex v1, place v1 into A, and then delete v1 and all its neighbors from
G. We then pick another vertex v2, place it into A, and delete it and all its neighbors from G.
We continue this process as long as we can. Note that no matter what, we definitely create
an independent set at the end of this process, since the step where we delete all neighbors of
vi guarantees that no pair of vertices in A are adjacent. Moreover, as every vertex in G has
degree less than

√
n, we delete at most

√
n vertices at each step of the process, and hence

we can continue the process for at least n/
√
n =

√
n steps. Thus, we end by producing an

independent set A with |A| ⩾
√
n.

We can thus split the proof of (4.1) into two lemmas. We denote by α(G) the independence
number of G, that is, the size of the largest independent set in G.
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Lemma 4.1.1. If a triangle-free graph G has average degree d, then α(G) ⩾ d.

Lemma 4.1.2. If an n-vertex graph G has average degree d, then α(G) ⩾ n/(1 + d).

Note that Lemma 4.1.1 follows directly from the argument above, since if the average de-
gree is d, then certainly there is some vertex with degree at least d. In contrast, Lemma 4.1.2
actually doesn’t follow from the above; the argument presented above only really works if G
has maximum degree d. Nonetheless, Lemma 4.1.2 is true, and is one of the many equivalent
formulations of Turán’s theorem; you’ll prove it on the homework. Note that in this lemma,
and in the argument above, we didn’t actually use the assumption that G is triangle-free—
that assumption only came into Lemma 4.1.1, whereas the inductive procedure for building
A works in any graph with bounded maximum degree.

The basic idea underlying the Ajtai–Komlós–Szemerédi theorem is that Lemma 4.1.2,
while tight in general, is far from tight for triangle-free graphs. Basically, one can use the
triangle-freeness to pick intelligent choices for vi, which ensure that the process can continue
for somewhat longer than the näıve analysis above suggests. A very slick formulation of this
idea, due to Shearer [125], is the content of the following lemma.

Lemma 4.1.3 (Shearer [125]). Define

f(d) :=
d ln d− d+ 1

(d− 1)2
,

extended continuously to f(0) := 1, f(1) := 1
2
. If G is an n-vertex triangle-free graph with

average degree d, then

α(G) ⩾ n · f(d) = (1 − o(1))
n ln d

d
,

where the o(1) tends to 0 as d→ ∞.

Proof. Note that f(d) = (1 − o(1)) ln d
d

, so it suffices to prove the first inequality. We prove
the statement by induction on n, where for every fixed n we prove it simultaneously for all
d. For the base case, note that the result is trivial if n = 1, as the only 1-vertex graph has no
edges and d = 0, and independence number 1 = 1 · f(0). We now proceed with the inductive
step, and assume that the result has been proved for all smaller values of n.

For a vertex v ∈ V (G), let us denote by deg(v) its degree, and by r(v) the average degree
of its neighbors, namely

r(v) :=
1

deg(v)

∑
u∼v

deg(u),

where u ∼ v denotes that u is adjacent to v. The reason we care about these quantities
is that we plan to pick a carefully-chosen vertex v, and then define Ĝ to be the induced
subgraph obtained by deleting v and all its neighbors. When we do this, we have that

v(Ĝ) = n− (deg(v) + 1),
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since we deleted deg(v) + 1 vertices, and that

e(Ĝ) = e(G) −
∑
u∼v

deg(u) = e(G) − deg(v)r(v).

This is the only step in which we use that G is triangle-free, to ensure that indeed deg(v)r(v)
edges are deleted—if there were triangles in the graph, then neighbors of v might be adjacent,
and then this might be an overcount of the number of deleted edges. Recalling that the
average degree of G is d, so that e(G) = nd/2, we compute that the average degree of Ĝ is

d̂ = 2
e(Ĝ)

v(Ĝ)
= 2

1
2
nd− deg(v)r(v)

n− deg(v) − 1
=
nd− 2 deg(v)r(v)

n− deg(v) − 1
.

Let us note for future reference that

(n− deg(v) − 1)(d̂− d) = (nd− 2 deg(v)r(v)) − (nd− d deg(v) − d)

= d deg(v) + d− 2 deg(v)r(v). (4.2)

Note that we may add v to any independent set in Ĝ to obtain an independent set in G, and
therefore the inductive hypothesis implies that

α(G) ⩾ 1 + α(Ĝ) ⩾ 1 + (n− deg(v) − 1)f(d̂).

One can check that f ′′(x) ⩾ 0 for all x > 0, which implies that

f(d̂) ⩾ f(d) + (d̂− d)f ′(d).

Therefore, continuing the computation above, we have that

α(G) ⩾ 1 + (n− deg(v) − 1)f(d̂)

⩾ 1 + (n− deg(v) − 1)f(d) + (n− deg(v) − 1)(d̂− d)f ′(d)

= 1 + (n− deg(v) − 1)f(d) + (d deg(v) + d− 2 deg(v)r(v))f ′(d), (4.3)

where the final equality uses (4.2).
Recall that we have yet to pick v. From the computation above, it is clear that we

should pick v so that A(v) := (d deg(v) + d− 2 deg(v)r(v))f ′(d) is large relative to B(v) :=
(deg(v) + 1)f(d). In order to do this, let us compute the average values of both of these
quantities, averaged over all v ∈ V (G). The quantity B is easy, as

1

n

∑
v∈V (G)

(deg(v) + 1)f(d) = (d+ 1)f(d). (4.4)

For the first quantity, we first compute that∑
v∈V (G)

deg(v)r(v) =
∑

v∈V (G)

∑
u∼v

deg(u) =
∑

u∈V (G)

∑
v∼u

deg(u) =
∑

u∈V (G)

deg(u)2 ⩾ nd2, (4.5)
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where the final inequality uses the Cauchy–Schwarz inequality and the assumption that the
average degree in G is d. Therefore, the average value of A(v) is

1

n

∑
v∈V (G)

(d deg(v) + d− 2 deg(v)r(v))f ′(d) ⩾ (d2 + d− 2d2)f ′(d) = (d− d2)f ′(d), (4.6)

where we reversed the direction of the inequality from (4.5) because f ′(x) ⩽ 0 for all x > 0.
We now observe that the definition of f implies that it solves the differential equation

(d+ 1)f(d) = 1 + (d− d2)f ′(d).

Thus, (4.4) and (4.6) imply that one plus the average value of A(v) is at least the average
value of B(v). This implies that we can pick some vertex v ∈ V (G) such that 1+A(v) ⩾ B(v).
Plugging this into (4.3) shows that

α(G) ⩾ 1 + (n− deg(v) − 1)f(d) + (d deg(v) + d− 2 deg(v)r(v))f ′(d)

= 1 + nf(d) −B(v) + A(v)

⩾ nf(d),

completing the proof.

Given this lemma, the proof of the improved upper bound on r(3, k) is straightforward.

Theorem 4.1.4 (Ajtai–Komlós–Szemerédi [2], Shearer [125]). With the function f as defined
in Lemma 4.1.3, we have

r(3, k) ⩽
k

f(k)
= (1 + o(1))

k2

ln k
,

where the o(1) term tends to 0 as k → ∞.

Proof. Note that f(k) = (1 + o(1)) ln k
k

as k → ∞, so it suffices to prove the first inequality.
Let n = k/f(k). The statement that r(3, k) ⩽ n is equivalent to saying that every n-vertex
graph G contains a triangle or an independent set of order at least k. So fix an n-vertex
graph, and let us assume that G is triangle-free (for otherwise we are done). If the average
degree d of G is at least k, then we have α(G) ⩾ d ⩾ k by Lemma 4.1.1, so we may assume
that d < k. Therefore, by Lemma 4.1.3 and the monotonicity of the function f , we have

α(G) ⩾ nf(d) ⩾ nf(k) = k.

We remark that a simple induction argument, together with (2.1), can be used to deduce
from Theorem 4.1.4 that for any fixed s, we have

r(s, k) = Os

(
ks−1

log k

)
.
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Ajtai, Komlós, and Szemerédi used the same idea, but with a more involved induction, to
prove that in fact

r(s, k) = Os

(
ks−1

(log k)s−2

)
.

This remains the best known upper bound on off-diagonal Ramsey numbers, and it may well
be asymptotically best possible.

Another direction one can consider is what happens if we replace the triangle-free as-
sumption in Lemma 4.1.3 by the assumption that G avoids a copy of some other graph. For
example, if G is C4-free, then Li and Rousseau [91] proved that α(G) ⩾ (1− o(1))(n ln d)/d,
the same conclusion as in Lemma 4.1.3; proving this is a homework problem. However, if G
is K4-free (or Ks-free for any s ⩾ 4), then the optimal bound is not known; the strongest
bound known is the following result of Shearer [126].

Theorem 4.1.5 (Shearer [126]). For every s ⩾ 4, there exists a constant cs > 0 such that
the following holds. If G is an n-vertex Ks-free graph with average degree d > 2, then

α(G) ⩾ cs ·
n log d

d log log d
.

It is widely believed that the log log d term in this theorem can be removed, but this
remains open even for s = 4.

4.2 Interlude: an application to sphere packing

Before we continue the discussion of off-diagonal Ramsey numbers by seeing lower bounds on
r(3, k) and r(4, k), let’s discuss a recent and striking application of Lemma 4.1.3 (or rather,
a strengthening of it) to a geometric problem.

A sphere packing in d dimensions is a collection of unit balls in Rd whose interiors are
disjoint. The density of a sphere packing is, informally, the fraction of Rd that is contained
in one of the spheres; more formally, if we let S be the union of the balls, then the density is

θ(S) := lim sup
N→∞

vol(S ∩ [−N,N ]d)

(2N)d
.

The sphere packing constant in dimension d, denoted θ(d), is the supremum of θ(S) over all
d-dimensional sphere packings; it captures the most efficient way of filling Rd with disjoint
unit balls.

The exact value of θ(d) is only known in dimensions d ∈ {1, 2, 3, 8, 24}. Dimension 1
is trivial, and dimension 2 was resolved by Thue in the 19th century; the triangular lattice
gives the densest packing in R2, which is what you would expect from playing around with
circle packings. The correct answer in dimension 3 was conjectured by Kepler in 1611, but
remained open for hundreds of years until finally being proved by Hales [72], via an extremely
long and heavily computer-assisted proof; more recently, the proof was fully formalized in a
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proof assistant [71]. Even more recently, Viazovska [141] determined θ(8), and Cohn–Kumar–
Miller–Radchenko–Viazovska determined θ(24). The densest packings in these dimensions
are determined by very special lattices called the E8 and Leech lattice, respectively.

For general dimensions, much less is known. There is a simple general lower bound of
θ(d) ⩾ 2−d, which was improved by Rogers [115] to θ(d) = Ω(d2−d). There have been a
number of constant-factor improvements to this bound over the years, but no one was able
to prove that θ(d) = ω(d2−d) as d → ∞. This changed very recently with a breakthrough
of Campos, Jenssen, Michelen, and Sahasrabudhe [14], who improved Rogers’ bound by a
factor of Ω(log d).

Theorem 4.2.1 (Campos–Jenssen–Michelen–Sahasrabudhe [14]).

θ(d) ⩾ (1 − o(1))
d ln d

2d+1
.

Their proof is too complicated (and too off-topic) to do in any sort of detail, but let’s
see a very rough sketch. They begin by randomly selecting a set of points X ⊂ Rd, which
will be potential centers of spheres in the packing. This random choice is done in a very
carefully-defined manner, which we will not describe, but which ensures that X satisfies
certain desirable properties. Having defined X, one can define a graph GX whose vertex set
is X, and where two vertices are adjacent if their Euclidean distance is less than 2. Because
of this choice, an independent set in GX is precisely a collection of centers of disjoint unit
balls. Hence, the task boils down to proving a lower bound on α(GX), which is where the
connection to Lemma 4.1.3 comes in. Unfortunately, GX is not triangle-free in general,
so Campos–Jenssen–Michelen–Sahasrabudhe proved a strengthening of Lemma 4.1.3 to the
setting of graphs with “few” triangles (or, more precisely, to the setting when all pairs of
vertices have few common neighbors).

Theorem 4.2.2 (Campos–Jenssen–Michelen–Sahasrabudhe [14]). Let G be a graph with n
vertices and maximum degree ∆. Suppose that every pair of distinct vertices in G has at
most ∆/(2 ln ∆)7 common neighbors. Then

α(G) ⩾ (1 − o(1))
n ln ∆

∆
,

where the o(1) tends to 0 as ∆ → ∞.

The proof of Theorem 4.2.2 can be viewed as a generalization of the proof of Lemma 4.1.3.
Basically, rather than deleting a single carefully-chosen v (as well as its neighbors) at every
step, they instead pick a random set of εn/∆ vertices at every step, and delete them and all
their neighbors from G, where ε is a small constant. By carefully adding edges back to G
after such a step, in order to ensure that the edge density stays constant, they can continue
this process for (1

ε
− o(1)) ln ∆ steps, and thus find the desired independent set.
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4.3 Lower bounds on off-diagonal Ramsey numbers

Let us recall the statement of Lemma 3.1.1. It said that if G is a Ks-free graph on N vertices,
such that the number of independent sets of order k is at most Mk, then

r(s, k) ⩾
N

4M
.

Thus, in order to prove a lower bound on r(3, k) (for example), we need to find a triangle-free
graph G where we have good control over the number of independent sets of order k in G.

The tool we’ll use to estimate the number of independent sets of order k is the following
result, which says that if a graph is “locally dense”—any reasonably large set contains many
edges—then it has few independent sets of a given order. This specific lemma is due to
Kohayakawa, Lee, Rödl, and Samotij [79], although the proof technique goes back to work
of Kleitman and Winston [78], and the same idea was first applied in this setting by Alon
and Rödl [3]. An excellent survey on this topic, including a detailed proof of Lemma 4.3.1,
was written by Samotij [120].

Lemma 4.3.1. Fix positive integers n, r, R and a parameter β ∈ [0, 1], which satisfy Reβr ⩾
n. Suppose that G is an n-vertex graph with the property that for every X ⊆ V (G) with
|X| ⩾ R, we have

e(X) ⩾ β
|X|2

2
.

Then for any k ⩾ r, the number of independent sets in G of order k is at most

rnr

(
R

k − r

)
.

If r ≪ k, then the term rnr will be subexponential in k, whereas the binomial coefficient
is at most (eR/k)k. Thus, we are roughly in the setting of Lemma 3.1.1 with M ≈ R/k.

Proof of Lemma 4.3.1. We run the following algorithm (called the Kleitman–Winston algo-
rithm) to enumerate the independent sets of order k in G. At a given step of the algorithm, we
have chosen some vertices v1, . . . , vi which are in our independent set, and we have a remaining
set Ci+1 of candidate vertices. We begin with C1 = V (G), and we stop the iteration if ever
|Ci+1| < R.

At every step of the algorithm, we look at a maximal-degree vertex v in G[Ci+1], the
subgraph of G induced by Ci+1. As we have not yet stopped, we know that |Ci+1| ⩾ R, and

therefore e(Ci+1) ⩾ β |Ci+1|2
2 by assumption. Equivalently, this condition says that the average

degree in G[Ci+1] is at least β|Ci+1|. As v was chosen to have maximal degree in Ci+1, we
conclude that

|N(v) ∩ Ci+1| ⩾ β|Ci+1|.

We now decide whether to include v in our independent set. If yes, we set vi+1 = v and
Ci+2 = Ci+1 \ N(v), to ensure that Ci+2 is still a valid set of candidates for forming an
independent set. If no, we discard v from Ci+1 and repeat the process above with v replaced
by a new maximum-degree vertex.
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As stated above, we continue this process until |Ci+1| < R. At that point, we arbitrarily
select wi+1, . . . , wk ∈ Ci+1 such that {v1, . . . , vi, wi+1, . . . , wk} forms an independent set.

We claim that we can run this process only up to step r, that is, once we select v1, . . . , vr,
our candidate set Cr+1 has necessarily shrunk to |Cr+1| < R. Indeed, every time we select vi,
we have that

|Ci+1|
|Ci|

=
|Ci \N(vi)|

|Ci|
⩽

(1− β)|Ci|
|Ci|

= 1− β.

Therefore,

|Cr+1| =
|Cr+1|
|Cr|

· |Cr|
|Cr−1|

· · · |C2|
|C1|

· |C1| ⩽ (1− β)rn < e−βrn ⩽ R,

where the final inequality is our assumption that Reβr ⩾ n.
Note that the procedure above necessarily generates every independent set of order k in

G. Therefore, we can bound the number of such independent sets by estimating how many
choices we have. The process may stop at any index 0 ⩽ i ⩽ r, and we have at most ni choices
for v1, . . . , vi. At that point, as the candidate set has shrunk to size at most R, we have at
most

(
R
k−i

)
choices for wi+1, . . . , wk. Therefore, the total number of independent sets of order

k in G is at most
r∑

i=0

ni
(

R

k − i

)
.

It is easy to see that the summand is maximized at i = r, and hence the total number is at
most r · nr

(
R

k−r

)
, as claimed.

4.3.1 Lower bounds on r(3, k)

Given Lemma 4.3.1, our task is now to find a triangle-free graph that is locally dense, in the
sense of satisfying Lemma 4.3.1 with appropriate parameters. The construction we present
is inspired by work of Conlon [20, 22], but is not quite the same as his, and the analysis also
uses ideas from [30, 93]. Several alternative constructions are presented in [7].

Let q be a prime power, and consider the finite field Fq, as well as the three-dimensional
vector space F3

q over it. We begin by defining a bipartite graph Γq as follows. The vertex set
of Γq has two parts P,L, whose names stand for points and lines. We identify P with F3

q,
and think of the vertices in P as points in this vector space. L, in turn, consists of all lines
in F3

q whose direction is of the form (1, z, z2), namely all lines of the form

{x+ y · (1, z, z2) : y ∈ Fq} ⊆ F3
q,

where x ∈ F3
q and z ∈ Fq. Note that there are exactly q3 such lines, since we have q options

for the direction (from the q options for z), and each such direction gives exactly q2 parallel
lines. Thus |P | = |L| = q3. Finally, we define edges in Γq by incidence: we set a vertex
p ∈ P adjacent to a vertex ℓ ∈ L if and only if the point p lies on the line ℓ.

The first key fact we need about Γq is the following lemma.

Lemma 4.3.2. Γq is C4-free and C6-free.
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Proof. First suppose that there is a C4 in Γq. As Γq is bipartite, this means that there are
distinct p1, p2 ∈ P, ℓ1, ℓ2 ∈ L such that p1, p2 are both incident to both ℓ1, ℓ2. But this is
impossible, as any two lines in F3

q intersect in at most one point. (This is what we expect
from our geometric intuition in R3, and it’s not hard to prove that the same holds in F3

q.)
Similarly, if there is a C6 in Γq, then there exist distinct p1, p2, p3 ∈ P and ℓ1, ℓ2, ℓ3 ∈ L

such that pi and pi+1 are both incident to ℓi for all i, where the indices are taken modulo
3. Let z1, z2, z3 ∈ Fq be such that ℓi has direction (1, zi, z

2
i ) for i ∈ J3K. Then as both

pi and pi+1 are on line ℓi, we see that pi − pi+1 is a non-zero multiple of (1, zi, z
2
i ), say

pi − pi+1 = yi · (1, zi, z
2
i ) for some non-zero y1, y2, y3. Therefore,

0 = (p1 − p2) + (p2 − p3) + (p3 − p1) =
3∑

i=1

yi · (1, zi, z
2
i ).

In other words, we’ve found that the vectors {(1, zi, z
2
i )}3i=1 are linearly dependent. However,

the well-known Vandermonde determinant formula implies that this is impossible unless
zi = zj for some i ̸= j. But, for example, if z1 = z2, then this means that ℓ1 and ℓ2 are
parallel. But as they both pass through p2, they must be the same line, a contradiction. The
same argument applies if z2 = z3 or z1 = z3, and we conclude that Γq is C6-free.

We now (randomly) define a graph Gq as follows. The vertex set of Gq is L, the second
vertex part of Γq. The edges of Gq are defined as follows. For each p ∈ P , let N(p) denote
the neighborhood of p in Γq, i.e. the set of lines in L incident to p. For each p ∈ P , we pick a
uniformly random bipartition of N(p) into A(p)⊔B(p). Then, for every ℓ1 ∈ A(p), ℓ2 ∈ B(p),
we add an edge between ℓ1 and ℓ2 in Gq. Doing this for all p ∈ P , we obtain the random
graph Gq. In other words, Gq is the edge-union of complete bipartite graphs, where each
p ∈ P contributes a complete bipartite graph between A(p) and B(p).

Recall that Γq is C4-free by Lemma 4.3.2. This means that for every ℓ1, ℓ2 ∈ L, there is
at most one choice of p such that ℓ1, ℓ2 ∈ N(p). Hence, to every edge (ℓ1, ℓ2) ∈ E(Gq), we
can associate a label p, which is the unique p ∈ P such that ℓ1, ℓ2 ∈ N(p).

Lemma 4.3.3. Gq is triangle-free with probability 1 (i.e. regardless of the random choices).

Proof. Suppose for contradiction that there exist distinct ℓ1, ℓ2, ℓ3 ∈ L = V (Gq) that form a
triangle in Gq. Let p1, p2, p3 ∈ P be the labels of (ℓ1, ℓ2), (ℓ2, ℓ3), and (ℓ3, ℓ1), respectively.

We split into two cases. First, suppose that two of the pi are equal, say p1 = p2. This
implies that ℓ1, ℓ2, ℓ3 all lie in N(p1). This then implies that p3 = p1 as well. But recall that
the only edges we add with label p1 are a complete bipartite graph between A(p1) and B(p1),
and these edges can contain no triangle as this graph is bipartite. This concludes this case.

So we may now assume that p1, p2, p3 are distinct. But then the fact that ℓi, ℓi+1 ∈ N(pi)
for all i ∈ J3K implies that ℓ1, p1, ℓ2, p2, ℓ3, p3 forms a copy of C6 in Γq. By Lemma 4.3.2 no
such copy can exist, a contradiction.

The final result we need about Gq is that it satisfies the local density condition we need
to apply Lemma 4.3.1. It is here where the randomness in the definition of Gq is crucial.
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We first prove that for any large set of vertices X of Gq, there are many “potential edges”
of Gq, namely many pairs ℓ1, ℓ2 ∈ X such that ℓ1, ℓ2 ∈ N(p) for some p ∈ P . Once we have
this, the randomness will imply that a good fraction of these potential edges will become
true edges of Gq.

Lemma 4.3.4. For any X ⊆ L, the number of pairs (ℓ1, ℓ2) ∈ X2 such that ℓ1, ℓ2 ∈ N(p)
for some p ∈ P is at least |X|2/q.

Proof. The quantity we are interested in is precisely∑
p∈P

|N(p) ∩X|2.

By the Cauchy–Schwarz inequality, we have

∑
p∈P

|N(p) ∩X|2 ⩾ 1

|P |

(∑
p∈P

|N(p) ∩X|

)2

.

Note that the quantity in parentheses is precisely the number of edges in Γq incident to
X ⊆ L. Since every vertex in L is incident to precisely q edges (as every line in F3

q contains
exactly q points), we have that

1

|P |

(∑
p∈P

|N(p) ∩X|

)2

=
1

|P |

(∑
ℓ∈X

q

)2

=
1

q3
(q|X|)2 =

|X|2

q
,

where we also plug in that |P | = q3.

Since Lemma 4.3.4 counts unordered pairs (ℓ1, ℓ2), we find that X contains at least
|X|2/(2q) “potential edges”. On average, a set X ⊆ L will keep roughly half of its “potential
edges” when we sample the random graph Gq. The reason is that each potential edge
corresponds to a pair ℓ1, ℓ2 ∈ N(p) for some p, and there is a probability 1/2 that these two
vertices will be placed on opposite sides of the bipartition A(p) ∪B(p), thus yielding a true
edge in Gq. Of course, not every set X will receive exactly half of its potential edges, and we
expect some random fluctuations. Nonetheless, it is intuitively reasonable that all large sets
X will receive roughly half of the potential edges, and thus we expect to be in the setting of
Lemma 4.3.1 with the parameter β ≈ 1/(2q).

Before making this formal, let’s think about how small of an X we can expect this to
hold for. Note that in Gq, a typical vertex ℓ has Θ(q2) neighbors. The reason is that ℓ lies
in N(p) for exactly q choices of p, and each such p will yield, on average, |N(p)|/2 = Θ(q)
edges of Gq incident to ℓ. As Gq is triangle-free, clearly the neighborhood of any ℓ must
actually contain zero edges. Hence, we cannot expect e(X) ⩾ β|X|2/2 to hold for all sets
X of order Θ(q2). Thus, again using the terminology of Lemma 4.3.1, we should expect to
pick R of order at least q2.
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In fact, one can really obtain such a result with R = Θ(q2), as noted in [93, Section
3]. However, doing this requires a somewhat involved argument based on a certain dyadic
partitioning. We will prove the following weaker statement, which establishes that we are in
the setting of Lemma 4.3.1 with R = Θ(q2 log q) and β = Θ(1/q).

Lemma 4.3.5. With positive probability, Gq has the following property. For every X ⊆ L
with |X| ⩾ R := 200q2 ln q, we have that

e(X) ⩾ β
|X|2

2
,

where β := 1/(10q).

Proof of Lemma 4.3.5

For the proof, we will need the following probabilistic concentration inequality, which is a
convenient form of the Azuma–Hoeffding inequality. A proof can be found in [74, Corollary
2.27 and Remark 2.28] or [4, Section 7.2]. Let us say that a function f : {0, 1}m → R is
{Li}-Lipschitz if its value changes by at most Li whenever the input is changed on only the
ith coordinate, that is, for all i ∈ JmK and all z1, . . . , zm ∈ {0, 1}, we have

|f(z1, . . . , zi, . . . , zm)− f(z1, . . . , 1− zi, . . . , zm)| ⩽ Li.

Lemma 4.3.6. Let Z1, . . . , Zm be independent random variables taking values in {0, 1}. Let
f : {0, 1}m → R be {Li}-Lipschitz, and let Z = f(Z1, . . . , Zm). Then

Pr

(
Z ⩽

1

2
E[Z]

)
⩽ exp

(
− E[Z]2

2
∑m

i=1 L
2
i

)
.

With this in hand, we are ready to prove Lemma 4.3.5.

Proof of Lemma 4.3.5. First, let us fix some set X ⊆ L with |X| ⩾ R. For every ℓ ∈ X and
every p ∈ P such that ℓ ∈ N(p), let us make a random variable Zℓ,p with value 1 if ℓ ∈ A(p),
and value 0 if ℓ ∈ B(p). Let Z = e(X), which is a random variable depending on the random
choices of the bipartition. In fact, we see that Z is a function of the random variables Zℓ,p.
Note that flipping Zℓ,p corresponds to changing whether ℓ ∈ A(p) or ℓ ∈ B(p), and this can
affect the number of edges in X by at most |N(p)∩X|. Hence, this function is Lipschitz with
parameters

Lℓ,p := |N(p) ∩X|.

We now set
S :=

∑
p∈P

|N(p) ∩X|2,

so that Lemma 4.3.4 states that S ⩾ |X|2/q. Recall that we only defined the random variable
Zℓ,p for those ℓ ∈ X, p ∈ P for which ℓ ∈ N(p). As such, the squared sum of the Lipschitz
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parameters is ∑
ℓ∈X
p∈P

ℓ∈N(p)

L2
ℓ,p =

∑
p∈P

|N(p) ∩X| · L2
ℓ,p ⩽ q ·

∑
p∈P

L2
ℓ,p = qS,

where in the inequality we recall that |N(p)| = q for all p ∈ P .
We now claim that E[Z] ⩾ 1

5S ⩾ |X|2/(5q), where the final inequality is simply the
statement of Lemma 4.3.4. The reason is that, as discussed above, every unordered pair of
distinct ℓ1, ℓ2 counted by S becomes an edge of Gq with probability 1

2 . S counts ordered pairs,
so we need to divide by 2, and need to subract off the contribution of |X| pairs (ℓ, ℓ). But
since |X| ⩾ R > 10q, the number of such pairs is at most S/10.

Therefore, by Lemma 4.3.6 and the definition of β, we find that

Pr

(
e(X) < β

|X|2

2

)
⩽ Pr

(
Z ⩽

1

2
E[Z]

)
⩽ exp

(
−E[Z]2

2qS

)
⩽ exp

(
−E[Z]

10q

)
⩽ exp

(
−|X|2

50q2

)
.

We may now take a union bound over the
( q3
|X|
)
choices for such an X, and sum this up over

all choices of |X|, to find that the probability that the claimed property does not hold is at
most

q3∑
|X|=R

(
q3

|X|

)
e−|X|2/(50q2) ⩽

q3∑
|X|=R

q3|X|e−|X|2/(50q2) =

q3∑
|X|=R

(
e3 ln q−|X|/(50q2)

)|X|
.

Note that our choice of R = 200q2 ln q implies that

e3 ln q−|X|/(50q2) ⩽ e3 ln q−R/(50q2) ⩽
1

q
.

Hence, the sum above is at most 2q−R, which is less than 1. Thus, Gq has the claimed property
with positive probability.

By plugging the result of Lemma 4.3.5 into Lemma 4.3.1, we can estimate the number of
independent sets of a given size in Gq. For completeness, we actually estimate the number
of independent sets of size at most k.

Lemma 4.3.7. Let q be a prime power and let 30q(ln q)2 ⩽ k ⩽ q2. There exists a triangle-
free graph Gq with N := q3 vertices such that the number of independent sets of order at
most k in Gq is at most Mk, where M = 200q/ln q.

Proof. By Lemmas 4.3.3 and 4.3.5, there exists an N -vertex graph Gq that is triangle-free
and satisfies the conditions of Lemma 4.3.1 with R = 200q2 ln q and β = 1/(10q). Let
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r := 10q ln q, and note that

Reβr = (200q2 ln q)e(10q ln q)/(10q) = 200q3 ln q ⩾ N.

We also have that k ⩾ 3r ln q, which implies that k ⩾ r and that N r = q3r ⩽ ek. We are in
a position to apply Lemma 4.3.1. We conclude that the number of independent sets in Gq

of order exactly k is at most

rN r

(
R

k − r

)
⩽

(
e2R

k

)k

⩽

(
200e2q2 ln q

30q(ln q)2

)k

⩽

(
50q

ln q

)k

.

To obtain an estimate on the number of independent sets of order at most k, we argue as
follows. For every r ⩽ t ⩽ k, the number of independent sets of order exactly t is at most

rN r

(
R

t− r

)
⩽ rN r

(
R

k − r

)
⩽

(
50q

ln q

)k

.

On the other hand, for every t < r, the number of independent sets of order t in Gq is
certainly at most

(
N
t

)
. Adding this all up, we conclude that the total number of independent

sets in Gq of order at most k is at most

r−1∑
t=0

(
N

t

)
+ k

(
50q

ln q

)k

⩽ N r + k

(
50q

ln q

)k

⩽ ek + k

(
50q

ln q

)k

⩽

(
200q

ln q

)k

= Mk.

We are finally ready to deduce a lower bound on r(3, k).

Theorem 4.3.8. We have

r(3, k) >
k2

C(log k)3

for an absolute constant C > 0.

By being more careful (specifically, by proving a version of Lemma 4.3.5 without the
logarithmic loss in the value of R), one can improve this result to r(3, k) = Ω(k2/(log k)2).
It is not known whether one can use such a technique to obtain the optimal result, of
r(3, k) = Ω(k2/log k).

Proof. By Bertrand’s postulate, we can find a prime power q satisfying k/(60(ln k)2) ⩽ q ⩽
k/(30(ln k)2), which implies that k ⩾ 30q(ln q)2. By Lemma 4.3.7, there exists a triangle-free
graph Gq on N = q3 vertices with at most Mk independent sets of order at most k, where
M = 200q/ln q. We may therefore apply Lemma 3.1.1 to conclude that

r(3, k) ⩾
N

4M
=

q3

800q/ln q
=
q2 ln q

800
⩾ 10−7 k2

(ln k)3
.
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4.3.2 Lower bounds on r(4, k)

Given everything we have done so far, it becomes very simple to explain the new ingredient
introduced by Mattheus and Verstraëte to obtain a good lower bound on r(4, k). Of course,
this is really doing them a disservice, since the presentation above is heavily inspired by their
work, and a major contribution of theirs is realizing how to implement such an approach.

The key new ingredient we need is a construction of a graph Λq, which is also a point-
line incidence graph in a certain finite geometry, which does not contain the so-called
O’Nan configuration. In graph-theoretic terms, this is simply a subdivision of K4, and
can be explicitly described as a set of four distinct lines ℓ1, . . . , ℓ4 and four distinct points
p12, p13, p14, p23, p24, p34 such that each pij is incident to both ℓi and ℓj.

We fix a prime power q, and work over the finite field Fq2 and in the two-dimensional
vector space F2

q2 over it. Note that this is also, of course, a four-dimensional vector space
over Fq, but we won’t think of it like this; our base field will always be Fq2 , and then when
we discuss e.g. lines, we will always mean one-dimensional Fq2-affine-linear subspaces. We
define

P := {(x1, x2) ∈ F2
q2 : xq+1

1 + xq+1
2 + 1 = 0} ⊆ F2

q2 .

One can show that |P | = (1 + o(1))q3; there are q2 choices for x1, and having fixed x1, there
are (1 + o(1))q choices for a (q + 1)th root of −1 − xq+1

1 , that is, (1 + o(1))q choices for x2.
We also define L to consist of all lines in F2

q2 which intersect P in at least two points.

There are (1 + o(1))q4 lines in F2
q2 , and one can show that at most q3 of them intersect P in

fewer than two points, so |L| = (1+o(1))q4. We define Λq to be the incidence graph between
P and L, i.e. the bipartite graph with parts P ∪ L, in which a pair (p, ℓ) is an edge if and
only if p lies in the line ℓ.

The following lemma, which is analogous to Lemma 4.3.2, shows that this is a good graph
to use for lower-bounding r(4, k) using the technique discussed above. This result was first
proved by O’Nan [101], which is why O’Nan configurations are so named.

Lemma 4.3.9. The graph Λq is C4-free and contains no O’Nan configuration.

The fact that Λq is C4-free follows from the exact same reason as in Lemma 4.3.2. Namely,
a C4 in Λq would correspond to two lines intersecting in two distinct points, and that cannot
happen. The proof that Λq has no O’Nan configuration is also based on elementary linear
algebra—just as the proof in Lemma 4.3.2 that Γq is C6-free—but we will skip it because
it is somewhat more involved and not particularly interesting. An elementary proof can be
found in [93, Proposition 1].

We now form a random graph Hq on vertex set L by picking, for each p ∈ P , a random
bipartition N(p) = A(p)∪B(p) of its neighborhood in Λq, and adding to Hq all edges between
A(p) and B(p). From Lemma 4.3.9, it is not hard to prove the following statement, analogous
to Lemma 4.3.3.

Lemma 4.3.10. Hq is K4-free with probability 1.

The final ingredient we need, analogously to Lemma 4.3.5, is the following statement.
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Lemma 4.3.11. With positive probability, Hq has the following property. For every X ⊆ L
with |X| ⩾ R := 107q2, we have that

e(X) ⩾ β
|X|2

2
,

where β := 1/(300q).

Unfortunately, for technical reasons arising from the fact that |L| ≈ q4 is much larger
than |P | ≈ q3, it seems impossible to prove Lemma 4.3.11 (or even a weaker version with
some logarithmic losses) by blindly following the proof of Lemma 4.3.5. Instead, one has
to partition P into three parts, depending on how large |N(p) ∩ X| is, and then apply the
argument of Lemma 4.3.5 to each part in turn. As such, we will skip the proof; it can be
found in [93, Theorem 3]. A somewhat more general (and somewhat simpler) result, with a
logarithmic loss in the value of R, is proved in [30, Lemma 2].

However, once we have these preliminaries, we can follow the proof technique used above
for r(3, k). Namely, we can plug Lemma 4.3.11 into Lemma 4.3.1 to bound the number of
independent sets of order k there are in Hq, as follows.

Lemma 4.3.12. Let q be a prime power and let 2400q(ln q)2 ⩽ k ⩽ q2. There exists a K4-
free graph Hq with N vertices, where q4/2 ⩽ N ⩽ q4, such that the number of independent
sets of order at most k in Hq is at most Mk, where M = 107q/(ln q)2.

Proof. By Lemmas 4.3.10 and 4.3.11, there exists an N -vertex1 graph Hq that is K4-free and
satisfies the conditions of Lemma 4.3.1 with R = 107q2 and β = 1/(300q). Let r := 600q ln q,
and note that

Reβr = (107q2)e(600q ln q)/(300q) = 107q4 ⩾ N.

We also have that k ⩾ 4r ln q, which implies that k ⩾ r and that N r ⩽ q4r ⩽ ek. We are
in a position to apply Lemma 4.3.1. We conclude that for any r ⩽ t ⩽ k, the number of
independent sets in Hq of order t is at most

rN r

(
R

t− r

)
⩽ rN r

(
R

k − r

)
⩽

(
e2R

k

)k

⩽

(
108q2

2400q(ln q)2

)k

⩽

(
106q

(ln q)2

)k

.

On the other hand, for every t < r, the number of independent sets of order t in Hq is
certainly at most

(
N
t

)
. Adding this all up, we conclude that the total number of independent

sets in Hq of order at most k is at most

r−1∑
t=0

(
N

t

)
+ k

(
106q

(ln q)2

)k

⩽ N r + k

(
106q

(ln q)2

)k

⩽ ek + k

(
106q

(ln q)2

)k

⩽

(
107q

(ln q)2

)k

= Mk.

We can now plug this result into Lemma 3.1.1 to obtain the theorem of Mattheus and
Verstraëte [93].

1One can verify that |V (Hq)| = |L| = q4 − q3 + q2, which is between q4/2 and q4 for all prime powers q.
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Theorem 4.3.13 (Mattheus–Verstraëte [93]). We have

r(4, k) >
k3

C(log k)4

for an absolute constant C > 0.

Proof. Pick a prime power q with k/(4800(ln k)2) ⩽ q ⩽ k/(2400(ln k))2. By Lemmas 3.1.1
and 4.3.12, we have

r(4, k) ⩾
N

4M
⩾

q4/2

4 · 107q/(ln q)2
⩾ 10−8q3(ln q)2 ⩾ 10−20 k3

(ln k)4
.

36



Chapter 5

Graph Ramsey numbers

5.1 Introduction

We will now move away to a more general topic than we have considered so far, that of graph
Ramsey numbers.

Definition 5.1.1. Given graphs H1, . . . , Hq, their Ramsey number r(H1, . . . , Hq) is defined
as the minimum N such that any q-coloring of E(KN) contains a monochromatic copy of
Hi in color i, for some i ∈ JqK. Here, by a monochromatic copy, we mean a subgraph of KN

isomorphic to Hi, all of whose edges receive color i.
In case H1 = · · · = Hq = H, we denote this Ramsey number by r(H; q). In case q = 2,

we use the shorthand r(H) := r(H; 2).

Of course, everything we have studied so far is a special case of these more general graph
Ramsey numbers, as r(k) is simply r(Kk), and r(k, ℓ) = r(Kk, Kℓ), etc. However, it turns
out that there is an extremely rich theory of Ramsey numbers of graphs H which are not
necessarily complete graphs; moreover, most of the interesting results actually arise when H
is extremely far from being a complete graph.

We begin with a simple observation, which is that if Hi is a subgraph of H ′
i, then

r(H1, . . . , Hq) ⩽ r(H ′
1, . . . , H

′
q), since any monochromatic copy of H ′

i also yields a monochro-
matic copy of Hi. Thus, r(H) ⩽ r(H ′) whenever H ⊆ H ′. Since every n-vertex graph is a
subgraph of Kn, we conlude that

r(H) ⩽ r(Kn) < 4n for every n-vertex graph H.

Thus, in the worst case, an n-vertex graph may have Ramsey number that is exponential in
n.

On the other hand, the most general lower bound we can get is that r(H) ⩾ n if H is an
n-vertex graph. Indeed, we need at least n vertices to be able to “fit” a copy of H. Moreover,
this trivial lower bound is best possible in general, for if H has no edges (or even one edge),
then r(H) = n.
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Thus, for a general n-vertex graph H, we know n ⩽ r(H) ⩽ 4n, and both behaviors—
linear in n and exponential in n—are possible, for the empty graph and the complete graph,
respectively. Based on our experience for cliques, we might expect that the exponential
bound should be closer to the truth for most graphs. However, the striking result that we
will see is that for many “natural” classes of graphs—and, in fact, for all sparse graphs—the
lower bound is much closer to the truth.

5.2 Ramsey numbers of trees

Let us begin with the following simple result, which was probably first observed by Erdős
and Graham [42]; it says that the lower bound is close to tight for trees.

Theorem 5.2.1. If T is an n-vertex tree, then r(T ) ⩽ 4n− 3.

To prove this, we will use two simple lemmas from elementary graph theory.

Lemma 5.2.2. If a graph G has average degree d, then it has a subgraph G′ with minimum
degree at least d/2.

Proof. Let G have m vertices, so that it has md/2 edges. Repeatedly delete from G a vertex
of degree less than d/2, as long as such a vertex exists. Since we delete fewer than d/2 edges
at each step, and continue for at most m steps, we delete fewer than md/2 edges in total.
As G has exactly md/2 edges, when we terminate this process, there must be at least one
edge—and thus at least one vertex—remaining. However, the process only terminates once
we’ve produced a subgraph of minimum degree at least d/2, completing the proof.

Lemma 5.2.3. Let T be an n-vertex tree. If G is a graph with minimum degree at least
n− 1, then T ⊆ G.

Proof. We proceed by induction on n, with the base case n = 1 being trivial since the only
1-vertex tree is a subgraph of every non-empty graph. Inductively, suppose this is true for all
(n− 1)-vertex trees. Let T ′ be obtained from T by deleting a leaf v, and let u be the unique
neighbor of v in T . By the inductive hypothesis, T ′ ⊆ G, so let us pick a copy of T ′ in G,
and let w be the vertex of G filling the role of u. As G has minimum degree at least n−1, w
has at least n− 1 neighbors, and at most n− 2 of these neighbors were used in embedding
the other n−2 vertices of T ′. Thus, there is at least one unused neighbor of w, which means
that we can extend the T ′-copy to a T -copy by adding in this unused neighbor.

With this lemmas, it is straightforward to prove Theorem 5.2.1.

Proof of Theorem 5.2.1. Let N = 4n − 3, and fix a 2-coloring of E(KN). Without loss of
generality, we may assume that at least half the edges are red. Let G ⊆ KN be the graph
comprising the red edges. Since G has at least half the edges of KN , it has average degree at
least 2n−2. By Lemma 5.2.2, there is a subgraph G′ ⊆ G of minimum degree at least n−1.
By Lemma 5.2.3, we have T ⊆ G′, and this yields a monochromatic red copy of T .
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5.3 Ramsey numbers of complete bipartite graphs

Recall that Ks,t denotes the complete bipartite graph with parts of sizes s, t. We will always
assume, without loss of generality, that s ⩽ t. Let us begin by proving the following upper
bound on r(Ks,t).

Theorem 5.3.1. For any s ⩽ t, we have

r(Ks,t) ⩽ 2s+1t.

Note that, if we plug in s = t = n, then we obtain that r(Kn,n) = O(n2n). Since Kn,n

has 2n vertices, this is a much better, although still exponential, bound than the näıve one
of

r(Kn,n) ⩽ r(2n) < 42n = 16n.

We remark that r(Kn,n) really does grow exponentially in n, and that the lower bound

r(Kn,n) > 2
n−1
2

will follow from a more general result, Proposition 5.4.1, which we will prove shortly. On the
other hand, if we think of s as a constant, we obtain that r(Ks,t) = Os(t) as t → ∞. Since
Ks,t has s+ t ⩽ 2t vertices, this shows that for fixed s, Ks,t has a Ramsey number which is
linear in its number of vertices—the same behavior as we saw for trees.

Proof of Theorem 5.3.1. The case s = 1 follows from a homework problem; it also follows,
up to an additive constant of 1, from Theorem 5.2.1, since K1,t is a tree. We henceforth
assume that t ⩾ s ⩾ 2.

Let N = 2s+1t, and fix a red/blue coloring of E(KN). For every vertex v ∈ V (KN),
let degR(v), degB(v) denote the red and blue degrees, respectively, of v. Let S denote the
number of monochromatic copies of K1,s in the coloring. We can count S by summing over
all N choices for the central vertex, and then picking s distinct neighbors; this shows that

S =
∑

v∈V (KN )

((
degR(v)

s

)
+

(
degB(v)

s

))
.

Note that degR(v) + degB(v) = N − 1 for every v, and that the sum
(
x
s

)
+
(
N−1−x

s

)
is

minimized1 when x = N − 1 − x, i.e. x = N−1
2

. Therefore, we find that

S ⩾ N · 2

(
N−1
2

s

)
.

On the other hand, another way of counting S is by counting over all options for the s leaves
of the star. Let us assume for contradiction that there is no monochromatic Ks,t. Then

1This is a special case of a much more general fact, that the function x 7→
(
x
s

)
is convex for any fixed

s ⩾ 1. This special case can also be proved directly without appealing to convexity.
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every s-set of vertices forms the set of leaves of fewer than t red stars K1,s, and of fewer than
t blue stars K1,s. Thus,

S < 2t

(
N

s

)
.

Comparing our lower and upper bounds on S, we find that

2t

(
N

s

)
> 2N

(
N−1
2

s

)
or equivalently

t ·N(N − 1) · · · (N − s+ 1) > N · N − 1

2

(
N − 1

2
− 1

)
· · ·
(
N − 1

2
− s+ 1

)
.

Rearranging, this is equivalent to

2st

N
>

(
N − 1

N

)(
N − 3

N − 1

)(
N − 5

N − 2

)
· · ·
(
N − 2s+ 1

N − s+ 1

)
=

s−1∏
i=0

N − 2i− 1

N − i
.

However, we have that

s−1∏
i=0

N − 2i− 1

N − i
=

s−1∏
i=0

(
1 − i+ 1

N − i

)
⩾ 1 −

s−1∑
i=0

i+ 1

N − i
⩾ 1 −

2
(
s+1
2

)
N

⩾
1

2
,

where the second inequality uses that N ⩾ 2s, hence N − i ⩾ N/2 for all i ⩽ s− 1, and the
third inequality uses that 2

(
s+1
2

)
= (s+ 1)s ⩽ (s+ 1)t ⩽ 2st = N/2, since 2s ⩾ s+ 1 for all

s ⩾ 2. Putting this all together, we conclude that

2st

N
>

1

2
,

which contradicts our choice of N . This contradiction completes the proof.

In fact, if one carefully examines the proof of Theorem 5.3.1, it becomes evident that we
are not really using the fact that there are two colors. Instead, all we are really doing is
noticing that any graph with sufficiently many edges must contain a copy of Ks,t. Such a
result was first proved by Kővári, Sós, and Turán [82], and it has become one of the most
fundamental results in extremal graph theory; they also introduced the technique which we
used in the proof of Theorem 5.3.1.

Theorem 5.3.2 (Kővári–Sós–Turán [82]). Let s ⩽ t be integers, and let G be an N-vertex

graph with at least t
1
sN2− 1

s + sN edges. Then Ks,t is a subgraph of G.
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Proof. Let d be the average degree of G, and note that

d =
2e(G)

N
⩾ 2t

1
sN1− 1

s . (5.1)

Also, since e(G) ⩾ sN , we have that d ⩾ 2s. For a real number x, we define

f(x) =

{
x(x−1)...(x−s+1)

s! if x ⩾ s− 1

0 otherwise.

The function f is convex (this can be verified by computing its second derivative), and agrees
with the binomial coefficient

(
x
s

)
whenever x is a non-negative integer. Note too that since

d ⩾ 2s, we have

f(d) =
1

s!
· d(d− 1) · · · (d− s+ 1) ⩾

1

s!
·
(
d

2

)s

=
ds

2ss!
. (5.2)

Let S denote the number of copies of K1,s in G. We can count S by summing over all N
choices for the central vertex, and then picking s distinct neighbors; this shows that

S =
∑

v∈V (G)

(
deg(v)

s

)
=

∑
v∈V (G)

f(deg(v)).

Now, since f is convex, Jensen’s inequality and (5.2) imply that

S ⩾ N · f(d) ⩾ Nds

2ss!
.

On the other hand, another way of counting S is by counting over all options for the s leaves
of the star. Let us assume for contradiction that Ks,t ⊈ G. Then every s-set of vertices forms
the set of leaves of fewer than t stars K1,s. Hence,

S <

(
N

s

)
t ⩽

N st

s!
.

Comparing the lower and upper bounds on S, we find that

Nds

2s
< N st,

or equivalently

d < 2t
1
sN1− 1

s .

This contradicts (5.1), completing the proof.
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5.4 The Burr–Erdős conjecture

So far, we have seen several examples of graph Ramsey numbers, and observed different
growth rates. First, as we know from Chapter 2, r(Kn) grows exponentially in n. Similarly,
r(Kn,n) grows exponentially in n (and thus in 2n, which is its number of vertices). On the
other hand, all trees, as well as complete bipartite graphs in which one side has constant
size, have Ramsey numbers linear in the number of vertices. Can we figure out a general
rule explaining these extremely different growth rates?

Looking at the examples above, it is natural to guess that the major difference has to
do with density. Both Kn and Kn,n are very dense graphs, namely graphs with a quadratic
number of edges. On the other hand, trees and complete bipartite graphs with one side of
constant size are very sparse, in that their number of edges is only linear in their number of
vertices. Equivalently, the average degree of the former graphs is large—linear in the number
of vertices—whereas it is constant for the latter graphs. Perhaps this explains the difference
in the Ramsey numbers?

As it turns out, this is close to the correct explanation. One direction really is true; if a
graph has high average degree, then its Ramsey number is large, as shown in the following
simple proposition.

Proposition 5.4.1. If H has average degree d, then r(H) > 2
d−1
2 .

Proof. The proof is very similar to that of Theorem 2.2.2. LetH have k ⩾ 2 vertices, and thus
kd/2 edges. Let N = 2

d−1
2 , and consider a uniformly random 2-coloring of E(KN). Every

tuple of k vertices inKN forms a monochromatic copy ofH with probability 21−kd/2, and there
are k!

(
N
k

)
such tuples2. Therefore, the probability that the coloring has a monochromatic

copy of H is at most

k!

(
N

k

)
· 21− kd

2 < Nk · 21− kd
2 = 2k d−1

2
+1− kd

2 = 21− k
2 ⩽ 1,

and thus there must exist a coloring with no monochromatic copies of H.

Thus, we find that if H has average degree which is linear in its number of vertices v(H),
then r(H) is exponential in v(H). Is it possible that the same holds at the opposite extreme,
namely that if H has constant average degree, then r(H) is linear in v(H), as happened for
trees and complete bipartite graphs? It is not hard to see that the answer is no.

Proposition 5.4.2. There exists an n-vertex graph H with average degree at most 1 and
with r(H) > 2

√
n/2.

Proof. Let H be obtained from a complete graph K√
n by adding n −

√
n isolated vertices.

Then H has
(√

n
2

)
edges, and thus average degree 2

n

(√
n
2

)
⩽ 1. However,

r(H) ⩾ r(K√
n) > 2

√
n/2,

2Note that we include an extra factor of k!, which was not present in the proof of Theorem 2.2.2. The
reason is that Kk is highly symmetric; for a general H, we need to consider not only the k vertices that can
define it, but also the potentially k! different ways of identifying V (H) with these k vertices.
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by Theorem 2.2.2.

Given this example, it’s clear why the näıve conjecture “constant average degree implies
linear Ramsey number” cannot be true. Namely, the graph H above has constant average
degree, but it contains a subgraph (namely K√

n) with much higher average degree, and it
is this subgraph that really determines r(H). This shows that rather than considering the
global average degree, we need to consider a more refined parameter that takes into account
subgraphs that are denser than H itself. There are several different ways of formalizing such
a parameter, and they end up giving essentially identical results; we will use the following.

Definition 5.4.3. The degeneracy of a graph H is defined as the maximum, over all sub-
graphs H ′ ⊆ H, of the minimum degree of H ′. H is said to be d-degenerate if its degeneracy
is at most d.

Equivalently, H is d-degenerate if its vertices can be ordered as v1, . . . , vn with the prop-
erty that, for all i ∈ JnK, vi has at most d neighbors which precede it in the ordering, that
is, at most d neighbors vj with j < i.

From Lemma 5.2.2, we see that a d-degenerate graph has average degree at most 2d. On
the other hand, the H in Proposition 5.4.2 is an example of a graph with constant average
degree and degeneracy

√
n − 1. Thus, we see that having bounded degeneracy is a strictly

stronger condition than having bounded average degree. In particular, Proposition 5.4.1
implies that graphs with high degeneracy have large Ramsey numbers, as shown in the
following result.

Theorem 5.4.4. Let H be a graph of degeneracy d. Then r(H) > 2
d−1
2 .

Proof. By the definition of degeneracy, there is a subgraph H ′ ⊆ H with minimum degree
at least d, and thus also average degree at least d. Then Proposition 5.4.1 implies that

r(H) ⩾ r(H ′) > 2
d−1
2 .

Given this, we can now amend our näıve conjecture to the following fundamental conjec-
ture of Burr and Erdős [12].

Conjecture 5.4.5 (Burr–Erdős [12]). Graphs of bounded degeneracy have linear Ramsey
numbers.

More precisely, for every d ⩾ 1 there exists C ⩾ 1 such that the following holds. If an
n-vertex graph H is d-degenerate, then r(H) ⩽ Cn.

The Burr–Erdős conjecture has a long history, with many important partial results. The
first major breakthrough in this direction was a theorem of Chvatál, Rödl, Szemerédi, and
Trotter [17], which established the Burr–Erdős conjecture under the stronger assumption
that H has bounded maximum degree.

Theorem 5.4.6 (Chvatál–Rödl–Szemerédi–Trotter [17]). Graphs of bounded maximum de-
gree have linear Ramsey numbers.

More precisely, for every ∆ ⩾ 1, there exists C ⩾ 1 such that the following holds. If an
n-vertex graph H has maximum degree at most ∆, then r(H) ⩽ Cn.
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This result was extremely important, and so was the proof technique they introduced;
this theorem is the first result in Ramsey theory to be proved via the so-called regularity
method, whose basis is the fundamental regularity lemma of Szemerédi [137]. This method
has become one of the most important techniques in Ramsey theory and in extremal graph
theory more broadly, and we will discuss it in more depth shortly. For now, let us only
remark that this proof technique gives truly enormous bounds on how large C has to be as
a function of ∆; namely their proof showed that Theorem 5.4.6 is true for

C = 22·
··
2
}

2100∆

.

This enormous bound is one of several reasons why many researchers attempted to find
alternative proofs of Theorem 5.4.6.

5.4.1 Greedy embedding

There are now (at least) two other techniques known for proving Theorem 5.4.6, both of
which are very important in their own right. The first is the greedy embedding technique,
which was developed in this context by Graham, Rödl, and Ruciński [66, 67], although it
goes back in some form at least to work of Erdős and Hajnal [45]. We will unfortunately
not have time to discuss this technique in detail in this course, but let us see a high-level
overview of how it works.

Proof sketch of Theorem 5.4.6 using greedy embedding. Let H be an n-vertex graph of max-
imum degree at most ∆, and let N = Cn for a large constant C = C(∆) that we choose
appropriately. Fix a red/blue coloring of E(KN). Our goal is to attempt to find a red copy
of H in a greedy manner; we’ll then show that, if we fail, we will be able to find a blue copy
of H.

Let us label the vertices of H as v1, . . . , vn. Define V1 = V2 = · · · = Vn = V (KN). We
think of Vi as the set of candidate vertices for vi, and will attempt to embed the vertices
of H one at a time, at each step updating the set of candidate vertices. We fix some small
parameter ε > 0.

Note that if we pick where to embed vi into Vi, we need to update our candidate sets.
Indeed, since our goal is to build a red copy of H, if we choose where to place vi, we need
to shrink each Vj, for all j such that vivj ∈ E(H), to only include the red neighbors of the
chosen embedding of vi. Let us call a vertex w ∈ Vi prolific if it has the following property:
if we choose to embed vi as w, then each candidate set shrinks by at most a factor of ε. In
other words, w is prolific if its red neighborhood in Vj has size at least ε|Vj|, for every j such
that vivj ∈ E(H).

Our embedding rule is now as follows. If there is a prolific vertex in V1, we embed v1
there and update all the candidate sets appropriately. If there is now a prolific vertex in V2,
we embed v2 there and update all the candidate sets. We continue in this way as long as we
can.
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If this process gets to the end, that is, if we embed vn into Vn, then we have found a
red copy of H. So we may assume that the process gets stuck at some step i. Note that
every candidate set shrinks at most ∆ times, since H has maximum degree at most ∆, and
moreover every time it shrinks it does so by at most a factor of ε. Thus, when we get stuck,
we still have that |Vj| ⩾ ε∆N for all j. In particular, |Vi| ⩾ ε∆N . Moreover, since we got
stuck, there is no prolific vertex in Vi. That is, for every vertex w ∈ Vi, there is some j such
that the red neighborhood of w in Vj has size less than ε|Vj|. There are at most ∆ options
for this choice of j, so by the pigeonhole principle, there is some fixed j ∈ JnK and some set
Wi ⊆ Vi with |Wi| ⩾ 1

∆
|Vi| such that every w ∈ Wi has a red neighborhood in Vj of size less

than ε|Vj|.
We have thus proved the following lemma. If this greedy embedding procedure ever gets

stuck, we find two sets Wi, Vj with |Wi| ⩾ 1
∆
ε∆N and |Vj| ⩾ ε∆N , and with the property

that the density of red edges between Wi and Vj is less than ε. In other words, we have found
two sets A1, A2 with |A1|, |A2| ⩾ 1

∆
ε∆N , and such that the density of blue edges between A1

and A2 is at least 1 − ε.
We now iterate this lemma, as follows. Inside A1, we run the same procedure to attempt

to greedily embed H in red. If we succeed, we are done. If we fail, we find two sets
A11, A12 ⊆ A1 with blue density between them at least 1 − ε, where |A11|, |A12| ⩾ ( 1

∆
ε∆)2N .

We also run the same procedure inside A2 to find two such sets A21, A22. Moreover, since
the blue density between A1 and A2 was at least 1− ε, we can ensure3 that the blue density
between A1i and A2j is at least 1 − ε, for all i, j ∈ J2K.

In other words, we’ve now found four sets, each of size at least ( 1
∆
ε∆)2N , such that the

blue density between every pair is at least 1− ε. Continuing in this manner k times, we can
find 2k such sets, each with size at least ( 1

∆
ε∆)kN , and with all pairwise blue densities at

least 1− ε. We now do this until 2k ⩾ ∆ + 1 (i.e. pick k = ⌈log(∆ + 1)⌉), and we thus obtain
at least ∆ + 1 sets, which we rename B1, . . . , B∆+1.

Since H has maximum degree at most ∆, it is (∆+1)-colorable, i.e. it can be partitioned
into ∆ + 1 independent sets C1, . . . , C∆+1. Note that

|Bi| ⩾
(

1

∆
ε∆
)k

N ⩾ n,

where we can ensure the final inequality by picking C sufficiently large as a function of ∆
and ε (and thus k, which is itself a function of ∆). Thus, each set Bi is large enough to
accommodate embedding Ci. Moreover, one can check that if ε is sufficiently small (e.g.
ε = ∆−2 suffices), then the greedy embedding strategy we tried for red is now guaranteed
to work in blue. Namely, we greedily embed H in blue, ensuring that all vertices of Ci

get embedded into Bi, and updating all candidate sets at every step. The strong density
conditions we know about blue imply that we will never get stuck.

Examining the proof sketch above, we see that it gives a bound of the form C ⩽
2O(∆(log∆)2). Moreover, in case H is bipartite, the iteration step is unnecessary, and we

3There is some subtlety in doing this step correctly; since A1i and A2j are rather small subsets of A1, A2,
one needs an extra argument to ensure that the blue density remains high when we restrict to them.
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ETH Zürich Ramsey Theory—Spring 2024 Yuval Wigderson

can simply take k = 1 in the proof above, and thus obtain a bound of C ⩽ 2O(∆ log∆). In
other words, the greedy embedding technique allowed Graham, Rödl, and Ruciński to prove
the following more refined version of Theorem 5.4.6.

Theorem 5.4.7 (Graham–Rödl–Ruciński [66, 67]). There exists an absolute constantM > 0
such that the following holds. If H is an n-vertex graph with maximum degree at most ∆,
then

r(H) ⩽ 2M∆(log∆)2n.

Moreover, if H is bipartite, we have the stronger bound

r(H) ⩽ 2M∆log∆n.

Remarkably, Graham, Rödl, and Ruciński also proved that their upper bound is nearly
tight, even for bipartite graphs.

Theorem 5.4.8 (Graham–Rödl–Ruciński [67]). There exists an absolute constant c > 0
such that the following holds. For every n > ∆ > 1, there is an n-vertex bipartite graph H
with maximum degree ∆ which satisfies

r(H) ⩾ 2c∆n.

We will not prove Theorem 5.4.8 in this course, but let us briefly remark on the technique.
The bipartite graph H in the theorem is defined randomly; for example, one can pick it
uniformly at random among all bipartite n-vertex ∆-regular graphs. One then wants to
show that, with high probability over the random choice of H, it satisfies r(H) ⩾ 2c∆n. To
do this, one needs to exhibit a coloring on N = 2c∆n vertices with no monochromatic copy
of H. This is done as follows. First, for an appropriate constant a > c > 0, one picks a
uniformly random red/blue coloring χ of E(KA), where A = 2a∆. One then “blows up” χ
to a coloring of E(KN) as follows. We partition V (KN) into A parts V1, . . . , VA, each of size
N/A = 2(c−a)∆n. We then color all edges between parts Vi and Vj according to the color
χ(vi, vj), where vi, vj ∈ V (KA). Finally, all edges within a part Vi are colored red. Note that
since a > c, each part Vi has size N/A = 2(c−a)∆n, which is much smaller than n (assuming
a and c are chosen appropriately). Thus, any monochromatic copy of H must use vertices
from many different parts Vi. However, since the coloring χ is random, one can show that
with high probability, any large collection of parts—or equivalently, any large collection of
vertices of KA—includes many edges of both colors. Moreover, since H is random, one can
show that its edges are extremely well-distributed. Because of this, one can show that any
potential embedding of H into KN cannot entirely avoid one of the two colors.

Looking back at the greedy embedding proof sketch above, one might be struck by the
fact that the colors play such asymmetrical roles; we keep trying, insistently, to embed H
in red, and only when we have failed many times do we relent and succeed in embedding
it in blue. This asymmetry is in fact a weakness of the proof technique, and Conlon, Fox,
and Sudakov [26] were able to improve the bound of Theorem 5.4.7 to r(H) ⩽ 2O(∆ log∆)n
for every n-vertex graph H with maximum degree ∆, by modifying the greedy embedding
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technique so that both colors play roughly the same role. Unfortunately, it is still not known
if this technique can be used to remove the final logarithmic factor, and thus match the lower
bound of Theorem 5.4.8.

Moreover, this discussion hints at another, more fundamental, weakness of the greedy
embedding technique, which is that it is tailor-made for the two-color case. Indeed, the
entire upshot of the technique is that failing to find H in red tells us something about the
blue edges. In case there are three or more colors, it is not at all clear how to obtain useful
information from the failure of the first embedding. As far as I am aware, no one has been
able to use the greedy embedding technique to prove any results on r(H; q) for any H and
any q ⩾ 3.

5.4.2 Dependent random choice

An extremely powerful technique for proving results like Theorem 5.4.6 was introduced about
two decades ago, and is called dependent random choice. This technique is very flexible, but
at a high level, it allows one to find, in any reasonably dense graph, a large “rich” set of
vertices. Here, “rich” means that most, or all, of the r-tuples of vertices in the set have many
common neighbors. A survey on dependent random choice and its many applications can be
found in [57], and a much less in-depth, but hopefully gentler, introduction can be found in
[143]. The development of the dependent random choice technique led to a number of results
building towards the Burr–Erdős conjecture. Eventually, this culminated in a breakthrough
result of Lee [86], who completely resolved Conjecture 5.4.5.

Theorem 5.4.9 (Lee [86]). For every d ⩾ 1, there exists a constant C ⩽ 221000d such that
the following holds. If H is an n-vertex, d-degenerate graph, then r(H) ⩽ Cn.

Theorem 5.4.9 is too complex to cover in this course. However, we will see a relatively
simple application of the dependent random choice technique, which will indicate how it
works and why it is useful for proving such theorems. The result we will prove is essentially
implicit in two of the earliest applications of dependent random choice to Ramsey-theoretic
problems, due to Kostochka–Rödl [81] and Kostochka–Sudakov [80].

Theorem 5.4.10. For every ∆ ⩾ 1, the following holds for all sufficiently large n. Let H
be a bipartite graph with bipartition A ∪ B, where |A| = |B| = n. If every vertex of B has
degree at most ∆, then r(H) ⩽ n25∆

√
logn.

Note that this theorem is weaker than Theorem 5.4.6, in that it only applies for bipartite
graphs, and rather than giving a linear bound, proves only that r(H) ⩽ n25∆

√
logn = n1+o(1).

On the other hand, it is stronger than Theorem 5.4.6 because it only assumes that vertices
in B have bounded degree, whereas the vertices in A may have arbitrarily large degree.

Proof. Let N = n25∆
√
logn, and consider an arbitrary red/blue coloring of E(KN). We may

assume without loss of generality that at least half the edges are red. Let t =
√

log n, where
the logarithm is to base 2. Let u1, . . . , ut be t uniformly random vertices of KN , chosen with
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repetition (that is, each ui is a uniformly random vertices, and the choices are indpendent
over all i). Let S be the common red neighborhood of u1, . . . , ut.

For a given vertex v ∈ V (KN), we have that v ∈ S if and only if u1, . . . , ut are all red
neighbors of v. The probability that this happens is therefore exactly (degR(v)/N)t, where
degR(v) denotes the red degree of v. Therefore, by linearity of expectation,

E[|S|] =
∑

v∈V (KN )

Pr(v ∈ S) =
∑

v∈V (KN )

(
degR(v)

N

)t

.

Let d := 1
N

∑
v∈V (KN ) degR(v) denote the average red degree, and note that d ⩾ (N − 1)/2

since we assumed that at least half the edges are red. By Jensen’s inequality, applied to the
convex function x 7→ xt, we have that

E[|S|] =
∑

v∈V (KN )

(
degR(v)

N

)t

⩾ N

(
d

N

)t

⩾ N

(
N − 1

2N

)t

⩾
N

3t
,

where the final inequality uses that N − 1 ⩾ 2
3
N for all N ⩾ 3, and we assumed that n (and

thus N) is sufficiently large.
Let us call a set {v1, . . . , v∆} of vertices of KN unfriendly if they have fewer than 2n

common red neighbors. The total number of unfriendly sets in KN is at most
(
N
∆

)
. Moreover,

for a given unfriendly set {v1, . . . , v∆}, the probability that it is contained in S is at most
(2n/N)t. Indeed, for this unfriendly set to be contained in S, we must have that all the
random vertices u1, . . . , ut lie in the common red neighborhood of v1, . . . , v∆, and there are
at most 2n such common red neighbors by the definition of unfriendliness. Therefore, if we
let Z denote the number of unfriendly sets in S, we find by linearity of expectation that

E[Z] ⩽

(
N

∆

)(
2n

N

)t

⩽ (2n)∆
(

2n

N

)t−∆

.

Recall that t =
√

log n. If n is sufficiently large in terms of ∆, then t ⩾ 2∆, and thus
t− ∆ ⩾ t

2
. Thus,

E[Z] ⩽ (2n)∆
(

2n

N

)t−∆

⩽ n2∆

(
2n

N

)t/2

.

Now note that by our choice of N , we have 2n/N = 2 · 2−5∆
√
logn ⩽ 2−4∆

√
logn, again for

sufficiently large n. Thus,

E[Z] ⩽ n2∆

(
2n

N

)t/2

⩽ n2∆
(

2−4∆
√
logn
) 1

2

√
logn

= n2∆ · 2−2∆ logn = n2∆ · n−2∆ = 1.

Again by linearity of expectation, we conclude that

E[|S| − Z] = E[|S|] − E[Z] ⩾
N

3t
− 1 ⩾

N

4t
.
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Therefore, in the random experiment, there must exist some outcome of u1, . . . , ut such that
the corresponding quantities |S| and Z satisfy |S|−Z ⩾ N/4t. Fix such an outcome, and let
S be their common red neighborhood. Define T by deleting one vertex from every unfriendly
set in S. Then |T | = |S| − Z ⩾ N/4t. Moreover, since we deleted one vertex from every
unfriendly set, we see that T has no unfriendly sets.

In other words, we’ve found a set T of size |T | ⩾ N/4t, in which every set of ∆ vertices
is friendly. All that remains in the proof is to use this “rich set” to find a monochromatic
copy of H. Recall that H is a bipartite graph on parts A ∪B, each of size n. Note that

|T | ⩾ N

4t
=
n25∆

√
logn

22
√
logn

⩾ n = |A|.

Let us arbitrarily embed A into T ; that is, if we write A = {a1, . . . , an}, then we pick
arbitrary x1, . . . , xn ∈ T , and we will find a monochromatic copy of H in which xi plays the
role of ai.

To do this, all that remains is embed the vertices of B, which we call b1, . . . , bn. We
embed them one by one, in this order. For a given vertex bi, we know that it has at most ∆
neighbors ai1 , . . . , ai∆ in A. By construction, the set {xi1 , . . . , xi∆} ⊆ T is friendly, and thus
these vertices have at least 2n common red neighbors. Fewer than 2n of these have been used
in embedding a1, . . . , an, b1, . . . , bi−1, so at least one remains available for embedding bi. We
pick one of these arbitrarily. At the end of the process, we have constructed a monochromatic
red copy of H.

One should note that in this proof, we never used any property of the coloring besides
that one of the color classes is dense, that is, has at least half of the edges. Thus, this
proof naturally extends to an arbitrary number of colors, and moreover can be used to prove
results like Theorem 5.3.2, showing that certain bipartite graphs appear in any graph with
sufficiently many edges. We also record here a general form of the lemma we used implicitly
in the proof of Theorem 5.4.10, which can be used to deduce such more general results.

Lemma 5.4.11 (Dependent random choice lemma). Let G be an N-vertex graph with average
degree d. Let t,∆, r, s be integers satisfying the inequality

dt

N t−1
−
(
N

∆

)( r
N

)t
⩾ s.

Then there is a set T ⊆ V (G) with |T | ⩾ s such that every set of ∆ vertices in T has at
least r common neighbors.

In the proof above, we implicitly applied this lemma with t =
√

log n,∆ = ∆, r = 2n,
and s = N/4t. The general case is proved in exactly the same way, by selecting t random
vertices u1, . . . , ut and considering their common neighborhood; the details are left for the
homework.

Using the same ideas, but with one extra trick, Kostochka and Sudakov [80] were able

to prove that if H is a d-degenerate bipartite graph on n vertices, then r(H) ⩽ n2C(logn)2/3 ,
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where C = C(d) is a constant depending only on d. By combining this with yet one more idea,
they were also able to remove the bipartiteness assumption, and thus prove that r(H) ⩽
n1+o(1) for any d-degenerate n-vertex graph H, where the o(1) term tends to 0 as n →
∞ (while d stays fixed). Thus, this result “almost” confirms the Burr–Erdős conjecture,
Conjecture 5.4.5.

After these early results of Kostochka–Rödl [81] and Kostochka–Sudakov [80], there were
a series of improvements on the dependent random choice technique, culminating in Lee’s
theorem [86], Theorem 5.4.9, proving the Burr–Erdős conjecture. We will not state or prove
most of these intermediate results, but let us mention just one, due to Conlon, Fox, and
Sudakov [28].

Theorem 5.4.12 (Conlon–Fox–Sudakov [28]). If H is an n-vertex bipartite graph with max-
imum degree ∆, then

r(H) ⩽ 2∆+6n.

Note that this bound is very close to best possible, thanks to Theorem 5.4.8 discussed
above.

Before ending this section, let us briefly discuss two important open problems related to
Theorems 5.4.7–5.4.9 and 5.4.12. Recall that for an n-vertex graph H with degeneracy d,
we have that r(H) ⩾ 2

d−1
2 by Theorem 5.4.4, and that r(H) ⩾ n since this is true for all

n-vertex graphs. Therefore,

r(H) ⩾ max
{
n, 2

d−1
2

}
⩾
√
n · 2

d−1
2 ,

and thus
log r(H) = Ω(d+ log n).

On the other hand, Theorem 5.4.12 implies that if H is bipartite with maximum degree (and
thus degeneracy) at most d, then r(H) ⩽ 2d+6n, implying that in this case

log r(H) = O(d+ log n).

Conlon, Fox, and Sudakov [27] conjectured that in fact, such an upper bound holds in general.

Conjecture 5.4.13 (Conlon–Fox–Sudakov [27]). If H is an n-vertex graph of degeneracy d,
then

log r(H) = Θ(d+ log n).

In words, this conjecture says that in order to understand the approximate order of r(H),
the structure of H is almost completely irrelevant: all that matters is its degeneracy and its
number of vertices. Conjecture 5.4.13 remains open in general, but is known to be true up
to logarithmic factors [56, Theorem 3.1].

Finally, let us briefly discuss the hypercube graph, Qd. This is the graph with vertex set
{0, 1}d, in which two vertices are adjacent if and only if they differ in a single coordinate.
Note that Qd is a d-regular bipartite graph, and thus has degeneracy d; moreover, it has
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n = 2d vertices, so its degeneracy is logarithmic in its vertex count. This is precisely the
interesting regime where the two terms in Conjecture 5.4.13 are of the same order. By
Theorem 5.4.12, we know that

r(Qd) ⩽ 2d+6n = 64n2,

and thus r(Qd) is at most quadratic in its number of vertices. However, Burr and Erdős [12]
conjectured that the answer is in fact linear, that is, that r(Qd) = O(n). This important
conjecture remains open despite a great deal of effort. However, very recently, Tikhomirov
[139] improved the bound coming from Theorem 5.4.12, and showed that

r(Qd) ⩽ n1.97

for all sufficiently large d. His proof also uses dependent random choice, as well as an intricate
embedding scheme that is tailor-made for the hypercube (and is thus able to improve upon
the general-purpose result in Theorem 5.4.12).
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Chapter 6

The regularity method

In this section, we will develop the regularity method, which is one of the most powerful
techniques in modern graph theory. This technique has its origins in work of Szemerédi
[135, 136], who used it as a crucial ingredient in his proof of his eponymous theorem in
arithmetic progressions in dense sets of integers. In Ramsey theory, it was first applied by
Chvatál, Rödl, Szemerédi, and Trotter [17] in their proof of Theorem 5.4.6; indeed, a full
proof of that theorem will be our first main application of the regularity method.

Warning! The “regularity method”, as I will present it here, differs in crucial ways from
the standard way it is presented. In particular, we will not state or prove Szemerédi’s
regularity lemma, but instead a weaker result that is still sufficient for many applications.
For an excellent introduction to the “real” regularity method, see e.g. [145, Chapter 2].

6.1 Definitions and key lemmas

Definition 6.1.1. If G is an N -vertex graph, we define its edge density to be

d(G) :=
e(G)(

N
2

) .
In words, the edge density is the fraction of all possible edges that are present in G.

If S ⊆ V (G), we denote by d(S) the edge density of the induced subgraph on S, or
equivalently define

d(S) :=
e(S)(|S|

2

) .
Definition 6.1.2. Let ε > 0. An N -vertex graph G is called ε-quasirandom if, for every
S ⊆ V (G) with |S| ⩾ εN , we have that

|d(S) − d(G)| ⩽ ε.

In words, G is ε-quasirandom if every large vertex subset has roughly the same edge density
as the whole graph.
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The reason for the name quasirandom is that it is not hard to show that random graphs
are ε-quasirandom. Indeed, if N is sufficiently large with respect to ε, and we form a random
N -vertex graph by making each pair an edge independently with probability p ∈ [0, 1], then
one can show that with high probability, every subset of size at least εN has edge density
p± ε.

One important property of large random graphs is that they contain all “small” graphs as
subgraphs. This property extends to quasirandom graphs, which is the content of the next
lemma. This property is very useful for Ramsey-theoretic applications, as we can often use
it to guarantee the existence of monochromatic copies of some graph H in certain colorings.

The next lemma is often called the embedding lemma, and also traces back to the work of
Chvatál–Rödl–Szemerédi–Trotter [17], although in some form it goes back at least to earlier
work of Ruzsa–Szemerédi [118].

Lemma 6.1.3 (Embedding lemma). Let H be an n-vertex graph with maximum degree
∆ ⩾ 1. Let 0 < ε < 1

2∆
be a real number, and let N ⩾ 2n

ε
be an integer.

Let G be an N-vertex graph with edge density d(G) ⩾ (2∆ε)1/∆, and suppose that G is
ε-quasirandom. Then H is a subgraph of G.

The proof of Lemma 6.1.3 follows the exact same strategy as the greedy embedding
argument sketched in Section 5.4.1. Namely, one attempts to greedily embed H into G,
one vertex at a time. The ε-quasirandomness (as well as the lower bound on d(G)) then
guarantees that in each set of candidate vertices most vertices are prolific, guaranteeing that
each step of the embedding process can proceed. Eventually the process terminates, and
produces a copy of H. A detailed proof can be found1 in [145, Theorem 2.6.4].

Thus, we see that ε-quasirandom graphs are very special, and they seem to be very
useful for finding copies of subgraphs H. For example, if we are given a coloring of E(KN)
and are promised that the red graph (say) is ε-quasirandom, then we might hope to find
a monochromatic red copy of some H. But of course, in Ramsey-theoretic settings, we are
dealing with arbitrary colorings of KN , so there is no reason to expect one of the two colors
to form an ε-quasirandom graph.

Remarkably, it turns out that we essentially can reduce to this case. As we will shortly
see, every graph contains a large, ε-quasirandom induced subgraph. The powerful regularity
lemma of Szemerédi [137], which we won’t state, says something even stronger, namely that
any graph can be partitioned into quasirandom pieces. We will make do with a weaker
statement, which was first proved by Conlon and Fox [25].

Lemma 6.1.4 (Quasirandom subset lemma; Conlon–Fox [25]). For every ε > 0, there exists
δ > 0 such that the following holds. If G is an n-vertex graph, then there exists Q ⊆ V (G)
with |Q| ⩾ δn such that the induced subgraph G[Q] is ε-quasirandom.

Moreover, if ε < 1
6
, we may take δ = 2−2ε

−7

.

1Actually, [145, Theorem 2.6.4] proves a substantially more general result, but it is not too hard to check
that it implies Lemma 6.1.3. A key observation is that ε-quasirandomness, as defined in Definition 6.1.2,
implies (2ε)-regularity, as defined in [145, Definition 2.1.2].
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Note that Lemma 6.1.4 can itself be viewed as a Ramsey-theoretic statement: it says that,
although the graph G may be very complicated globally, it has a large induced subgraph
that is extremely well-behaved, in the sense of being ε-quasirandom.

An important word of warning about applications of Lemma 6.1.4. In the embedding
lemma, and in all other applications of the regularity method, one needs not only that the
graph is ε-quasirandom, but also that its density is not too small. Indeed, if G and all its
subgraphs have edge density smaller than ε, then G is ε-quasirandom, but we learn very
little about G. In particular, if G is very sparse, then Lemma 6.1.4 is vacuously true—we
may take Q = V (G)—but it is not useful. As we will see, however, in Ramsey-theoretic
contexts one can usually handle this issue by picking one of the two colors intelligently. To
do this, we will often apply the following simple lemma, which implies that in a 2-coloring of
E(KN), sets that are quasirandom in one color are quasirandom in the other color as well.

Lemma 6.1.5. Suppose we are given a red/blue coloring of E(KN), and denote by GR, GB

the graphs of red and blue edges, respectively. If Q ⊆ V (KN) is such that GR[Q] is ε-
quasirandom, then GB[Q] is ε-quasirandom as well.

Proof. Denoting by dR, dB the edge densities in GR, GB, respectively, we note that for any
set S, we have dR(S) = 1 − dB(S), since every edge in S is either red or blue. The fact that
GR[Q] is ε-quasirandom means that |dR(S) − dR(Q)| ⩽ ε for every S ⊆ Q with |S| ⩾ ε|Q|.
But by the above, we have that |dR(S) − dR(Q)| = |dB(S) − dB(Q)|, hence GB[Q] is also
ε-quasirandom.

Proof of Lemma 6.1.4

The original proof of Conlon–Fox [25] relied on an auxiliary result, the cylinder regularity
lemma of Duke, Lefmann, and Rödl [35], as well as an application of Ramsey’s theorem. We
will see an alternative proof, due to Fox (private communication), which is more elementary
(although not necessarily simpler or shorter).

We will use the following structural lemma about graphs that are not ε-quasirandom. If
A,B are two disjoint sets of vertices in a graph G, then we denote by e(A,B) the number of
edges between them, and by d(A,B) := e(A,B)/(|A||B|) their edge density.

Lemma 6.1.6. Fix ε ∈ (0, 16). Let G be a graph with d(G) = α which is not ε-quasirandom.
Either there exists a subset A ⊆ V (G) with |A| ⩾ ε|V (G)| and d(A) ⩾ α + ε4, or else there
exist disjoint A,B ⊆ V (G) with |A|, |B| ⩾ ε|V (G)| and d(A,B) ⩾ α+ ε3.

Proof. It is a simple exercise to show that if d(G) ⩾ 1 − ε4, then G is automatically ε-
quasirandom, so we may assume that α + ε4 ⩽ 1. We thus see that if |V (G)| ⩽ 2

ε then we
may take A to be the endpoints of any edge and obtain the claimed result; thus we assume
henceforth that |V (G)| ⩾ 2

ε .
By the definition of ε-quasirandomness, there exists S0 ⊆ V (G) with |S0| ⩾ ε|V (G)| and

d(S0) ⩽ α− ε or d(S0) ⩾ α+ ε. In the latter case we may set A = S0 and obtain the claimed
result, so let us assume that d(S0) ⩽ α− ε.

Let S be a random subset of S0, chosen uniformly at random among all subsets of size
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exactly ε|V (G)|. All edges of S0 are included in S with equal probability, so the expected
edge density of S equals d(S0). Thus, there exists some (deterministic) choice of S ⊆ S0 with
|S| = ε|V (G)| and d(S) ⩽ d(S0) ⩽ α−ε. Let T = V (G)\S, and note that |T | = (1−ε)|V (G)| ⩾
ε|V (G)| since we assumed ε < 1

2 .
If d(T ) ⩾ α+ ε4, we may set A = T and obtain the claimed result, so we may assume that

d(T ) ⩽ α+ ε4. We now observe that

α

(
V (G)

2

)
= e(G) = e(S) + e(T ) + e(S, T )

⩽ (α− ε)

(
|S|
2

)
+ (α+ ε4)

(
|T |
2

)
+ d(S, T )|S||T |

= α

[(
|S|
2

)
+

(
|T |
2

)
+ |S||T |

]
− ε

(
|S|
2

)
+ ε4

(
|T |
2

)
+ (d(S, T )− α)|S||T |

= α

(
V (G)

2

)
− ε

(
|S|
2

)
+ ε4

(
|T |
2

)
+ (d(S, T )− α)|S||T |,

where the final step uses that S ⊔ T partitions V (G), so
(|V (G)|

2

)
=
(|S|

2

)
+
(|T |

2

)
+ |S||T |.

Subtracting α
(|V (G)|

2

)
from both sides, we learn that

(d(S, T )− α)|S||T | ⩾ ε

(
|S|
2

)
− ε4

(
|T |
2

)
which implies

d(S, T )− α ⩾ ε
|S| − 1

2|T |
− ε4

|T | − 1

2|S|
.

We have that |S| ⩾ 2 since we assumed |V (G)| ⩾ 2
ε . Thus |S| − 1 ⩾ 1

2 |S|, and therefore

|S| − 1

2|T |
⩾

|S|
4|T |

=
ε

4(1− ε)
⩾
ε

4
.

Additionally,
|T | − 1

2|S|
⩽

|T |
2|S|

=
1− ε

2ε
⩽

1

2ε
.

Putting this together, we find that

d(S, T )− α ⩾
ε2

4
− ε3

2
= ε2

(
1

4
− ε

2

)
⩾ ε2

(
1

4
− 1

12

)
=
ε2

6
⩾ ε3,

where the final two inequalities use our assumption that ε ⩽ 1
6 . Setting A = S,B = T

concludes the proof.

With this lemma in hand, we are ready for the proof of Lemma 6.1.4. We will actually
prove a stronger statement, which lends itself naturally to a density increment argument.
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Lemma 6.1.7. For every α ∈ [0, 1], ε ∈ (0, 16) there exists some γ(α, ε) > 0 such that the
following holds. For every graph G, there exists a subset S ⊆ V (G) with |S| ⩾ γ(α, ε)|V (G)|
such that G[S] is ε-quasirandom, or d(S) ⩾ α.

Moreover, we may take

γ(α, ε) = 2−2α/ε7

.

Before proving this, let’s see how it immediately implies Lemma 6.1.4.

Proof of Lemma 6.1.4. Note that a set that is ε-quasirandom is also ε′-quasirandom for any
ε′ > ε, so it suffices to prove this statement for ε < 1

6 . Apply Lemma 6.1.7 with α = 1, and let
δ = γ(1, ε). Note that the claimed bound on δ follows from the bound on γ in Lemma 6.1.7.
By Lemma 6.1.7, we know that for any graph G, there exists S ⊆ V (G) with |S| ⩾ δ|V (G)|,
such that G[S] is ε-quasirandom or d(S) ⩾ 1. In the former case, we may set Q = S and are
done. In the latter case, as d(S) = 1, we see that S defines a complete subgraph of G. Every
subgraph of G[S] is thus also complete, and hence S is ε-quasirandom, so we may again set
Q = S and conclude the proof.

All that remains now is the proof of Lemma 6.1.7.

Proof of Lemma 6.1.7. We fix ε ∈ (0, 16). Our proof will be by “induction” on α, except that
of course induction doesn’t make sense since α is a real parameter. Nonetheless, it is not hard
to make this make sense. Note that the statement we are trying to prove is monotone in α, in
the sense that if we prove the existence of γ(α, ε), we also prove the existence of γ(α′, ε) for
any α′ < α. We will show that the statement for the pair (α, ε) implies the statement for the
pair (α + ε6, ε), which then also yields the result for all α′ ∈ [α, α + ε6] by the monotonicity
discussed above.

To begin the induction, note that we may take γ(0, ε) = ε6. Indeed, letting S be an
arbitrary subset of V (G) of size ε6|V (G)| shows the existence of the desired subset of edge
density at least 0, since any set has edge density at least 0. Note that we could have set
γ(0, ε) to be any number in (0, 1], but this choice will be useful for simplifying some later
computations.

Now suppose that we have proved the existence of γ(α, ε). Let G be a graph; we wish
to prove the existence of a large set S ⊆ V (G) which is either ε-quasirandom or else has
edge density at least α + ε6. By the definition of γ(α, ε), we may find a set S0 ⊆ V (G) with
|S0| ⩾ γ(α, ε)|V (G)| such that G[S0] is ε-quasirandom or d(S0) ⩾ α. If the former case happens
we are done, as long as we ensure that γ(α+ ε6, ε) ⩽ γ(α, ε). So let us assume that d(S0) ⩾ α,
and that G[S0] is not ε-quasirandom.

We now apply Lemma 6.1.6 to G[S0]. If we find a set A ⊆ S0 with |A| ⩾ ε|S0| ⩾
ε · γ(α, ε)|V (G)| and d(A) ⩾ d(S0) + ε4 ⩾ α+ ε6, we are done, so long as we ensure that

γ(α+ ε6, ε) ⩽ ε · γ(α, ε).

So we may assume that we are in the second case of Lemma 6.1.6, that is, that there exist
A,B ⊆ S0 with |A|, |B| ⩾ ε|S0| and d(A,B) ⩾ α+ ε3.
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Let A1 ⊆ A comprise all vertices in A with at least (α+ ε4)|B| neighbors in B. Note that

(α+ ε3)|A||B| ⩽ d(A,B)|A||B|
= e(A,B)

= e(A1, B) + e(A \A1, B)

⩽ |A1||B|+ (α+ ε4)|A \A1||B|
⩽ |A1||B|+ (α+ ε4)|A||B|.

Rearranging, we find that

|A1| ⩾ (ε3 − ε4)|A| ⩾ ε4|A| ⩾ ε5|S0| ⩾ ε5 · γ(α, ε)|V (G)|. (6.1)

We now again apply the definition of γ(α, ε), now to the induced subgraph G[A1]. We find a
subset X ⊆ A1, with |X| ⩾ γ(α, ε)|A1| ⩾ ε5 · γ(α, ε)2|V (G)|, such that G[X] is ε-quasirandom
or d(X) ⩾ α. We are done in the former case, as long as we ensure that

γ(α+ ε6, ε) ⩾ ε5 · γ(α, ε)2.

So let us assume instead that d(X) ⩾ α. Recall that since X ⊆ A1, every vertex in X has at
least (α+ε4)|B| neighbors in B, and thus d(X,B) ⩾ α+ε4. As in the proof of Lemma 6.1.6, we
may pass to a random subset of X to ensure that d(X) ⩾ α and that |X| = ε6 ·γ(α, ε)2|V (G)|.
We now let B1 comprise all vertices in B with at least (α+ ε5)|X| neighbors in X. Essentially
the same argument that proved (6.1) shows that

|B1| ⩾ (ε4 − ε5)|B| ⩾ ε5|B| ⩾ ε6 · γ(α, ε)|V (G)|.

We now apply the definition of γ(α, ε) to G[B1] to obtain a set Y with |Y | ⩾ ε6 ·γ(α, ε)2|V (G)|,
such that G[Y ] is ε-quasirandom or d(Y ) ⩾ α. In the former case we are done if we ensure
that

γ(α+ ε6, ε) ⩾ ε6 · γ(α, ε)2,

so let us assume that the latter case holds. We may again assume by passing to a random
subset that |Y | = ε6 · γ(α, ε)2|V (G)|. Since Y ⊆ B1, we know that every vertex in Y has at
least (α + ε5)|X| neighbors in X, hence d(X,Y ) ⩾ α + ε5. Moreover, d(X), d(Y ) ⩾ α, and
|X| = |Y | by construction. Thus,

e(X∪Y ) = e(X)+e(Y )+e(X,Y ) ⩾ α

(
|X|
2

)
+α

(
|Y |
2

)
+(α+ε5)|X||Y | ⩾

(
α+

ε

2

)(|X ∪ Y |
2

)
,

which implies that

d(X ∪ Y ) ⩾ α+
ε5

2
⩾ α+ ε6.

Moreover, |X ∪ Y | ⩾ |X| = ε6 · γ(α, ε)2|V (G)|. Comparing all the restrictions we placed on
γ(α+ ε6, α), we see that we can define

γ(α+ ε6, ε) = ε6 · γ(α, ε)2
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and have the desired property continue inductively. Note that this definition implies that γ
is monotonically decreasing in α (for fixed ε), hence our choice of γ(0, ε) = ε6 implies that
γ(α, ε) ⩽ ε6 for all α. Thus, we have that

γ(α+ ε6, ε) = ε6γ(α, ε)2 ⩾ γ(α, ε)3.

Applying this bound iteratively, subtracting ε6 at every step, we find that for every α,

γ(α, ε) ⩾ γ(0, ε)3
α/ε6

= (ε6)3
α/ε6

⩾ 2−2α/ε7

,

as claimed.

6.2 Application I: Proof of Theorem 5.4.6

Let us now see how these powerful tools—the embedding lemma and the quasirandom subset
lemma—can be used to give a short proof of Theorem 5.4.6.

Proof of Theorem 5.4.6. Note that any graph of maximum degree at most 1 is a forest, so
the ∆ = 1 case follows from Theorem 5.2.1. Hence we may assume that ∆ ⩾ 2.

First we pick some parameters depending on ∆. Let ε = 2−∆/(2∆), which is chosen so

that 1
2

= (2∆ε)1/∆; note that ε < 1
6

since ∆ ⩾ 2. Let δ = 2−2ε
−7

be the constant from
Lemma 6.1.4. Finally, let C = 2/(εδ), and note that C depends only on ∆.

Fix an n-vertex graph H with maximum degree at most ∆, and let N = Cn. Consider
a red/blue coloring of E(KN), and let GR, GB be the red and blue graphs, respectively.
Applying Lemma 6.1.4 to GR (and recalling Lemma 6.1.5), we find a subset Q ⊆ V (KN)
with |Q| ⩾ δN such that GR[Q] and GB[Q] are both ε-quasirandom. Assume without loss
of generality that at least half the edges in Q are red, so that d(GR[Q]) ⩾ 1

2
= (2∆ε)1/∆.

Note that

|Q| ⩾ δN = δCn =
2n

ε
.

Thus, we are in the setting of Lemma 6.1.3, which immediately tells us thatH is a subgraph of
GR[Q]. Thus, we have found a monochromatic red copy of H, implying that r(H) ⩽ N .

As discussed on page 44, the original proof of Chvatál–Rödl–Szemerédi–Trotter of The-
orem 5.4.6 also used the regularity method, and gave tower-type bounds on the constant

C. In contrast, the proof above shows that we can take C ⩽ 222
10∆

, which is still huge,
but substantially smaller. The reason is that Chvatál–Rödl–Szemerédi–Trotter used the full
regularity lemma of Szemerédi, whereas we used the weaker result Lemma 6.1.4, which is
sufficient for this application. The fact that the full regularity lemma is not needed in this
approach, and thus that tower-type bounds can be avoided, was first observed by Eaton [36].

Note that this proof, as written, only works when the number of colors is 2, since we
crucially used Lemma 6.1.5 to deduce that GB[Q] is ε-quasirandom, even though we applied
Lemma 6.1.4 to GR. To deal with more colors, we can use the following generalization of
Lemma 6.1.4, which produces a subset that is quasirandom in any graph in a fixed collection.
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Lemma 6.2.1. For every ε > 0 and q ⩾ 1, there exists δ > 0 such that the following holds.
Let G1, . . . , Gq be graphs on the same vertex set V . There exists Q ⊆ V with |Q| ⩾ δ|V |
such that G1[Q], . . . , Gq[Q] are ε-quasirandom.

Note that we do not assume that G1, . . . , Gq are edge-disjoint, although we will usually
have that property in applications, as we will let G1, . . . , Gq be the color classes in a q-coloring
of E(KN).

Lemma 6.2.1 can be proved in the same way as Lemma 6.1.4, but it can also be deduced as
a direct consequence of Lemma 6.1.4. For this deduction, we will need a simple observation,
called the hereditary property of quasirandomness. It says that any large induced subgraph of
a quasirandom graph is still quasirandom, albeit with a worse value of ε.

Lemma 6.2.2. Let G be an ε-quasirandom graph. If S ⊆ V (G) satisfies |S| ⩾ η|V (G)| for
some η > 0, then G[S] is (ε′)-quasirandom, where ε′ = max{2ε, ε/η}.

Proof. Note that if η ⩾ ε, then there is nothing to prove as every graph is 1-quasirandom.
Hence we may assume that η < ε. Then |S| ⩾ ε|V (G)|, so the quasirandomness of G implies
that |d(G)− d(S)| ⩽ ε.

To prove that G[S] is ε′-quasirandom, we need to show that |d(S) − d(T )| ⩽ ε′ for every
T ⊆ S with |T | ⩾ ε′|S|. Note that for any such T , we have |T | ⩾ ε′|S| ⩾ (ε/η)|S| ⩾ ε|V (G)|,
hence the ε-quasirandomness of G implies that |d(G)− d(T )| ⩽ ε. Therefore,

|d(S)− d(T )| ⩽ |d(S)− d(G)|+ |d(G)− d(T )| ⩽ ε+ ε ⩽ ε′.

Using this simple observation, we can prove Lemma 6.2.1 by induction on q.

Proof of Lemma 6.2.1. We prove the existence of δ = δ(ε, q) by induction on q. The base case
q = 1 is precisely the statement of Lemma 6.1.4. Inductively, having defined δ(ε, q − 1) for all
ε, we define γ := 1

2ε · δ(ε, 1) and

δ(ε, q) := δ(ε, 1)δ(γ, q − 1).

Now suppose we are given graphs G1, . . . , Gq on the same vertex set V . By the definition of
δ(γ, q−1), we can find a set Q1 ⊆ V with |Q1| ⩾ δ(γ, q−1)|V | such that G1[Q1], . . . , Gq−1[Q1]
are all γ-quasirandom. We now apply the base case, that is Lemma 6.1.4, to the graph Gq[Q1],
to conclude that there exists Q ⊆ Q1 with |Q| ⩾ δ(ε, 1)|Q1| such that Gq[Q] is ε-quasirandom.
By Lemma 6.2.2, G1[Q], . . . , Gq−1[Q] are all γ′-quasirandom, where

γ′ = max{2γ, γ/δ(ε, 1)} ⩽
2γ

δ(ε, 1)
= ε.

Thus, G1[Q], . . . , Gq[Q] are all ε-quasirandom. To conclude the proof, we note that

|Q| ⩾ δ(ε, 1)|Q1| ⩾ δ(ε, 1)δ(γ, q − 1)|V | = δ(ε, q)|V |.

Using Lemma 6.2.1, it is now straightforward to prove the following multicolor version of
Theorem 5.4.6; the proof is left for the homework.

59
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Theorem 6.2.3. For all integers ∆ ⩾ 1, q ⩾ 2, there exists a constant C such that if H is
an n-vertex graph with maximum degree at most ∆, then r(H; q) ⩽ Cn.

6.3 Application II: Rödl’s theorem

A graph G is called induced-H-free if it does not have an induced subgraph isomorphic to
H. One of the most important questions in structural graph theory is to understand the
structure of induced-H-free graphs.

For certain choices of H, one can get very precise results fairly easily. For example, if
H = K2, then an induced-K2-free graph is the same as a graph with no edges. A slightly
less trivial example is when H = K1,2; in that case, one can show that a graph G is induced-
K1,2-free if and only if G is a disjoint union of complete graphs. In other cases, such as
H = K3, it is essentially impossible to get such a strong characterization, but we still know a
lot; for example, Theorem 4.1.4 implies that every N -vertex induced-K3-free graph contains
an independent set of order (1 − o(1))

√
N lnN .

For general H, much less is known. One of the most important conjectures in this field
is due to Erdős and Hajnal [44], and states that induced-H-free graphs contain very large
cliques or independent sets.

Conjecture 6.3.1 (Erdős–Hajnal [44]). For every graph H, there exists a constant c > 0
such that the following holds. If G is an N-vertex induced-H-free graph, then G contains a
clique or independent set of order at least N c.

Note that, by Theorem 2.1.4, every N -vertex graph contains a clique or an independent
set of order at least 1

2
logN . The Erdős–Hajnal conjecture states that if we impose the

condition that G is induced-H-free, this result can be substantially improved.
In recent years, there have been a number of important breakthroughs related to the

Erdős–Hajnal conjecture, most of which we will not discuss. Let us only mention a recent
result of Bucić, Nguyen, Scott, and Seymour [11], which gives the best known result for
general H. Their result improves on that of Erdős and Hajnal [45], who proved the same
bound without the log logN term.

Theorem 6.3.2 (Bucić–Nguyen–Scott–Seymour [11]). For every graph H, there exists a
constant c > 0 such that the following holds. If G is an N-vertex induced-H-free graph, then
G contains a clique or independent set of order at least ec

√
logN log logN .

The full Erdős–Hajnal conjecture remains wide open, and even improving on the bound
in Theorem 6.3.2 seems like it would require substantial new ideas.

However, there are other things one can say about induced-H-free graphs. In particular,
we will shortly prove the following surprising and useful theorem of Rödl [112], which can be
viewed as an approximate form of the Erdős–Hajnal conjecture. It states that every induced
H-free graph contains a linearly-sized subset whose edge density is very close to 0 or 1.
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ETH Zürich Ramsey Theory—Spring 2024 Yuval Wigderson

Theorem 6.3.3 (Rödl [112]). For every graph H and every σ > 0, there exists δ > 0 such
that the following holds. If G is an induced-H-free graph, then there is a subset S ⊆ V (G)
with |S| ⩾ δ|V (G)| such that d(S) < σ or d(S) > 1 − σ.

In order to prove Theorem 6.3.3, we will need a form of the embedding lemma suited to
embedding induced copies of H. Later we will need an even more general form of such a
result, so we state the most general form now; we will shortly see how to use it for induced
copies of H.

Lemma 6.3.4 (Multicolor embedding lemma). Let H be an n-vertex graph with maximum
degree ∆ ⩾ 1. Let 0 < ε < 1

2∆
be a real number, and let N ⩾ 2n

ε
be an integer. Additionally,

let q be an integer and fix a q-coloring χ : E(H) → JqK of the edges of H.
Let G1, . . . , Gq be graphs on a common vertex set V with |V | = N . Suppose that each

Gi is ε-quasirandom and has edge density d(Gi) ⩾ (2∆ε)1/∆. Then there is a copy of H in
G1 ∪ · · · ∪Gq such that if an edge of H has color i ∈ JqK, then it appears in Gi.

We will omit the proof of Lemma 6.3.4. It can be proved in the same way as Lemma 6.1.3,
but it can also be deduced directly from (a slightly more general form of) Lemma 6.1.3. See
e.g. [145, Remark 2.6.3] for details. With this tool, we can quickly prove Theorem 6.3.3.

Proof of Theorem 6.3.3. Let H have n vertices. Let us define a 2-coloring χH : E(Kn) → J2K
by coloring the edges of H with color 1 and the non-edges of H with color 2. Let ε = σn

2n
> 0,

and let δ0 = δ0(ε) be the parameter from Lemma 6.1.4. Let δ = εδ0
2n

.
We now fixed an induced-H-free graph G, and we wish to prove that G contains a subset

S with |S| ⩾ δ|V (G)| such that d(S) < σ or d(S) > 1−σ. If |V (G)| ⩽ 1
δ

then this is trivially
true as we may set S to comprise a single vertex, so we henceforth assume that |V (G)| ⩾ 1

δ
.

Let G1 = G and let G2 = G be the complement of G.
We apply Lemma 6.1.4 to G to find a set Q ⊆ V (G) with |Q| ⩾ δ0|V (G)| such that G1[Q]

is ε-quasirandom; Lemma 6.1.5 then implies that G2[Q] is ε-quasirandom as well. Note that

|Q| ⩾ δ0|V (G)| ⩾ δ0
δ

=
2n

ε
.

If d(G[Q]) = d(G1[Q]) < σ, then we can set S = Q and be done. Similarly, if d(G2[Q]) < σ,
then d(G[Q]) > 1 − σ, and we are again done. So we may assume that d(Gi[Q]) ⩾ σ for
i = 1, 2. By our choice of ε, this implies that d(Gi[Q]) ⩾ (2nε)1/n for i = 1, 2.

We now apply Lemma 6.3.4, where we are trying to embed the graph Kn with the coloring
χH defined above. By Lemma 6.3.4, which we may apply since Kn has maximum degree
n−1 ⩽ n, we find that there is a copy of Kn in Q such that all edges colored 1 appear in G1,
and all edges colored 2 appear in G2. But this precisely means that the edges of H appear
in G, and that the non-edges of H appear in G. Hence we have found an induced copy of H
in G, contradicting our assumption that G is induced-H-free; this contradiction completes
the proof.
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Chapter 7

Restricted Ramsey graphs

7.1 Folkman’s theorem and beyond

We started this course with Ramsey’s theorem: for every k, there exists an N such that if
the edges of KN are two-colored, then there exists a monochromatic Kk. In Chapter 5, we
generalized the conclusion: rather than finding a monochromatic Kk, we found a monochro-
matic copy of H, for some not-necessarily-complete graph H. We will now generalize the
first part of the statement.

Definition 7.1.1. Given two graphs G,H, we say that G is Ramsey for H in q colors (or G
is q-color Ramsey for H) if, whenever the edges of G are q-colored, there is a monochromatic
copy of H. In case q = 2, we simply say that G is Ramsey for H.

Thus, Ramsey’s theorem simply states that KN is q-color Ramsey for Kk whenever N is
sufficiently large (as a function of q and k).

To gain some intuition for this definition, let’s think of the case when H = K3. If G is
Ramsey for K3, then certainly G must contain at least one triangle. But in fact, the definition
of G being Ramsey for K3 tells us that G contains triangles “very robustly”. Indeed, another
way of saying Definition 7.1.1 is that, no matter how we try to split G into the union of two
subgraphs, we cannot destroy all triangles in G. This idea of robustness is one of the reasons
that Definition 7.1.1 is interesting.

That being said, it’s not at all obvious that this definition actually gives us any new
information. Indeed, we know that r(3) = 6, or equivalently that K6 is Ramsey for K3 while
K5 is not. In particular, we find that if G is a graph containing K6 as a subgraph, then G is
Ramsey for K3. Indeed, given any 2-coloring of E(G), ignore all the edges except for those
in the K6 subgraph; among those

(
6
2

)
edges, we are guaranteed to find a monochromatic

triangle, regardless of how the other edges are colored.
If you spend some time trying to construct graphs that are Ramsey for K3, you may start

to wonder if this is the only reason a graph can be Ramsey for K3. In other words, you might
be tempted to conjecture that G is Ramsey for K3 if and only if K6 ⊆ G. The question of
whether this is true was raised by Erdős and Hajnal [43], and was rapidly answered in the
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negative independently by Cherlin (unpublished), Graham [65], and van Lint (unpublished).
The following slick construction is due independently to Galluccio–Simonovits–Simonyi [61]
and to Szabó [133], and generalizes Graham’s original argument. Given two graphs G1, G2,
their join, denoted G1 ∗ G2, is the graph obtained from their disjoint union by adding all
edges with one endpoint in G1 and one in G2.

Proposition 7.1.2 (Galluccio–Simonovits–Simonyi [61], Szabó [133]). Let G = K3 ∗ Cℓ,
where ℓ ⩾ 3 is an odd integer. Then G is Ramsey for K3. Moreover, if ℓ ⩾ 5, then K6 ⊈ G.

Proof. Let the vertices of G be x, y, z, v1, . . . , vℓ, where x, y, z form a triangle, v1, . . . , vℓ form
a cycle Cℓ, and all edges between {x, y, z} and {v1, . . . , vℓ} are present. Note that if K6 ⊆ G,
then at least three of the vertices of this K6 must come from v1, . . . , vℓ (and they must form
a triangle), so the second statement of the proposition is immediate since Cℓ is triangle-free
whenever ℓ ⩾ 5.

It remains to show that G is Ramsey for K3, so fix a two-coloring of E(G). If {x, y, z}
form a monochromatic triangle then we are done, so two of the edges xy, xz, yz receive one
color and the third edge receives the other color. Without loss of generality, we may assume
that xy, yz are red and xz is blue.

Now consider the edges between {x, y, z} and v1. First suppose yv1 is red.

y

x

z

v1

If xv1 or zv1 is red, then we close a red triangle xyv1 or zyv1, so we may assume that both
these edges are blue. But that also creates a blue triangle, xzv1.

y

x

z

v1
y

x

z

v1

So we may assume that yv1 is blue. By the same logic, yvi is blue for all i ∈ JℓK. Note that if
any of the edges vivi+1 in the cycle is blue, then we create a blue triangle yvivi+1.

y

x

z

v1

v2

v3

v4

v5

Therefore, we may assume that all the edges in the cycle are red.
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y

x

z

v1

v2

v3

v4

v5

Recall that xvi and zvi cannot both be blue, as this would create a blue triangle xzvi. Let
us label vi by either the label x or z, depending on whether xvi or zvi is red (picking a label
arbitrarily if both are red). By the above, every vi receives a label.

y

x

z

v1

v2

v3

v4

v5

x

x

x

z

z

Since ℓ is odd, the cycle Cℓ is not bipartite. Hence, two adjacent vertices vi, vi+1 must receive
the same label (like v2 and v3 in the picture above). But then they create a red triangle
together with their label.

Note that K3 ∗K3 = K6, so this result also gives a new (and more complicated) proof that
K6 is Ramsey for K3. But it also shows that the set of graphs Ramsey for K3 is surprisingly
rich.

Note that each of the graphs K3 ∗Cℓ considered above does contain K5 as a subgraph. So
there is a natural weakening of our previous question: does every graph which is Ramsey for
K3 contain K5 as a subgraph? The answer to this question also turns out to be negative, as
proved by Pósa (unpublished, but included in [43]). So we may weaken our question further:
does every graph Ramsey for K3 contain a K4? The answer to this also turns out to be no,
as shown by the following remarkable theorem of Folkman [54].

Theorem 7.1.3 (Folkman [54]). For every k ⩾ 2, there exists a graph G such that G is
Ramsey for Kk, but Kk+1 ⊈ G.

This is pretty astonishing, even in the case k = 3. As discussed above, a graph that is
Ramsey for K3 must contain triangles “very robustly”, in the sense that we cannot destroy
all the triangles by splitting the graph into two subgraphs. Yet Folkman’s theorem shows
that such a graph can exist even though, locally, the triangles have almost no overlap.

Folkman’s proof only worked for the case of two-colors, but the general case was shortly
thereafter established by Nešetřil and Rödl [96], who proved the following generalization.
We denote by ω(H) the clique number of H, that is, the maximum k such that Kk ⊆ H.

Theorem 7.1.4 (Nešetřil–Rödl [96]). For every graph H and every q ⩾ 2, there exists a
graph G which is q-color Ramsey for H with ω(G) = ω(H).
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In their proof, Nešetřil and Rödl introduced a very powerful technique, called the partite
construction, which is a very general-purpose way of producing graphs G that are Ramsey
for a given graph H, while satisfying certain local sparsity conditions. We will not cover the
partite construction in this course, but we refer to the excellent introduction in [85].

The partite construction (as well as the earlier construction of Folkman) is completely
explicit, so we can get a complete description of what the graph G in Theorem 7.1.4 looks
like. Unfortunately, these constructions are iterative in nature, and each step of the iteration
is complicated, so the size of the graph G constructed is unbelievably huge.

There is now an alternative approach to constructing such restricted Ramsey graphs,
which uses randomness. It has a number of advantages over the partite construction, in-
cluding giving much better bounds on how large G has to be in results like Theorem 7.1.4.
However, as we will discuss shortly, it also seems to be less flexible than the partite con-
struction, and there are results that the random approach seems incapable of proving.

The main result in this direction is the random Ramsey theorem of Rödl and Ruciński
[114]. To state it, we define the maximal 2-density of a graph H to be

m2(H) := max
J⊆H
v(J)⩾3

e(J) − 1

v(J) − 2
.

Theorem 7.1.5 (Rödl–Ruciński [114]). Let H be a graph which is not a forest, and let q ⩾ 2.
There exist constants C > c > 0 such that the following holds. Form an N-vertex graph G
by including each edge independently with probability p. Then

lim
N→∞

Pr(G is Ramsey for H in q colors) =

{
1 if p ⩾ CN−1/m2(H),

0 if p ⩽ cN−1/m2(H).

In other words, p ≍ N−1/m2(H) is a threshold for the property of G being Ramsey for H.
If p is substantially smaller than this value, then G is extremely unlikely to be Ramsey for H,
whereas if p is substantially larger than this value, then G is extremely likely to be Ramsey
for H. The heuristic reason why this value of p controls the threshold is the following. One
can check that at this value, a typical edge of G lies in a constant number of copies of H1.
Thus, if p ⩽ cN−1/m2(H) for a small constant c, then the majority of edges of G lie in zero
copies of H, and thus it is not surprising that G does not “robustly” contain H; we should
be able to color E(G) and destroy all copies of H. On the other hand, if p ⩾ CN−1/m2(H) for
a large constant C, then most edges of G lie in very many copies of H, and we expect a great
deal of interaction between the copies, such that destroying all of them becomes impossible
no matter how we color the edges. While this is a good heuristic explanation, turning it into
a proof is substantially harder, and we will not do so in this course.

However, Theorem 7.1.5 does allow us to easily prove results along the lines of The-
orem 7.1.3. One can actually prove Theorem 7.1.3 as a consequence of (a more precise

1I am cheating a bit here; really, I should be counting copies of the subgraph J ⊆ H achieving the
maximum in the definition of m2(H).
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version of) Theorem 7.1.5, but we will content ourselves with proving the following weak-
ening of Theorem 7.1.3, which generalizes Proposition 7.1.2 (which corresponds to the case
k = 3, q = 2).

Proposition 7.1.6. For every k ⩾ 3 and q ⩾ 2, there exists a graph G which is q-color
Ramsey for Kk, but Kk+3 ⊈ G.

Proof. We begin by observing that

e(Kk) − 1

v(Kk) − 2
=

(
k
2

)
− 1

k − 2
=
k2 − k − 2

2(k − 2)
=
k + 1

2
.

It is not hard to check that e(J)−1
v(J)−2

is strictly smaller for any proper subgraph J ⊊ Kk, hence

m2(Kk) = k+1
2

. By Theorem 7.1.5, there is a constant C > 0 such that the following holds. If
we pick an N -vertex graph randomly by including each edge independently with probability

p := CN− 2
k+1 , then G is q-color Ramsey for H with probability tending to 1 as N → ∞. In

particular, if N is sufficiently large, then this probability is at least 2
3
.

On the other hand, by the union bound, the probability that Kk+3 ⊆ G is at most(
N

k + 3

)
p(

k+3
2 ) < C(k+3

2 ) ·Nk+3 ·N− 2
k+1(k+3

2 ) = C(k+3
2 ) ·N−( 2

k+1(k+3
2 )−(k+3)). (7.1)

We have that

2

k + 1

(
k + 3

2

)
− (k + 3) =

(k + 3)(k + 2)

k + 1
− (k + 3) = (k + 3)

(
k + 2

k + 1
− 1

)
> 0.

Hence, the exponent on N is negative in (7.1), so the probability that Kk+3 ⊆ G tends to
0 as N → ∞. In particular, by picking N sufficiently large, we can ensure that Kk+3 ⊈ G
with probability at least 2

3
.

Therefore, with positive probability, G satisfies both the desired properties, proving the
claimed result.

Before ending this section, let us briefly discuss one further recent breakthrough on the
structure of restricted Ramsey graphs, due to Reiher and Rödl [110].

Definition 7.1.7. Let H be a graph. We say that another graph F is Ramsey obligatory
for H if the following holds. For every sufficiently large q and every graph G which is q-color
Ramsey for H, we have F ⊆ G.

In this language, we can restate Proposition 7.1.6 as saying that Kk+3 is not Ramsey
obligatory for Kk, and Theorem 7.1.3 (or more precisely its multicolor extension, which
follows from Theorem 7.1.4) states that Kk+1 is not Ramsey obligatory for H. On the other
hand, we can easily show that certain graphs are Ramsey obligatory for H. For example, H
itself is Ramsey obligatory for H—if G is Ramsey for H, then certainly G contains H as a
subgraph!
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To keep things concrete, let’s specialize to the case H = K3. Then we know that K3 is

Ramsey obligatory for K3, but K4 is not. On the other hand, the graph F = , obtained
by gluing two triangles along an edge, is also Ramsey obligatory. Indeed, if G is an F -free
graph, then all the triangles in G are edge-disjoint, so certainly we can color E(G) and avoid
all monochromatic triangles. More generally, we make the following definition.

Definition 7.1.8. Triangle trees are the class of graphs defined recursively as follows.

• K3 is a triangle tree.

• Given a triangle tree T , we can obtain a new triangle tree T ′ by picking an edge of T
and gluing a new triangle to it.

A typical triangle tree might look something like the following.

It is not hard to show the following fact; the proof is left for the homework.

Proposition 7.1.9. If F is a subgraph of a triangle tree, then F is Ramsey obligatory for
K3.

The astonishing theorem of Reiher and Rödl [110] is that this sufficient condition is also
necessary.

Theorem 7.1.10 (Reiher–Rödl [110]). A graph F is Ramsey obligatory for K3 if and only
if F is a subgraph of a triangle tree.

Said differently, given any graph F which is not a subgraph of a triangle tree, Reiher and
Rödl are able to construct a graph G which is q-color Ramsey for K3, yet does not contain
F as a subgraph. In particular, since one can check that K4 is not a subgraph of a triangle
tree, this implies the k = 3 case of Theorem 7.1.3.

In fact, their theorem is vastly more general than this, and implies many strengthenings
of Theorem 7.1.4. Somewhat more surprisingly, it appears that even for proving a result like
Theorem 7.1.10, one actually has to prove these much more general results; their proof is
based on a very complicated inductive argument, and in order to make the induction work
one has to maintain a very general inductive statement.

7.2 The induced Ramsey theorem

So far, we have been studying graphs G which are Ramsey for H and which have a restricted
structure (e.g. containing no large cliques). However, we have not at all restricted the way
in which a monochromatic H can appear. We now turn to such a restriction.
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Definition 7.2.1. A graph G is q-color induced Ramsey for H if, in any q-coloring of E(G),
there is an induced subgraph of G, isomorphic to H, all of whose edges receive the same
color.

In other words, we wish to find a monochromatic copy of H, but such that every non-edge
of H is also not present in G. In the case H = Kk, note that G is Ramsey for Kk if and
only if G is induced Ramsey for Kk. The reason is that, whenever Kk is a subgraph of G, it
is also an induced subgraph of G. Thus, for cliques, this new notion is the same as the old
notion.

However, if H is not a clique, it is not at all obvious that there exists some G which is
induced Ramsey for H. Indeed, while Ramsey’s theorem guarantees that KN is Ramsey for
H for sufficiently large H, KN is certainly not induced Ramsey for H.

In fact, the existence of induced Ramsey graphs is a highly non-trivial result, which was
first proved independently by Deuber [31], Erdős–Hajnal–Pósa [46], and Rödl [111].

Theorem 7.2.2 (Deuber [31], Erdős–Hajnal–Pósa [46], Rödl [111]). For every graph H and
every q ⩾ 2, there exists a graph G such that G is q-color induced Ramsey for H.

Shortly thereafter, Nešetřil and Rödl [97] gave a simplified proof using the partite con-
struction. We will give a short proof using the regularity method, the idea of which can be
traced back to [98], and which is more closely inspired by [55].

Proof. Let H have n vertices. Define ε = (3q)−n

2n
, and let δ = δ(ε, q) be the parameter from

Lemma 6.2.1. Let ρ = δε.
Let N be a sufficiently large, and let G be a random N -vertex graph obtained by making

each pair an edge independently with probability 1
2
. The only property we will need about G,

which we mentioned after Definition 6.1.2, is that G is highly quasirandom. More precisely,
assuming N is sufficiently large, then with positive probability G has the property that every
subset of at least ρN vertices has edge density in [1−ε

2
, 1+ε

2
]. This implies, in particular, that

for any set Q ⊆ V (G) with |Q| ⩾ δN , the induced subgraph G[Q] is ε-quasirandom. We
now fix G to have this property, which we can do since the probability it does is positive for
sufficiently large N . Note that the complement G also has this property. We claim that G
is induced Ramsey for H.

Indeed, fix a q-coloring of E(G), that is, a partition of E(G) into subgraphs G1, . . . , Gq.
By Lemma 6.2.1, there exists Q ⊆ V (G) such that G1[Q], . . . , Gq[Q] are all ε-quasirandom.
Moreover, by the property of G above, we know that G[Q] is ε-quasirandom, and that
d(G[Q]) ⩽ 1+ε

2
⩽ 2

3
. Therefore, by the pigeonhole principle, there exists an i ∈ JqK such that

d(Gi[Q]) ⩾ 1
3q

. We claim that we can find an induced copy of H in G all of whose edges
receive color i, implying the claimed result.

Indeed, we apply Lemma 6.3.4. Note that we may assume |Q| ⩾ 2n
ε

since we chose N
sufficiently large. Define a coloring χ : Kn → {1, 2} by coloring all edges of H with color 1
and all non-edges of H with color 2. We have that

d(G[Q]) ⩾
1

3
⩾

1

3q
= (2nε)1/n and d(Gi[Q]) ⩾

1

3q
= (2nε)1/n,
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by our choice of ε. Therefore, Lemma 6.3.4 implies that there is a copy of Kn in (Gi ∪G)[Q]
such that all edges of H are in Gi, and all non-edges of H are in G. But this is precisely
saying that we have found an induced copy of H in G, all of whose edges have color i, as
claimed.

Let us define the induced Ramsey number rind(H; q) to be the least N such that there
exists an N -vertex graph G which is q-color induced Ramsey for H. The proof above shows

that rind(H; 2) ⩽ 222
10n

for any n-vertex graph H. For more colors, the proof above gives a
worse bound, because the value of δ in Lemma 6.2.1 depends quite poorly on q. However,
Erdős [38] made the following conjecture.

Conjecture 7.2.3. For every q ⩾ 2, there exists an absolute constant C > 0 such that
rind(H; q) ⩽ 2Cn for every n-vertex graph H.

Note that this result, if true, is best possible, since rind(Kn; q) = r(Kn; q), and we know
that r(Kn; q) grows exponentially with n for any fixed q. In the case of two colors, Conjec-
ture 7.2.3 is almost known; Conlon, Fox, and Sudakov [26] proved that rind(H; 2) ⩽ 2Cn logn

for every n-vertex graph H, where C is an absolute constant. However, their proof uses
the greedy embedding approach discussed in Section 5.4.1, and as such does not extend to
more than two colors. The best known upper bound in general is due to Balogh and Samotij
[5] (using quite a different analysis, although still applied to the same random graph G),
who showed that rind(H; q) ⩽ 2Cqn2

for any n-vertex graph H, where Cq > 0 is a constant
depending only on q.
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Chapter 8

C-Ramsey graphs

8.1 The Erdős–Szemerédi theorem

The following question was first raised by Erdős, Hajnal, and Rado [47], and was brought to
prominence by an important result of Erdős and Szemerédi [50], which is the main topic of
this section.

Definition 8.1.1. Let k, q ⩾ 2 be integers. The omission Ramsey number ro(k; q) is the
minimum N such that, in any q-coloring of E(KN), there is a set S ⊆ V (KN) with |S| = k
such that the edges within S are colored with at most q − 1 colors.

In other words, rather than searching for a monochromatic Kk, as in the definition of
r(k; q), we are searching for a copy of Kk which omits at least one of the q colors. In
particular, if q = 2, then r(k; 2) and ro(k; 2) are equal, since omitting one of the two colors
is the same as only using one of the two colors. In general, we always have the inequality

ro(k; q) ⩽ r(k; q)

since if we can find a monochromatic Kk, then in particular we have found a Kk that omits
q − 1 ⩾ 1 of the colors. Note too that the question is not interesting if q >

(
k
2

)
, since then

every k-set is colored with at most q − 1 colors.
For large q, it is natural to expect that ro(k; q) is much smaller than r(k; q). Indeed,

if we have 1000 colors, then finding a Kk colored with only 999 colors seems much easier
than finding a Kk colored with only 1 color. And indeed, while we proved in Chapter 3
that r(k; q) = 2Ω(kq), the best known lower bound for ro(k; q) is much smaller—of order
exp(Ω(k

q
)), rather than exp(Ω(kq)).

Proposition 8.1.2. If k ⩾ 4 and 2 ⩽ q ⩽
(
k
2

)
, then

ro(k; q) > e
k
2q .

Proof. Set N = e
k
2q , and consider a random q-coloring of E(KN). The probability that a

given k-set receives at most q − 1 colors is at most q · ( q−1
q

)(
k
2), since there are q choices
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for the omitted color, and then we need each of the
(
k
2

)
edges to receive one of the q − 1

non-omitted colors, which happens with probability q−1
q

. Hence, by the union bound, the
probability that there is a k-set receiving at most q − 1 colors is at most(

N

k

)
· q ·

(
q − 1

q

)(k
2)
<

q

k!(1 − 1
q
)
k
2

·Nk

(
1 − 1

q

) k2

2

.

We have that 1 − 1
q
⩾ 1

2
since q ⩾ 2, so

q

k!(1 − 1
q
)
k
2

⩽
q2

k
2

k!
⩽

(
k
2

)
2

k
2

k!
⩽ 1,

where the final inequality holds since k ⩾ 4. On the other hand, using the inequality
1 − x ⩽ e−x, we have that

Nk

(
1 − 1

q

) k2

2

⩽
(
Ne−

k
2q

)k
= 1,

by our choice of N . Hence, the probability that there is a k-set receiving at most q−1 colors is
strictly less than 1, proving that there is a coloring with no such set, hence ro(k; q) > N .

Combining this with Theorem 2.1.5, we find that

exp

(
Ω

(
k

q

))
⩽ ro(k; q) ⩽ r(k; q) ⩽ exp(O(kq log q)).

This shows that r(k; q) does grow exponentially in k, but there is a huge gap in the depen-
dence on q. In particular, we don’t even know if the exponent tends to 0 or ∞ as q → ∞!

This situation was remedied by the following theorem of Erdős and Szemerédi [50].

Theorem 8.1.3 (Erdős–Szemerédi [50]). For all k ⩾ q ⩾ 2, we have that

ro(k; q) ⩽ 230 log q
q

k.

Note that this matches the lower bound in Proposition 8.1.2 up to the factor of Θ(log q).
It is a major open problem to close this logarithmic gap, and (as far as I’m aware) no one
even has a conjecture for where the truth lies.

In order to prove Theorem 8.1.3, Erdős and Szemerédi proved the following result, which
has since become one of the fundamental tools in Ramsey theory, going far beyond the
original scope of Theorem 8.1.3. Recall that, by Theorem 2.1.4, every N -vertex graph
contains a clique or an independent set of order at least 1

2
logN . The following result shows

that a much stronger result is true if we assume that G is sparse. Recall that d(G) denotes
the edge density of G.
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Theorem 8.1.4 (Erdős–Szemerédi [50]). There is an absolute constant τ = 1
30
> 0 such

that the following holds for every 0 < ε ⩽ 1
2
and every integer N ⩾ 1

ε
. If G is an N-vertex

graph with d(G) ⩽ ε, then G contains a clique or an independent set of order at least

τ

ε log 1
ε

logN.

Note that, as ε → 0, the function (ε log 1
ε
)−1 tends to infinity. So for small ε, this yields

a much larger clique or independent set than what is guaranteed by Theorem 2.1.4 alone.
The assumption that N ⩾ 1

ε
is not particularly important. However, note that we must

assume some lower bound on N in terms of ε (or equivalently a lower bound on ε in terms
of N). The reason is that, if N is fixed, then the quantity τ(ε log 1

ε
)−1 logN will eventually

exceed N if we choose ε sufficiently small, and it is of course not possible for an N -vertex
graph to contain a clique or independent set of order more than N . In fact, the assumption
N ⩾ 1

ε
is essentially best possible, since we already have τ(ε log 1

ε
)−1 logN > N if ε is smaller

than 1
N

by some appropriate constant factor.
Before proving Theorem 8.1.4, let us see how it allows us to prove Theorem 8.1.3.

Proof of Theorem 8.1.3. Let N = 230 log q
q

k, and fix a q-coloring of E(KN). Note that since
k ⩾ q, we have that N ⩾ q30 ⩾ q. Suppose without loss of generality that red is the color
containing the fewest number of edges, and let G be the graph of red edges. In particular,
since at most 1

q

(
N
2

)
of the edges are red, we conclude that d(G) ⩽ 1

q
.

We now apply Theorem 8.1.4 with ε = 1
q
, which we may do since N ⩾ q = 1

ε
, and find

that G contains a clique or independent set of order

τ

ε log 1
ε

logN =
τq

log q
log
(

230 log q
q

k
)

= 30τk = k,

where we recall that τ = 1
30

in the final step. An independent set inG is a collection of vertices
such that the color red does not appear among them, so if we’ve found an independent set
of order k then we are done. On the other hand, a clique in G is a set of vertices receiving
only the color red, so we are also done if we’ve found a clique of order k.

Let us now prove Theorem 8.1.4.

Proof of Theorem 8.1.4. Let τ = 1
30

. The assumption d(G) ⩽ ε implies that the average
degree of G is at most εN . Therefore Lemma 4.1.2 and our assumption that N ⩾ 1

ε
imply

that

α(G) ⩾
N

εN + 1
=

1

ε
− 1/ε

εN + 1
=

1

ε
− 1

ε2N + ε
⩾

1

ε
− 1

2ε
=

1

2ε
.

Thus, the result is automatically true if 1
2ε

⩾ τ(ε log 1
ε
)−1 logN . Thus, we may assume that

1
2ε
< τ(ε log 1

ε
)−1 logN , or equivalently that N > (1

ε
)1/(2τ) = ε−15. This implies in particular

that N ⩾ 215 and that N ⩾ ε−2. Let k = τ(ε log 1
ε
)−1 logN , and note that N ⩾ ε−2 implies

that k ⩽ N
4

. Note too that if ε > 1
10

, then τ(ε log 1
ε
)−1 < 1

2
, and thus the claimed result

follows from Theorem 2.1.4. So we henceforth assume that ε ⩽ 1
10

.
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Let A denote the set of vertices in G of degree at least 2εN . Note that the total number
of edges incident to A is at least εN |A|, where we lose a factor of two since each edge may
be counted twice. Since the total number of edges in G is at most ε

(
N
2

)
, we conclude that

εN |A| ⩽ ε
(
N
2

)
, implying that |A| < N

2
. Let G1 be obtained from G by deleting all vertices

in A, so that |V (G1)| ⩾ N
2

and that every vertex in G1 has degree at most 2εN .
Now, let X be a maximum-sized independent set in G1. If |X| ⩾ k, then we are done,

so we may assume that this is not the case. Let Y = V (G1) \X. Recalling that k ⩽ N
4

and
|V (G1)| ⩾ N

2
, we find that |Y | ⩾ N

4
.

Every vertex in X has degree at most 2εN , so there are at most 2εN |X| edges between
X and Y . Let B ⊆ Y be the set of vertices in Y with at least s := 10ε|X| neighbors in X.
As e(X, Y ) ⩽ 2εN |X|, and each vertex in B contributes at least s such edges, we conclude
that

|B| ⩽ 2εN |X|
s

=
2εN |X|
10ε|X|

=
N

5
.

Let Z = Y \B, and note that |Z| ⩾ N
4
− N

5
= N

20
. Moreover, each vertex in Z has fewer than

s neighbors in X. However, the number of subsets of X of size less than s is

s−1∑
i=0

(
|X|
i

)
⩽ s

(
|X|
s

)
⩽ s

(
e|X|
s

)s

= s
( e

10ε

)s
<

(
1

ε

)10εk

.

We now recall that 10εk = 10τ
log 1

ε

logN , and therefore

(
1

ε

)10εk

= N10τ = N
1
3 . (8.1)

In other words, every vertex in Z has fewer than s neighbors in X, and there are at most
N

1
3 choices for the value of this neighborhood. By the pigeonhole principle, this implies that

there is a set W ⊆ Z of size at least |Z|/N 1
3 such that all vertices in W have exactly the

same neighborhood in X. Let this neighborhood be S ⊆ X.

X

S

Z

W

The key point of this is that every vertex in W is non-adjacent to every vertex in X \ S.
So if we find any independent set T ⊆ W , we may “swap” S for T and obtain another
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independent set; that is, the set (X \S)∪T is a new independent set. Since we assumed that
X was a maximum-sized independent set and since |S| < s, that implies that W contains
no independent set of order s. The final step is to note that(

s+ k

s

)
⩽

(
(1 + 10ε)k

10εk

)
⩽

(
e

1 + 10ε

10ε

)10εk

⩽

(
1

ε

)10εk

= N
1
3 ,

by (8.1). Combining this bound with Theorem 2.1.4 and our lower bound on |W |, we find
that

r(s, k) ⩽

(
s+ k

s

)
⩽ N

1
3 ⩽

N
2
3

20
⩽

|Z|
N

1
3

⩽ |W |,

where we use that N ⩾ 215 ⩾ 203. Since W contains no independent set of order s, we must
have a clique of order k in W , completing the proof.

In the setting of Theorem 8.1.4, since the density of G is very small, it is natural to
expect that its largest independent set is much larger than its largest clique. Thus, it would
be reasonable to suppose that we might be able to strengthen Theorem 8.1.4—finding a
clique of order τ(ε log 1

ε
)−1 logN or an independent set of somewhat larger size. However,

the following simple construction, also due to Erdős and Szemerédi [50], shows that this is
not possible, and that Theorem 8.1.4 is best possible up to the value of τ .

Proposition 8.1.5. For every ε and every sufficiently large N , there is an N-vertex graph
G with d(G) ⩽ ε such that the largest clique and largest independent set in G both have size
O((ε log 1

ε
)−1 logN).

Proof. Let m be some integer, and let G0 be a random graph on m vertices with every edge
appearing independently with probability p = 1 −

√
ε. Let a = (8 lnm)/

√
ε and let b =

(16 lnm)/ln 1
ε . By the union bound, the probability that G0 has a clique of order a is at most(

m

a

)
p(

a
2) < map

a2

4 =
(
mp

a
4

)a
.

Plugging in the definitions of p and a, and using the bound 1− x ⩽ e−x, we find that

mp
a
4 ⩽ me−

√
ε·a

4 = me−2 lnm =
1

m
.

Hence, for sufficiently large m, we find that G0 has no clique of order a with probability at
least 2

3 .
Similarly, the probability that G0 has an independent set of order b is at most(

m

b

)
(1− p)(

b
2) < mb(1− p)

b2

4 =
(
m(1− p)

b
4

)b
.
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Plugging in the definitions of p and b, we see that

m(1− p)
b
4 = m

(√
ε
) b

4 = m · ε
b
8 = me−2 lnm =

1

m
.

So the probability that G0 has no independent set of order b is at least 2
3 for sufficiently large

m. Thus, for sufficiently large m, we can fix a graph G0 with no clique of order a and no
independent set of order b.

Now, fix ε > 0 a sufficiently large integer N . Let m = εN/2, and let G be the disjoint
union of N/m copies of the graph G0 constructed above. Since G is a disjoint union, any clique
in G must be a clique in some copy of G0, hence the largest clique in G is of order at most

a =
8 lnm√

ε
=

8 ln(εN/2)√
ε

<
8 lnN√

ε
⩽

8 lnN

ε ln 1
ε

,

where the final inequality uses the fact that
√
x ⩾ x ln 1

x for all x ∈ (0, 1).
On the other hand, every independent set in G is a disjoint union of independent sets, one

from each copy of G0. Thus, the order of the largest independent set in G is at most

N

m
· b = 2b

ε
=

32 lnm

ε ln 1
ε

<
32 lnN

ε ln 1
ε

.

The final thing to prove is that d(G) ⩽ ε. Indeed, the total number of edges in G is

e(G) =
N

m
e(G0) ⩽

N

m

(
m

2

)
⩽
Nm

2

and therefore

d(G) =
e(G)(
N
2

) ⩽
Nm/2

N2/4
=

2m

N
= ε.

8.2 The structure of C-Ramsey graphs

Although Theorem 8.1.4 was originally developed to prove bounds on omission Ramsey
numbers, it has since become one of the most important tools in a rather different area of
Ramsey theory, which is the study of C-Ramsey graphs.

Recall that the Erdős–Szekeres bound r(k) ⩽ 4k implies that every N -vertex graph G
contains a clique or an independent set of order at least 1

2
logN , where the logarithm is

to base 2. On the other hand, Erdős’s bound r(k) ⩾ 2k/2 implies that there exist N -
vertex graphs whose largest clique and independent set are both of order at most 2 logN .
However, as discussed in Chapter 2, essentially the only technique we have for finding such
graphs involves randomness. So a natural (albeit vague) question is whether all graphs
whose largest clique and independent set are both of order O(logN) are “random-like”. To
formalize this question, we make the following definition.

Definition 8.2.1. Let C > 0 be a real number. A C-Ramsey graph is a graph whose largest
clique and independent set are both of order at most C log |V (G)|.
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In this definition, we should think of C as a fixed constant, and of G as a very large graph.
In general, we are interested in proving that C-Ramsey graphs have certain structure, and
in particular, that they have structure that is “similar” to that of a random graph.

We have already discussed one “random-like” notion, that of being ε-quasirandom. Un-
fortunately, this is a very strong definition, and it is much too strong to be true for all
C-Ramsey graphs, as shown in the following proposition.

Proposition 8.2.2. For every sufficiently large N , there exists an N-vertex 4-Ramsey graph
which is not ε-quasirandom for any ε ⩽ 1

5
.

Proof sketch. Let G0 be a random graph, with edge probability 1
2
, on N/2 vertices. Let G

be the disjoint union of two copies of G0.
We recall from Theorem 2.2.2 that G0 is 2-Ramsey with high probability. Since the

largest clique in G is a largest clique in G0, and since every independent set in G is the union
of two independent sets, one from each copy of G0, we conclude that G is 4-Ramsey.

Additionally, we know that with high probability, d(G0) is very close to 1
2
. Since G has

no edges between the two copies of G0, this implies that d(G) is very close to 1
4
. Hence G

has an induced subgraph on half of its vertices whose edge density deviates from that of G
by roughly 1

4
. Thus, for sufficiently large N , we have that G is not ε-quasirandom for any ε

bounded away from 1
4
; in particular it is not ε-quasirandom for any ε ⩽ 1

5
.

ε-quasirandomness is a way of saying that the edges of a graph are very “well-distributed”,
and this condition is too strong to be true for all C-Ramsey graphs. However, weaker “edge
well-distribution” results are true for C-Ramsey graphs; in fact, such results are immediate
consequences of Theorem 8.1.4. There are many such results that one can state (and they
are all proved in the same way); we stick with the following fairly simple statement, which
will suffice for our later applications.

Theorem 8.2.3. For every C > 0, there exists σ > 0 such that the following holds for
all sufficiently large N . If G is an N-vertex C-Ramsey graph, then every S ⊆ V (G) with
|S| ⩾

√
N satisfies σ ⩽ d(S) ⩽ 1 − σ.

Note that this “edge well-distribution” result is simultaneously weaker and stronger than
ε-quasirandomness. It is substantially weaker, in that rather than saying that d(S) is very
close to d(G), we only say that d(S) is not too close to 0 or to 1. On the other hand, we
obtain such a conclusion for sets as small as |S| =

√
N , whereas in ε-quasirandomness we are

restricted to sets of size |S| ⩾ εN . It turns out that in certain applications, weak estimates
on d(S) are still useful, especially if they hold for fairly small S.

Proof of Theorem 8.2.3. Let τ be the constant from Theorem 8.1.4. Pick σ > 0 to satisfy

σ log
1

σ
<

τ

2C
,

and note that we can pick such a σ since the left-hand side tends to zero as σ → 0.

76



ETH Zürich Ramsey Theory—Spring 2024 Yuval Wigderson

Now let G be an N -vertex C-Ramsey graph, and suppose for contradiction that S ⊆
V (G) satisfies |S| ⩾

√
N and d(S) /∈ [σ, 1 − σ]. Suppose first that d(S) < σ. Applying

Theorem 8.1.4 to the induced subgraph G[S] (which we may do since N , and thus |S|, is
sufficiently large), we conclude that G[S] contains a clique or an independent set of order at
least

τ

σ log 1
σ

log |S| ⩾ τ

σ log 1
σ

log
(√

N
)

=
τ

2σ log 1
σ

logN > C logN,

where the final inequality holds by our choice of σ. Now, we note that any clique or inde-
pendent set in G[S] is also a clique or independent set in G, contradicting the assumption
that G is a C-Ramsey graph.

The other case is when d(S) ⩾ 1 − σ. We now apply Theorem 8.1.4 to the graph G[S],
which satisfies d(G[S]) = 1 − d(S) ⩽ σ. Then the exact same computation as above shows
that G[S] contains a clique or an independent set of order greater than C logN . But the
complement of a clique is an independent set, and vice versa, so this in turn implies that
G[S], and thus G, contains a clique or an independent set of order greater than C logN ,
again a contradiction.

As a consequence of Theorem 8.2.3, we can prove the following result, which was first
proved by Erdős and Hajnal [44]. It shows that C-Ramsey graphs do share another property
in common with random graphs, namely that they contain all fixed graphs H as induced
subgraphs. Given the tools we have already developed, this powerful and surprising result
is almost immediate.

Theorem 8.2.4 (Erdős–Hajnal [44]). For every C > 0 and every graph H, the following
holds for all sufficiently large N . If G is an N-vertex C-Ramsey graph, then H is an induced
subgraph of G.

Proof. Let σ = σ(C) > 0 be the parameter from Theorem 8.2.3. Let δ > 0 be the parameter
from Theorem 6.3.3, applied with this choice of σ and H.

Let N be sufficiently large, and let G be an N -vertex C-Ramsey graph. Suppose for
contradiction that G is induced-H-free. By Theorem 6.3.3, there exists some S ⊆ V (G)
with |S| ⩾ δN such that d(S) < σ or d(S) > 1 − σ. For sufficiently large N , we have that
δN ⩾

√
N . But this contradicts Theorem 8.2.3, which asserts that any S with |S| ⩾

√
N

must satisfy σ ⩽ d(S) ⩽ 1 − σ.

Another way of phrasing Theorem 8.2.4 is as follows. Let us say that a graph is k-
universal if it contains as an induced subgraph every graph H with at most k vertices. Then
Theorem 8.2.4 can equivalently be stated as the fact that for every C, k > 0, every sufficiently
large C-Ramsey graph is k-universal.

Over the years, stronger versions of Theorem 8.2.4 were proved, which give better control
on how large N must be to ensure that every N -vertex C-Ramsey graph is k-universal. The
optimal result was finally proved by Prömel and Rödl [106].

Theorem 8.2.5 (Prömel–Rödl [106]). For every C > 0, there exists c > 0 such that the
following holds. If G is an N-vertex C-Ramsey graph, then G is (c logN)-universal.
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This is a pretty remarkable theorem! Indeed, the assumption is that G is C-Ramsey,
meaning that G does not contain a clique or an independent set of order C logN . The
conclusion is then that G does contain as an induced subgraph all graphs of order c logN .
In particular, this result is best possible up to the value of c, since the assumption and
conclusion contradict one another if we try to take c ⩾ C.

We will not prove Theorem 8.2.5 in this course, although the proof is actually not very
hard. The idea is to apply the greedy embedding technique, rather than the regularity
method, to prove a quantitatively stronger version of Theorem 6.3.3. At that point, one can
combine it with Theorem 8.2.3 as we did above to conclude that every C-Ramsey graph is
(c logN)-universal. For more details, see [55, Section 2].

In recent years, there have been a number of further results on the “random-like” structure of C-
Ramsey graphs, most of which we will not discuss. The most recent, however, is a breakthrough
of Kwan–Sah–Sauermann–Sawhney [84], which in particular proved an old conjecture of Erdős–
McKay [39].

Theorem 8.2.6 (Kwan–Sah–Sauermann–Sawhney [84]). For every C, η > 0, the following
holds for all sufficiently large N . Let G be an N -vertex C-Ramsey graph. Then for any integer
0 ⩽ x ⩽ (1− η)e(G), there exists a subset X ⊆ V (G) such that G[X] has exactly x edges.

The proof of Theorem 8.2.6 is quite complicated, and relies heavily on non-Ramsey-
theoretic tools. In fact, somewhat remarkably, the proof uses very little about the structure
of C-Ramsey graphs—results like Theorem 8.2.3 are essentially the only properties needed of
C-Ramsey graphs in the proof of Theorem 8.2.6.

To end this section, we briefly mention a beautiful conjecture which remains open. Recall
Proposition 8.2.2, which states that C-Ramsey graphs need not be quasirandom. However, we
might hope that truly extremal Ramsey graphs—that is, those graphs with r(k) − 1 vertices
and no clique or independent set of size k—actually are quasirandom. This is the content of
the next conjecture, which was raised by Sós (see [128]).

Conjecture 8.2.7 (Sós). For every ε > 0, the following holds for all sufficiently large k. Let
N = r(k) − 1, and let G be an N -vertex graph with no clique or independent set of order k.
Then G is ε-quasirandom.

This question is quite possibly very hard; in particular, it may be at least as hard as
determining limk→∞ log r(k).
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Chapter 9

The Hales–Jewett theorem

9.1 Van der Waerden’s theorem

We will now turn our attention away from graph theory, and discuss Ramsey-theoretic re-
sults in other areas of mathematics. We have already encountered one such result—Schur’s
theorem, Theorem 1.1.2—already in Chapter 1. Recall that this theorem states that for any
q-coloring of JNK, where N is sufficiently large in terms of q, we can find a monochromatic
solution to the equation x+ y = z.

Schur’s theorem is perhaps the most basic result in additive Ramsey theory. We will
now discuss a related, and substantially more complicated, result, originally due to van der
Waerden [140]. Recall that a k-term arithmetic progression (or k-AP for short) is a sequence
of k integers, of the form

a, a+ r, a+ 2r, . . . , a+ (k − 1)r.

Theorem 9.1.1 (van der Waerden [140]). For every k, q ⩾ 2, there exists some N such that
the following holds. Any q-coloring of JNK contains a monochromatic k-AP.

An equivalent, but perhaps pithier, statement is that any q-coloring of N contains arbi-
trarily long monochromatic arithmetic progressions.

The original proof of van der Waerden used a very clever, and intricate, double induction
argument. For any fixed k, the result is proved simultaneously for all q, and the result for a
fixed (k, q) is proved by using the validity of the result for (k−1, q′), where q′ is an enormous
number depending on k and q.

Eventually, Hales and Jewett [70] realized that van der Waerden’s proof is not “really”
about arithmetic progressions in the integers. They were able to adapt his proof and prove
a similar result in a more abstract combinatorial setting. However, their result, now called
the Hales–Jewett theorem, ends up being far more than a simple restatement of van der
Waerden’s theorem. Indeed, working in this more abstract setting allows one to immediately
prove several other powerful results Ramsey-theoretic results in a variety of different settings.
We will now state the Hales–Jewett theorem, and will then see a number of applications of
it before proceeding with the proof.
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We will work in the d-dimensional grid JkKd, of side length k. The most important object
of study for us is a combinatorial line, which we now define.

Definition 9.1.2. A combinatorial line in JkKd is a collection of k points x(1), . . . , x(k) ∈ JkKd

with the following property. For each coordinate i ∈ JdK, either x
(1)
i = · · · = x

(k)
i , or

x
(1)
i = 1, x

(2)
i = 2, . . . , x

(k)
i = k. (9.1)

Additionally, we require x(1), . . . , x(k) to be distinct elements of JkKd, which is equivalent to
saying that (9.1) holds for at least one coordinate i ∈ JdK.

Equivalently, a combinatorial line can be identified with a root, which is an element
ρ ∈ {1, 2, . . . , k, ∗}d with at least one ∗. Given a root ρ and j ∈ JkK, we define ρ(j) ∈ JkKd
to be obtained from ρ by substituting the symbol j for every instance of ∗ in ρ. Then a
combinatorial line can be obtained from ρ by setting

x(1) = ρ(1), . . . , x(k) = ρ(k).

As an example, let k = 4, d = 2. Three examples of combinatorial lines, and one non-
example (in red), are in the picture below:

Thus, for example, the bottom horizontal line contains the points (1, 1), (2, 1), (3, 1), (4, 1),
and corresponds to the root ∗1. The vertical line has points (2, 1), (2, 2), (2, 3), (2, 4), and
corresponds to the root 2∗. The diagonal line of slope 1 corresponds to the root ∗∗. Finally,
the diagonal line of slope −1 (in red) is not a combinatorial line. The reason is that in any
combinatorial line, the “moving coordinates” have to move in sync—every instance of ∗ in
the root must be replaced with the same element of JkK to obtain a point.

With this setup, we are ready to state the Hales–Jewett theorem.

Theorem 9.1.3 (Hales–Jewett [70]). For every k, q ⩾ 1, there exists some d such that, in
any q-coloring JkKd → JqK, there is some monochromatic combinatorial line.

Thus, rather than coloring the edges of a graph, as we were before, we are now coloring
the points of the grid JkKd, and rather than looking for a monochromatic clique or subgraph,
we are looking for a monochromatic combinatorial line.

We will defer the proof of Theorem 9.1.3 to Section 9.6. In the meantime, we will see a
number of applications of this powerful theorem. It will be convenient to make the following
definition, analogous to that of Ramsey numbers.
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Definition 9.1.4. The Hales–Jewett number HJ(k; q) is the minimum d such that every
q-coloring of JkKd contains a monochromatic combinatorial line.

Just as Ramsey’s theorem guarantees that r(k) exists for all k, the Hales–Jewett theorem
implies that HJ(k; q) is well-defined.

Our first application of Theorem 9.1.3 is a proof of van der Waerden’s theorem, The-
orem 9.1.1. The basic idea is that, if we write an integer in its base-k representation,
then combinatorial lines in JkKd yield arithmetic progressions in N. For example, we saw
above the combinatorial lines {(1, 1), (2, 1), (3, 1), (4, 1)}; {(2, 1), (2, 2), (2, 3), (2, 4)}; and
{(1, 1), (2, 2), (3, 3), (4, 4)}. If we view each pair (x, y) as a base-10 number by concate-
nating the entries, we get the arithmetic progressions {11, 21, 31, 41}; {21, 22, 23, 24}; and
{11, 22, 33, 44}. This simple idea is almost a complete proof; the details are below.

Proof of Theorem 9.1.1. Let d = HJ(k; q). We define a function f : JkKd → N by viewing an
element of JkKd as the base-k representation1 of an integer; formally, we define

f(x1, . . . , xd) :=
d∑

i=1

xik
i−1.

Note that f is injective, and that its image is contained in JNK, where N = kd+1. We claim
that this choice of N works in Theorem 9.1.1, that is, that every q-coloring of JNK contains
a monochromatic k-AP.

Indeed, fix a q-coloring χ : JNK → JqK. By composing with f , we obtain a q-coloring ψ :
JkKd → JqK, defined by ψ(x) = χ(f(x)). By the definition of d, there exists a monochromatic
combinatorial line in this coloring, say x(1), . . . , x(k).

We claim that f(x(1)), . . . , f(x(k)) is a monochromatic k-AP under χ. First, by the way
we defined ψ, we certainly have that this sequence is monochromatic, so it suffices to prove
that it is an arithmetic progression. But indeed, for any 1 ⩽ j ⩽ k − 1, we have that

f(x(j+1)) − f(x(j)) =
d∑

i=1

(x
(j+1)
i − x

(j)
i )ki−1 =

∑
i∈M

ki−1,

where M ⊆ JdK denotes the set of “moving coordinates” in the combinatorial line, or equiva-
lently the set of indices where the root has the symbol ∗. Indeed, in every coordinate i ∈M
we have x

(j+1)
i − x

(j)
i = 1, and in every coordinate i /∈ M we have x

(j+1)
i = x

(j)
i . Note that

M is non-empty since we insist that our combinatorial lines are non-constant. Hence if we
set r :=

∑
i∈M ki−1, we conclude that f(x(1)), . . . , f(x(k)) is a monochromatic k-AP with

common difference r ̸= 0.

If we define the van der Waerden number W (k; q) to be the least N such that every
q-coloring of JNK contains a monochromatic k-AP, this proof shows that

W (k; q) ⩽ kHJ(k;q)+1. (9.2)

1Strictly speaking, we first reverse the vector before viewing it as the base-k representation. Also, rather
than using the “digits” 0, . . . , k − 1, we use the digits 1, . . . , k.
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As we will shortly discuss, this is not a very good bound, but it was essentially the best
known for many years.

9.2 The Gallai–Witt theorem

We will now discuss a higher-dimensional generalization of van der Waerden’s theorem, due
independently to Gallai2 (quoted in [107]) and to Witt [144].

Let S ⊆ Zt be a finite subset of the t-dimensional integer lattice. A homothetic copy of
S is a set of the form

a+ r · S := {a+ r · s : s ∈ S},

where a ∈ Zt and r ∈ N is a positive integer. In other words, we obtain a homothetic copy
by translating and dilating S, but not rotating it. Note that if t = 1 and S = JkK, then a
homothetic copy of S is simply a k-AP. Thus, the following result is a natural generalization
of Theorem 9.1.1 to arbitrary dimensions.

Theorem 9.2.1 (Gallai–Witt [107, 144]). For every finite S ⊆ Zt, and q ⩾ 1, there exists
some N such that any q-coloring of JNKt contains a monochromatic homothetic copy of S.

To get a sense of how astonishing this theorem is, note that every pixel in a computer
screen can display one of 224 colors. Thus, applying Theorem 9.2.1, we conclude that any
sufficiently large computer screen, regardless of what it displays, contains a monochromatic
scaled copy of the words “Ramsey theory”, in this font (but note that scaling means that
the pixels making up the letters may be very far apart).

Proof of Theorem 9.2.1. Let S = {s1, . . . , sk}, and let d = HJ(k; q). By translating S, we
may assume that all coordinates of all the points si are positive (and any homothetic copy
of a translate of S is a homothetic copy of S, so we lose nothing by doing this translation).

We define a function g : JkKd → Nt by

g(x1, . . . , xd) =
d∑

i=1

sxi
.

Thus, for example, if x = (3, 1, 2, 2, 1, 2), then

g(x) = s3 + s1 + s2 + s2 + s1 + s2 = 2s1 + 3s2 + s3.

In other words, g just counts how many entries of x are equal to 1, adds up that many copies
of s1, then does the same for 2, 3, . . . , k. Note that s1, . . . , sk are elements of Nt, so addition
here denotes vector addition. g is not injective, but as we will see, this does not matter3.

2In [107], this result is attributed to Grünwald, which was Gallai’s birth name.
3The astute reader may have already noticed that we never used the injectivity of f in the proof of

Theorem 9.1.1.
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Let N = d · max{∥s1∥∞, . . . , ∥sk∥∞}, and note that the image of g is contained in JNKt.
Note too that N depends only on S and on d, which in turn depends only on S and q. We
claim that this choice of N suffices, so we fix some coloring χ : JNKt → JqK, and wish to find
a monochromatic homothetic copy of S under χ.

We define ψ : JkKd → JqK by ψ(x) = χ(g(x)). By the choice of d, we can find a
monochromatic combinatorial line x(1), . . . , x(k) under ψ. Let M ⊆ JdK denote the set of
moving coordinates in this combinatorial line. For every i /∈ M , there exists some xi ∈ JkK
such that x

(j)
i = xi for all j. Define

a =
∑
i/∈M

sxi
.

Now, for any j ∈ JkK, we have that

g(x(j)) =
d∑

i=1

s
x
(j)
i

=
∑
i/∈M

s
x
(j)
i

+
∑
i∈M

s
x
(j)
i

= a+ |M |sj, (9.3)

where the final equality uses the definition of a and the fact that x
(j)
i = j for every i ∈ M ,

by the definition of a combinatorial line—in every moving coordinate, we plug in the value
j to obtain x(j). Let r := |M |, and note that r > 0 since M is non-empty. But then (9.3)
guarantees that

{g(x(1)), . . . , g(x(k))} = {a+ rs1, . . . , a+ rsk} = a+ rS,

hence these points form a homothetic copy of S in JNKt. The final observation is that, by
our definition of ψ, all these points receive the same color under χ, completing the proof.

As discussed above, Theorem 9.2.1 contains Theorem 9.1.1 as a special case. However,
if one specializes the proof above to the setting where S = JkK ⊆ Z, one actually gets a
(slightly) different proof of Theorem 9.1.1! In particular, this proof shows that

W (k; q) ⩽ k · HJ(k; q),

which is a different (and better) bound than that given in (9.2).
Just as van der Waerden’s theorem is one of the most basic results in the rich field of

arithmetic Ramsey theory, the Gallai–Witt theorem is one of the most basic results in the
rich field of Euclidean Ramsey theory, a topic which we will not discuss. But we simply state
the following theorem, whose proof is identical to that of Theorem 9.2.1.

Theorem 9.2.2. For every finite S ⊆ Rt and every q ⩾ 2, every q-coloring χ : Rt → JqK
contains a monochromatic homothetic copy of S.

9.3 Monochromatic subset sums

Recall Schur’s theorem, Theorem 1.1.2; it states that if N is sufficiently large, then any
q-coloring of JNK contains a monochromatic solution to x + y = z. Equivalently, it says
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that we can find x, y ∈ JNK such that x, y, and x + y all have the same color. A natural
generalization of this is the following result, proved independently by Folkman (quoted in
[68]), Rado [108], and Sanders [121].

Theorem 9.3.1 (Folkman–Rado–Sanders [68, 108, 121]). For every m, q ⩾ 1, there exists
N such that in any q-coloring of JNK, there exist distinct x1, . . . , xm ∈ JNK such that all the
subset sums

∑
i∈I xi, for ∅ ̸= I ⊆ JmK, receive the same color.

Note that Schur’s theorem is simply the m = 2 case of Theorem 9.3.1. In the first home-
work, you were asked to prove a weaker statement, which guarantees the same conclusion
but only for subintervals I.

We will prove Theorem 9.3.1 as a consequence of van der Waerden’s theorem. We will need
the following lemma, which is an instance of what is sometimes called a canonization result (or
a canonical Ramsey result). Such results do not guarantee monochromatic substructures, but
rather substructrues where the coloring is constrained in some way. We will also (implicitly)
use such a lemma in the proof of Theorem 9.1.3, and in the proof of the hypergraph Ramsey
theorem.

If x1, . . . , xt are integers and I ⊆ JtK is a set, we use the notation x(I) to denote
∑

i∈I xi.

Lemma 9.3.2. For every t, q ⩾ 1, there exists M = M(t; q) such that the following holds for
every q-coloring of JMK. There exist x1 < x2 < · · · < xt such that, for all ∅ ̸= I ⊆ JtK, the
color of x(I) depends only on max I.

In other words, this lemma guarantees that the numbers x3, x1 + x3, x2 + x3, x1 + x2 + x3
all have the same color, but it says nothing about whether these have the same color as, say,
x1 + x2.

Proof. For any fixed q, we proceed by induction on t. The base case t = 1 is trivial (we may
simply take M(1; q) = 1). Inductively, suppose we have proved the existence of M(t − 1; q).
Define

k := tM(t− 1; q) and M(t; q) := 2W (k + 1; q),

where W (k; q) is the van der Waerden number. For brevity, we write M =M(t; q).
Now, fix a q-coloring χ : JMK → JqK. Since M

2 = W (k; q), we can apply Theorem 9.1.1
to the coloring restricted to† {M

2 + 1, . . . ,M} to find a monochromatic (k + 1)-AP, that is, a
sequence

a, a+ r, a+ 2r . . . , a+ (k − 1)r, a+ kr

such that all these numbers receive the same color under χ.
We now define χ′ : JM(t− 1; q)K → JqK by

χ′(x) := χ(xr).

By the inductive hypothesis, we can find y1, . . . , yt−1 ∈ JM(t− 1; q)K such that the color of
y(I) under χ′ depends only on max I, for all ∅ ̸= I ⊆ Jt− 1K. Defining

xi = ryi,
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we find that x1 < · · · < xt−1, and the color χ(x(I)) depends only on max I, for all ∅ ̸= I ⊆
Jt− 1K.

We have that yt−1 ⩽ M(t − 1; q) ⩽ k and r ⩽ M
2k , which imply that xt−1 = ryt−1 ⩽ M

2 .
We define xt := a, and thus have that x1 < · · · < xt−1 < xt. We claim that this sequence
satisfies the desired property. Indeed, we already know that for all ∅ ̸= I ⊆ Jt− 1K, we have
that χ(x(I)) depends only on max I. So it suffices to consider those I with max I = t. But in
that case we have that

x(I) = xt +
∑

i∈I\{t}

xi = xt + r
∑

i∈I\{t}

yi.

The final observation is that
∑

i∈I\{t} yi ⩽ tM(t− 1; q) = k. Hence, this final quantity is one
of the elements in our monochromatic k-AP. In particular, all such elements have the same
color, namely the common color of the arithmetic progression.

With this lemma, Theorem 9.3.1 is fairly straightforward.

Proof of Theorem 9.3.1. Let N =M(mq; q), where M is the quantity from Lemma 9.3.2, and
fix a q-coloring of JNK. By Lemma 9.3.2, there exist x1 < · · · < xmq such that x(I) depends
only on max I. Among these mq numbers, at least m of them must receive the same color,
say xj1 , ..., xjm . But then for every ∅ ̸= I ⊆ JmK, we have that the color of

∑
i∈I xji equals

the color of xjmax I , and all of these colors are equal. Hence all non-empty subset sums of
xi1 , . . . , xim receive the same color.

†More formally, we can obtain a coloring χ′ : JMK → JqK by defining χ′(x) := χ(x+ M
2 ), and apply

Theorem 9.1.1 to this new coloring. The point, which we will use again later in this proof, is that if we
translate or dilate an arithmetic progression, we end up with another arithmetic progression; hence we
are always free to apply Theorem 9.1.1 to colorings of translations and dilations of JW (k + 1; q)K.

9.4 Communication complexity

We now present a beautiful application of the Gallai–Witt theorem in theoretical computer
science, more precisely in the subfield of communication complexity.

In the most simple communication complexity question, there are two players, Alice and
Bob. Alice receives an input a ∈ JNK, Bob receives an input b ∈ JNK, and their goal is
to evaluate some function f : JNK × JNK → {0, 1}, that is, to compute f(a, b) ∈ {0, 1}. In
contrast to typical complexity-theoretic problems, we are not interested in the computational
difficulty of this problem; we assume that Alice and Bob are all-powerful, and can perform
arbitrary computations instantaneously. Insted, we are interested in the communication
complexity : Alice and Bob would like to communicate as few bits as possible to one another
before determining the value of f(a, b).

More precisely, Alice and Bob can agree on a protocol before the game starts. Once they
receive their inputs, they start transmitting bits to one another according to the protocol;
crucially, their decisions can depend on their inputs, as well as on the already-transmitted
bits. At the end of the protocol, one of the two players must announce an answer, and the
protocol is successful if the answer equals f(a, b) for all inputs a, b. The complexity of the
protocol is the number of bits transmitted in the worst case (that is, the maximum over all
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a, b of the number of bits transmitted), and the communication complexity of f is defined as
the minimum complexity of any protocol computing f .

Note that any function f has communication complexity at most ⌈logN⌉. Indeed, by
using ⌈logN⌉ bits, Alice can simply send Bob her entire input a ∈ JNK. Then Bob has
all the information, so he can compute f(a, b), and announce the (correct) answer. For
some functions, such as the equality function which returns 1 if and only if a = b, one
can show that this bound is actually best possible, that is, that no protocol can compute
equality by transmitting fewer than ⌈logN⌉ bits. However, for other functions, there are
(often extremely clever and involved) protocols that do much better than this simple one.
For more on the basics of communication complexity, see the book [83].

We will instead be focused on multiparty communication complexity, where there are
t ⩾ 3 players. Our inputs now come from JNKt, and our players wish to compute some
function f : JNKt → {0, 1}. The most natural generalization of the two-party model is
to give the ith player the input ai ∈ JNK. However, it turns out that a more useful and
interesting model is the so-called number on the forehead model, introduced by Chandra,
Furst, and Lipton [15]. In this model, we imagine that the ith player holds the input ai
on her forehead; thus, she has access to all the inputs aj except for ai. Note that in the
case of two players, this is really the same as the model we discussed above, since each
of the two players knows the value of one of the two inputs. However, once the number of
players is at least three, things become substantially more complicated, since now each pair of
players has some amount of shared knowledge. In particular, this is a more powerful model
of computation, and hence one for which it is substantially more difficult to prove lower
bounds. As it turns out, this model also has connections to many other important topics
in complexity theory, and lower bounds on this model can be used to give lower bounds for
other computational models such as branching programs. In general, proving lower bounds
on computational problems is arguably the most important problem in complexity theory
(the P vs. NP problem is the most famous example of such a question—it is equivalent to
proving a super-polynomial lower bound on the complexity of checking whether a graph is
3-colorable, say). As the most general form of this problem is extremely hard, there is a
great deal of interest in proving such results for certain restricted models of computation,
such as branching programs.

The following result, due to Chandra, Furst, and Lipton [15] gives a lower bound (albeit
a rather modest one) for the multiparty communication complexity of a natural function in
the number on the forehead model. Define the Exactly-N function fN : JNKt → {0, 1} to
take the value 1 on input (x1, . . . , xt) ∈ JNKt if and only if x1 + · · · + xt = N .

Theorem 9.4.1 (Chandra–Furst–Lipton [15]). There is no constant-communication protocol
for fN in the number on the forehead model.

More precisely, for every t ⩾ 3 and every constant C ⩾ 1, the following holds for suffi-
ciently large N . There is no communication protocol using at most C bits of communication
that correctly computes fN on all inputs (x1, . . . , xt) ∈ JNKt.

Proof. Consider a protocol P using at most C bits of communication. This protocol produces
a transcript, which is simply the ordered list of all communicated bits, as well as which of
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the t players said them. Note that there are at most q := (2t)C possible transcripts; for each
of C positions, we have t choices for which player is speaking and 2 choices for which bit
they communicate. Let T1, . . . , Tq be the list of all possible transcripts.

Thus, given the protocol P , we can define a coloring χP : JNKt → JqK as follows: for each
input (x1, . . . , xt) ∈ JNKt, a transcript is produced by P , and we color (x1, . . . , xt) with color
i if the transcript produced is Ti.

We now define a coloring ψ : JN/tKt−1 → JqK by setting

ψ(x1, . . . , xt−1) := χP (x1, . . . , xt−1, N − x1 − · · · − xt−1).

Let S ⊆ Zt−1 consist of the zero vector, as well as each of the t − 1 standard basis vectors.
By Theorem 9.2.1, as long as N/t is sufficiently large with respect to t and q (or equivalently,
N is sufficiently large with respect to t and C), there is a homothetic copy of S in JN/tKt−1

which is monochromatic under ψ. That is, there exist a = (a1, . . . , at−1) ∈ JN/tKt−1 and
r ⩾ 1 such that

ψ(a1, . . . , at−1) = ψ(a1 + r, a2, . . . , at−1) = ψ(a1, a2 + r, . . . , at−1) = · · · = ψ(a1, . . . , at−1 + r).

If we let s = a1+· · ·+at−1, this says that the protocol P produces exactly the same transcript
on the inputs

I1 := (a1 + r, a2, . . . , at−1, N − s− r),

I2 := (a1, a2 + r, . . . , at−1, N − s− r),

...

It−1 := (a1, a2, . . . , at−1 + r,N − s− r),

It := (a1, . . . , at−1, N − s).

The key claim is that P also produces the same transcript on the input I0 := (a1, . . . , at−1, N−
s− r). Indeed, from the perspective of player i, input I0 is indistinguishable from input Ii.
Thus, whoever speaks first will act the same whether the input is I0 or one of the inputs
Ii, i ∈ JtK. Then whoever speaks next still can’t distinguish I0 from one of the Ii (and the
first bit communicated doesn’t help), so the next player to speak will also act the same.
Continuing in this fashion, we see that P will produce exactly the same transcript on I0 as
on each of the Ii, i ∈ JtK.

In particular, at the end of the process, whoever announces the answer will announce
the same answer on input I0 as they would have on each of the inputs Ii, i ∈ JtK. But this
shows that the protocol P does not correctly compute fN ! Indeed, fN(Ii) = 1 for all i ∈ JtK,
whereas fN(I0) = 0, since

a1 + · · · + at−1 + (N − s− r) = s+ (N − s− r) = N − r ̸= N.

This shows that any protocol P using at most C bits of communication cannot correctly
compute fN if N is sufficiently large.
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We remark that the connection to the Gallai–Witt theorem is not simply an artifact of
the proof. On the homework, you will see that the communication complexity of fN is in
fact very closely tied to the minimum number of colors needed to color JNKt while avoiding
monochromatic homothetic copies of the set S above.

9.5 The induced Ramsey theorem for bipartite graphs

Recall that a graph G is q-color induced Ramsey for a graph H if every q-coloring of E(G)
contains a monochromatic copy of H, which is moreover an induced subgraph of G; the
induced Ramsey theorem, Theorem 7.2.2, states that such a G exists for every graph H.
As we discussed in Chapter 7, there are basically two techniques for proving “restricted
Ramsey” results such as the induced Ramsey theorem: an approach using random graphs,
and an approach using extremely large explicit graphs which are defined in some recursive
way. In the latter family, the partite construction of Nešetřil–Rödl is the most flexible. One
of the key building blocks in the partite construction is the induced Ramsey theorem for
bipartite H.

Theorem 9.5.1. For every bipartite graph H and every q ⩾ 2, there exists a bipartite graph
G such that G is q-color induced Ramsey for H.

Note that Theorem 9.5.1 does not follow from Theorem 7.2.2, since we are also requiring
G to be bipartite. However, one can adapt the technique we used to prove Theorem 7.2.2
to prove Theorem 9.5.1 as well—one simply sets G to be a random bipartite graph4. One
can also prove Theorem 9.5.1 directly from Ramsey’s theorem (see e.g. [33, Lemma 9.3.3]).
However, as observed by Nešetřil and Rödl [99], there is also a short proof of Theorem 9.5.1
from the Hales–Jewett theorem.

Proof of Theorem 9.5.1. Let H have vertex parts A,B and edge set E ⊆ A×B. Let k = |E|,
and let d = HJ(k; q).

We define the bipartite graph G as follows. Its vertex parts are Ad, Bd, and two vertices
are adjacent if and only if they are adjacent in every coordinate, that is

((a1, . . . , ad), (b1, . . . , bd)) ∈ E(G) ⇐⇒ (ai, bi) ∈ E(H) for all i ∈ JdK.

Note that we can naturally identify E(G) with Ed, namely by saying that the edge (e1, . . . , ed)
joins (a1, . . . , ad) to (b1, . . . , bd) in G if and only if ei joins ai to bi in H for all i ∈ JdK.
Equivalently, if we let a(e), b(e) denote the endpoints of e in A,B, respectively, then the
edge (e1, . . . , ed) joins (a(e1), . . . , a(ed)) to (b(e1), . . . , b(ed)).

Now, fix a q-coloring of χ : E(G) → JqK. By the above, we can view this as a q-coloring
of Ed. By our choice of d = HJ(k; q), we know that this coloring contains a monochromatic

4One also needs a bipartite version of the quasirandom subset lemma—simply applying Lemma 6.1.4
directly to a coloring of G will not work (exercise: why not?). Luckily, proving such a bipartite statement
turns out to be substantially easier than proving Lemma 6.1.4 [103].
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combinatorial line E ′ = {e(1), . . . , e(k)}; it remains to understand what this combinatorial
line “means”, and to see that it corresponds to a monochromatic induced copy of H.

Let M ⊆ JdK be the set of moving coordinates of the combinatorial line, and let ei, for

i /∈M , be the edge of H such that e
(j)
i = ei for all j. Let e(j) join the vertices a(j) ∈ Ad, b(j) ∈

Bd. Note that for every i /∈ M , all vectors a(j) (resp. b(j)) have the same ith coordinate,
namely a(ei) (resp. b(ei)). On the other hand, a(j) has the same entry in all coordinates in
M , namely the A-endpoint of the jth edge of H, since all coordinates i ∈M of e(j) have this
edge as their ith entry.

Therefore, if we set A′ = {a(j) : j ∈ JkK}, B′ := {b(j) : j ∈ JkK}, we find that (A′, B′, E ′)
is a copy of H in G. Moreover, by construction, all edges of this copy receive the same color
under χ, since E ′ is a monochromatic combinatorial line. All that remains is to note that
this copy is induced. Indeed, suppose that f = (f1, . . . , fd) ∈ E(G) joins some a(j) ∈ A′ to
some b(ℓ) ∈ B′. Then for every i /∈M , we must have that fi joins ai to bi, hence fi = ei. On
the other hand, all M coordinates of a(j) are equal, as are all M coordinates of b(ℓ). Hence,
all M coordinates of f must be equal. But these properties characterize the elements of
E ′—the elements of E ′ are precisely those elements of Ed whose M coordinates are equal,
and whose ith coordinate equals ei for all i /∈ M . This implies that f ∈ E ′, and therefore
the H-copy is indeed induced in G, as A′ ×B′ contains no edges of G besides those already
in E ′.

We remark that this proof demonstrates the power of the abstract setting of the Hales–
Jewett theorem. Indeed, the restriction to combinatorial lines may seem arbitrary at first—if
we’re working in JkKd, which is naturally contained in Rd, why not consider all geometric
lines? The reason is that the greater abstraction, and the restriction to combinatorial lines,
allows us to apply Theorem 9.1.3 to settings such as this one, where there are no natural
geometric lines.

9.6 Proof of the Hales–Jewett theorem

Finally, we turn to the proof of Theorem 9.1.3. We use the following notation in the proof
(and nowhere else): given sets X, Y and elements x ∈ X, y ∈ Y , we denote an element of
X × Y by x× y, rather than the more common (x, y). The reason is that we will really be
considering products of multiple spaces, and it will be more convenient to use the × notation
than to nest several layers of parentheses.

Proof of Theorem 9.1.3. We proceed by induction on k, where for every fixed k we prove the
statement for all q. The base case5 is k = 1, which is easy since we may take HJ(1; q) = 1
for any q. We now assume that the statement is proven for k− 1, and wish to prove it for k.

We let d1, d2, . . . , dq be an extremely rapidly increasing sequence of numbers, where each
di is chosen to be very large relative to d1, . . . , di−1. Concretely, we set d1 = HJ(k − 1; q),

5If you don’t like this base case, on the homework you will show by an elementary argument that HJ(2; q)
is finite for all q, and thus we can use that as our base case.
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and let
di = HJ

(
k − 1; qk

d1+···+di−1
)

for every 2 ⩽ i ⩽ q. Let d = d1 + · · · + dq, and fix a coloring χ : JkKd → JqK.
Throughout the proof, we think of JkKd as a product set JkKd1 × · · · × JkKdq . Note that

each z ∈ JkKdq is the “suffix” of kd1+···+dq−1 elements of JkKd, namely each y ∈ JkKd1+···+dq−1

yields an element y × z ∈ JkKd with suffix z. We now define a coloring χq of JkKdq with

qk
d1+···+dq−1

colors by coloring z with the list of all colors of all vectors in JkKd whose suffix is
z. That is, we define

χq(z) :=
(
χ(y × z) : y ∈ JkKd1+···+dq−1

)
.

Note that we color z by a tuple of length kd1+···+dq−1 , and each entry of this tuple is one of

the q original colors, hence we use qk
d1+···+dq−1

colors in total.

Now, consider the subgrid Jk − 1Kdq ⊆ JkKdq . We picked dq = HJ(k − 1; qk
d1+···+dq−1

), and
χq gives us a coloring of this subgrid, so we conclude that there is a combinatorial line in
Jk − 1Kdq which is monochromatic under χq. Let ρq be the root of this combinatorial line.
Let Lq ⊆ JkKdq be the combinatorial line corresponding to ρq; that is, we extend the original
combinatorial line in Jk − 1Kdq by adding to it one more element, namely the element ρq(k)
obtained by substituting k for every ∗ in ρq.

Note that Lq is not necessarily monochromatic under χq; all we know is that its first
k − 1 points ρq(1), . . . , ρq(k − 1) receive the same color under χq. However, we do know the
following property: for every y ∈ JkKd1+···+dq−1 ,

the color χ(y × ρq(j)) is independent of j, unless j = k. (9.4)

Indeed, by the definition of χq and the fact that ρq(1), . . . , ρq(k − 1) have the same color
under χq, we have that

χ(y × ρq(1)) = · · · = χ(y × ρq(k − 1))

for all y ∈ JkKd1+···+dq−1 . This is precisely the statement (9.4), saying that the only way j
can influence χ(y × ρq(j)) is by whether j = k or not.

We now restrict our attention to the subspace JkKd1 × · · · × JkKdq−1 × Lq. We define a

coloring χq−1 of JkKdq−1 with qk
d1+···+dq−2

colors by setting

χq−1(z) =
(
χ(y × z × ρq(1)) : y ∈ JkKd1+···+dq−2

)
.

Again by our choice of dq−1 = HJ(k − 1; qk
d1+···+dq−2

), we can find a combinatorial line in
Jk − 1Kdq−1 which is monochromatic under χq−1. Let ρq−1 be its root, and let Lq−1 ⊆ JkKdq−1

be obtained by extending it to ρq−1(k). Arguing as above, and using (9.4), we conclude that
for every y ∈ JkKd1+···+dq−2 ,

the color χ(y × ρq−1(j) × ρq(j
′)) is

{
independent of j, j′, if j, j′ < k, and
independent of j′, if j = k and j′ < k.

}
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ETH Zürich Ramsey Theory—Spring 2024 Yuval Wigderson

We now continue in this fashion all the way down. We eventually end up with combinatorial
lines L1, . . . , Lq, with roots ρ1, . . . , ρq, respectively, such that the following holds. For any
point ρ1(j1) × · · · × ρq(jq) ∈ L1 × · · · × Lq ⊆ JkKd, its color

χ(ρ1(j1)× · · ·× ρq(jq)) is



independent of j1, . . . , jq, if j1, . . . , jq < k,
independent of j2, . . . , jq, if j1 = k and j2, . . . , jq < k,
independent of j3, . . . , jq, if j1 = j2 = k and j3, . . . , jq < k,

...
independent of jq, if j1 = · · · = jq−1 = k and jq < k,
some color, if j1 = · · · = jq = k.


(9.5)

An equivalent way of saying this condition is the following. Let us say that two sequences in
JkKq are friendly if they begin with some sequence of k’s of the same length, and afterwards
never use the symbol k. That is, (j1, . . . , jq), (j

′
1, . . . , j

′
q) ∈ JkKq are friendly if there exists

0 ⩽ t ⩽ q such that j1 = j′1 = · · · = jt = j′t = k, but jℓ, j
′
ℓ < k for all ℓ > t. Thus, for example,

the sequences (k, k, 1, 3) and (k, k, 7, 11) are friendly, whereas the sequences (k, k, 1, 3) and
(k, k, k, 4) are not. Sequences like (1, 3, k, 4) or (k, k, 2, k)—which have an instance of k after
an inital segment—are not friendly with any sequence. Then an equivalent way of saying
the condition in (9.5) is that

if (j1, . . . , jq), (j
′
1, . . . , j

′
q) are friendly, then χ(ρ1(j1)×· · ·×ρq(jq)) = χ(ρ1(j

′
1)×· · ·×ρq(j

′
q)).

(9.6)
Having found our combinatorial lines L1, . . . , Lq with this key property, the rest of the proof
follows from a simple pigeonhole argument. We consider the q + 1 points

ρ1(1) × ρ2(1) × · · · × ρq−1(1) × ρq(1),
ρ1(k) × ρ2(1) × · · · × ρq−1(1) × ρq(1),
ρ1(k) × ρ2(k) × · · · × ρq−1(1) × ρq(1),

...
ρ1(k) × ρ2(k) × · · · × ρq−1(k) × ρq(1),
ρ1(k) × ρ2(k) × · · · × ρq−1(k) × ρq(k).


(9.7)

As these q + 1 points receive only q colors, by the pigeonhole principle two of them must be
equal. Say that these two equally-colored points have their final k in positions a− 1 and b,
respectively, where a ⩽ b. Then consider the combinatorial line whose elements are

ρ1(k) × · · · × ρa−1(k) × ρa(1) × · · · × ρb(1) × ρb+1(1) × · · · × ρq(1),
ρ1(k) × · · · × ρa−1(k) × ρa(2) × · · · × ρb(2) × ρb+1(1) × · · · × ρq(1),

...
ρ1(k) × · · · × ρa−1(k) × ρa(k) × · · · × ρb(k) × ρb+1(1) × · · · × ρq(1).


Equivalently, this is the combinatorial line whose root is ρ1(k) × · · · × ρa−1(k) × ρa × · · · ×
ρb × ρb+1(1) × · · · × ρq(1). We claim that this line is monochromatic under χ.
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Indeed, its first k − 1 points are all friendly with one another, so these first k − 1 points
all receive the same color by (9.6). On the other hand, the first and the last point receive
the same color, since that is how we picked these two points from (9.7). Hence all k points
receive the same color.

9.7 Bounds and density theorems

The bound on HJ(k; q) given by the proof above is absolutely enormous. Indeed, we proved
that

HJ(k; q) ⩽ d = d1 + · · · + dq,

and each di is itself HJ(k − 1; qk
d1+···+di−1

). Essentially, this means that in order to get
HJ(k; q), we need to iterate the function x 7→ HJ(x; q′), for some large q′, roughly q times.
Already for HJ(3; q), this gives an upper bound which is roughly of the form

HJ(3; q) ⩽ 33·
··
3q
}

q times
.

Then, to get a bound on HJ(4; q), we’d need to iterate this tower function roughly q times,
yielding a so-called wowzer bound, where wowzer function w(x) is defined by

w(x) = 22·
··
2
}

22
··
·2

}
· · ·

︸ ︷︷ ︸
x times

.

In general, the bound we obtain for HJ(k; q) is in the (k−1)st level of the so-called Ackermann
hierarchy.

For a long time, these (abysmal) bounds were the best known. Moreover, these also
yielded the best known bounds on various consequences of the Hales–Jewett theorem, such
as van der Waerden’s theorem and the Gallai–Witt theorem. A major breakthrough was
obtained by Shelah [127], who proved that

HJ(k; q) ⩽ w(k + q + 2).

In particular, this remains the only known primitive recursive bound, which roughly means
a bound that stays at a fixed level of the Ackermann hierarchy. Good expositions of Shelah’s
proof are given in [100] and [75, Chapter 26], and an extremely short exposition is given in
[104]. While Shelah’s bound remains the best known bound on HJ(k; q) in general, let us
mention a result of Conlon [23], who showed that HJ(3; q) ⩽ 22Cq

for some constant C > 0.
Of course, the main reason we care about the Hales–Jewett theorem is because of its

applications, so it is natural to ask whether we can obtain better bounds than these for van
der Waerden’s theorem or the Gallai–Witt theorem. In the latter case, the answer seems to
essentially be “no”. For many years, the only non-one-dimensional configuration for which
the Gallai–Witt theorem was known to have better bounds was the set

S = {(0, 0), (1, 0), (0, 1)} ⊆ Z2.
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Indeed, Graham and Solymosi [64] proved that any q-coloring of JNK2, where N = 22Cq

contains a monochromatic copy of S; however, even this result is now known to follow from
bounds on Hales–Jewett numbers, thanks to the result of Conlon [23] mentioned above.

For van der Waerden’s theorem, much more is known. However, to disucss the improved
bounds for van der Waerden’s theorem, we first need to discuss density results.

Recall that some of the Ramsey-theoretic theorems we proved, such as Theorems 5.2.1,
5.3.1 and 5.4.10 were proved by restricting to the densest color class in any coloring of
E(KN). In fact, in some cases, such as Theorem 5.3.2 and Lemma 5.4.11, we explicitly
extracted a lemma saying that any graph with many edges contains a certain structure, and
such a lemma immediately implies the Ramsey-theoretic result by restricting to the densest
color class. We thus say that results like Theorem 5.3.2 are density Ramsey theorems: they
state that, to find a certain structure, it is not necessary to color some object, but merely to
restrict to an arbitrary large subset of it.

Already in 1936, Erdős and Turán asked whether there is a density version of van der
Waerden’s theorem. Namely, is it the case that for every δ > 0 and k ⩾ 3, there exists
some N such that every subset A ⊆ JNK with |A| ⩾ δN contains a k-AP? If true, this result
immediately implies van der Waerden’s theorem, since any q-coloring of JNK contains a color
class of size at least δN , where δ = 1

q
.

The k = 3 case of the Erdős–Turán conjecture was proved by Roth [116, 117], in an
extremely influential paper that is arguably the origin of modern additive combinatorics.
Moreover, Roth’s proof gave fairly good bounds on this N—he showed that if N ⩾ 22C/δ

,
for some constant C > 0, then every subset A ⊆ JNK with |A| ⩾ δN contains a 3-AP. In
particular, this implies the bound W (3; q) ⩽ 22Cq

, which was much better than any other
bound on van der Waerden numbers known at the time. Over the years, there have been very
many papers improving on Roth’s result; see [102] for an excellent survey on the topic. Very
recently, a major breakthrough of Kelley and Meka [76], slightly improved by Bloom–Sisask
[8], showed that the same conclusion holds if N ⩾ 2C/δ9 , nearly matching an old construction
of Behrend [6], who showed that such a result is not true if N ⩽ 2c/δ2 for some c > 0. In
particular, we now know that W (3; q) ⩽ 2Cq9 .

However, for k ⩾ 4, the Erdős–Turán conjecture turns out to be substantially harder. It
was finally proved by Szemerédi [135, 136].

Theorem 9.7.1 (Roth [116, 117], Szemerédi [135, 136]). For every δ > 0 and k ⩾ 3, there
exists some N such that every A ⊆ JNK with |A| ⩾ δN contains a k-AP.

The original proof of Szemerédi was an extremely complicated and involved inductive
argument. Important ingredients in his proof include both van der Waerden’s theorem
(applied to find very long progressions), and an early version of the regularity method that
we discussed in Chapter 6. Because of this, Szemerédi’s proof gave essentially no bounds
on how large N has to be, and in particular gives even worse bounds on W (k; q) than those
arising from the Hales–Jewett theorem.

Since then, Szemerédi’s theorem has been re-proved a number of times, which I will briefly
discuss in a highly non-chronological order. In the early 2000s, Gowers [62] found an analytic
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proof of Szemerédi’s theorem, which substantially improved the bounds; in particular, he
proved what remains the best general bound on van der Waerden numbers, namely

W (k; q) ⩽ 22q
22

k+9

.

His proof is, in a certain appropriate sense, a generalization of Roth’s original proof for the
k = 3 case, but proving such a generalization required creating an entire theory of higher
order Fourier analysis.

Shortly after Szemerédi’s original proof, Furstenberg [58] found an alternative proof, using
ergodic theory. This proof gives absolutely no estimates on how large N has to be, but has
a great number of other advantages. In particular, the same approach allowed Furstenberg
and Katznelson [59] to prove a density version of the Gallai–Witt theorem, now known as
the multidimensional Szemerédi theorem: for every S ⊆ Zt and every δ > 0, there exists
some N such that if A ⊆ JNKt satisfies |A| ⩾ δN t, then A contains a homothetic copy of S.

These ergodic-theoretic proofs were non-quantitative, but we now do know quantitative
versions of the multidimensional Szemerédi theorem, thanks to independent work of Gow-
ers [63] and of (subsets of) Frankl, Kohayakwa, Nagle, Rödl, Schacht, and Skokan (see e.g.
[113]). These authors managed to set up an appropriate analogue of the regularity method
to hypergraphs, and were able to use this machinery to prove the so-called hypergraph re-
moval lemma, a purely combinatorial statement which easily implies the multidimensional
Szemerédi theorem. Unfortunately, the bounds given by the hypergraph regularity method
are of Ackermann type, and thus this approach does not give improved bounds for the
Gallai–Witt theorem.

Of course, the natural remaining question is whether there is a density version of the
Hales–Jewett theorem itself. The answer is yes, as was first proved by Furstenberg and
Katznelson [60] via ergodic-theoretic tools.

Theorem 9.7.2 (The Density Hales–Jewett theorem; Furstenberg–Katznelson [60]). For
every δ > 0 and k ⩾ 2, there exists some d such that every A ⊆ JkKd with |A| ⩾ δkd contains
a combinatorial line.

In a major breakthrough, the first-ever Polymath project [105] was able to give a new
proof of the Density Hales–Jewett theorem, yielding quantitative bounds; unfortunately,
these bounds are roughly comparable to those arising from the proof we gave of Theo-
rem 9.1.3, and in particular do not recover anything like Shelah’s bound. Nonetheless, this
was an important breakthrough, giving yet another new proof of Szemerédi’s theorem and
the multidimensional Szemerédi theorem (and thus of van der Waerden’s theorem and the
Gallai–Witt theorem). The Polymath proof was subsequently simplified by Dodos, Kanel-
lopoulos, and Tyros [34].

Finally, let me just mention a recent breakthrough in this area, which is yet another new
proof of Szemerédi’s theorem, due to Leng–Sah–Sawhney [89]. Their proof is based on that
of Gowers mentioned above, but thanks to a substantially improved version of one of the
main tools (the so-called inverse theorem for the Gowers uniformity norms), they are able
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to show that Theorem 9.7.1 holds already when N ⩾ 22(log
1
δ
)Ck

, for some constant Ck > 0
depending only on k. This is the best known bound for any k ⩾ 5.
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Chapter 10

Hypergraph Ramsey numbers

10.1 The hypergraph Ramsey theorem

A graph G consists of a vertex set V (G), as well as an edge set E(G), which is a collection of
pairs of elements from V (G). A natural generalization of this is a hypergraph, where, rather
than taking pairs of vertices, we take larger tuples.

Definition 10.1.1. Let t ⩾ 2 be an integer. A t-uniform hypergraph H consists of a pair
(V (H), E(H)), where V (H) is a finite set, and E(H) is a collection of t-tuples of distinct
elements of V (H). Elements of V (H) are called vertices, and elements of E(H) are called
hyperedges (or t-edges, or sometimes simply edges).

Definition 10.1.2. For integers k ⩾ t ⩾ 2, the complete t-uniform hypergraph on k vertices,
denoted K

(t)
k , is the t-uniform hypergraph with k vertices in which each of the

(
k
t

)
t-tuples

of vertices are hyperedges. Equivalently, if we denote by
(
V
t

)
the set of all t-subsets of a set

V , then K
(t)
k is the hypergraph with vertex set V of order k, and edge set E(K

(t)
k ) =

(
V
t

)
.

For t = 2, this definition of K
(2)
k precisely agrees with the usual definition of the complete

graph Kk. Perhaps unsurprisingly, there is a version of Ramsey’s theorem for hypergraphs,
which was also proved by Ramsey [109].

Theorem 10.1.3 (Ramsey [109]). For all integers k ⩾ t ⩾ 2, q ⩾ 2, there exists some N

such that the following holds. In any q-coloring χ : E(K
(t)
N ) → JqK, there is a monochromatic

copy of K
(t)
k . In other words, there exist k vertices such that each of the

(
k
t

)
t-tuples among

them receive the same color under χ.

Continuing our earlier practice, we define the t-uniform Ramsey number rt(k; q) to be
the least N for which Theorem 10.1.3 is true, and we use the shorthand rt(k) when q = 2.
We also define the off-diagonal t-uniform Ramsey number rt(k1, . . . , kq) to be the least N so

that in any q-coloring of E(K
(t)
N ), there is a monochromatic copy of K

(t)
ki

in color i, for some
i ∈ JqK. Similarly, for any t-uniform hypergraphs H1, . . . ,Hq, we denote by rt(H1, . . . ,Hq)
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the least N such that any q-coloring of K
(t)
N contains a monochromatic copy of Hi in color

i, for some i ∈ JqK, and write rt(H; q) for shorthand if H1 = · · · = Hq = H.
Probably the most natural way to prove Theorem 10.1.3 is via the following argument,

directly mimicking the proof of Theorem 2.1.4.

Proof of Theorem 10.1.3. Let us only deal with the case q = 2. We prove by induction on t
the statement that rt(k, ℓ) exists for all k, ℓ ⩾ t, and for any fixed t we prove this statement
by induction on k + ℓ. Note that the base case t = 2 is already done by Theorem 2.1.1, so
we fix some t ⩾ 3 and assume the result has been proved for t− 1. For this fixed t, the base
case k+ ℓ = 2t is trivial, so we may assume the result has been proved for the pairs (k−1, ℓ)
and (k, ℓ− 1).

The key claim is that the following recursive bound holds, analogously to (2.1):

rt(k, ℓ) ⩽ rt−1(rt(k − 1, ℓ), rt(k, ℓ− 1)) + 1. (10.1)

Note that we are done if we prove (10.1), since by induction, we know that the numbers
a := rt(k − 1, ℓ) and b := rt(k, ℓ − 1) are finite, as is the number rt−1(a, b). Thus, (10.1)
implies Theorem 10.1.3, at least in the case q = 2.

To prove (10.1), let N = rt−1(rt(k − 1, ℓ), rt(k, ℓ − 1)) + 1, and consider any 2-coloring

χ : E(K
(t)
N ) → {red, blue}. Fix a vertex v ∈ V (K

(t)
N ). There is a bijection between hyperedges

containing v and (t− 1)-tuples of vertices in V (K
(t)
N ) \ {v}. That is, we can use χ to define

a coloring ψ : E(K
(t−1)
N−1 ) → {red, blue}, by setting

ψ({w1, . . . , wt−1}) := χ({w1, . . . , wt−1, v}).

By the definition of N , we know that ψ contains a monochromatic red clique of order
rt(k−1, ℓ), or a monochromatic blue clique of order rt(k, ℓ−1). The two cases are symmetric,
so let us assume we are in the first. Looking at χ on these rt(k− 1, ℓ) vertices, we can either

find a monochromatic blue K
(t)
ℓ , or a monochromatic red K

(t)
k−1. In the first case we are

done. In the second case, we have k− 1 vertices, such that each of the t-tuples among them
are colored red. Moreover, by the definition of ψ, if we combine any (t− 1)-tuple from this
set with v, we obtain another t-tuple that is colored red by χ. That is, we have found a
monochromatic red K

(t)
k , showing that we are done in this case as well.

Remark. While this proof is clearly reminiscient of the proof of Theorem 2.1.4, you might
think that some things are different. For example, (10.1) is a bit different from (2.1), in
that the former has this strange rt−1 term, whereas the latter simply has a sum. It is
worth pondering what a 1-uniform hypergraph should be, and what the 1-uniform version of
Theorem 10.1.3 should say. If you think about this enough, you’ll come to realize that the
proof above really is nothing more than a generalization of the proof of Theorem 2.1.4.

The proof above shows that rt(k, ℓ) is finite for all t, k, ℓ. However, the bound it gives is
absolutely enormous. For example, just trying to upper-bound r3(k, k), we find from (10.1)
that

r3(k) ⩽ r2(r3(k − 1, k), r3(k, k − 1)) + 1.
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Plugging in our bound r2(a) < 4a, this implies that

r3(k) ⩽ 4r3(k−1,k).

That is, a single step of the recursion has cost us an exponential! Continuing in this way,
this proof yields a bound roughly of the form

r3(k) ⩽ 44·
··
4
}

2k times
.

But then the bound in uniformity 4 is then much worse—a single step of the recursion (10.1)
for t = 4 shows that r4(k) is bounded as a tower-type function of r4(k − 1, k). That is, this
proof yields a wowzer-type bound on r4(k), and in general, the bounds it gives for uniformity
t are at the (t− 1)th level of the Ackermann hierarchy.

Are such abysmal bounds necessary? At first glance, one might suspect that they are—
exponential bounds really are the truth for r2(k), so the argument above is not particularly
wasteful for uniformity 2. However, Erdős and Rado [48] discovered an alternative proof of
Theorem 10.1.3, which gives a much stronger bound.

Theorem 10.1.4 (Erdős–Rado [48]). For all integers t ⩾ 3, q ⩾ 2, and k1, . . . , kq > t, we
have

rt(k1, . . . , kq) ⩽ q1+(rt−1(k1−1,...,kq−1)

t−1 ).

In particular,

rt(k; q) ⩽ q1+(rt−1(k−1)

t−1 ).

Theorem 10.1.4 is sometimes called the stepping-down argument; it shows that we can
bound a t-uniform Ramsey number by (an exponential function of) a (t−1)-uniform Ramsey
number, that is, we step down one level in the uniformity. As an immediate consequence, we
obtain much stronger bounds on hypergraph Ramsey numbers: for any fixed t, the bound is
a fixed tower of 2s.

Corollary 10.1.5. We have

r3(k; q) ⩽ 22(Cq log q)k

for some absolute constant C > 0. Similarly,

r4(k; q) ⩽ 222
(C′q log q)k

,

and in general,

rt(k; q) ⩽ 22·
··
2(Ctq log q)k

}
t− 1 twos

,

for some constant Ct depending only on t.
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Proof. By Theorem 10.1.4, we know that

r3(k; q) ⩽ q1+(r2(k−1;q)
2 ).

Plugging in the bound r2(k − 1; q) ⩽ r(k; q) ⩽ qqk from Theorem 2.1.5, we find that

1 +

(
r2(k − 1; q)

2

)
⩽ 1 +

(
qqk

2

)
⩽ q2qk.

Note that
log
(
qq

2qk
)

= q2qk log q = 2(2q log q)k+log log q ⩽ 2(3q log q)k,

since log log q ⩽ q log q for all q ⩾ 2. Therefore,

r3(k; q) ⩽ qq
2qk

⩽ 22(3q log q)k

.

The general bound is proved in exactly the same way.

We now turn to the proof of the stepping-down lemma. To keep the notation manageable,
we first present a proof in the case t = 3, q = 2, k1 = k2 = k, which nonetheless captures all
of the ideas of the general proof. We will then give the full proof, which will be a copy-pasted
version of the special case, with appropriate modifications.

Proof of Theorem 10.1.4 for t = 3, q = 2, k1 = k2 = k. Let r = r2(k−1), let N = 21+(r
2), and

fix a coloring χ : E(K
(3)
N ) → {red, blue}. Our goal is to find a set W = {w1, . . . , wr+1} ⊆

V (K
(3)
N ) with the following property: for every 1 ⩽ i < j < r + 1, the triples {wi, wj, wℓ}

receive the same color, for all j < ℓ ⩽ r + 1. Said differently, the color of a triple of vertices
in W depends only on the first two vertices in the tuple, with the last vertex being irrelevant.
Said differently again, there exists a coloring ψ :

(
W
2

)
→ {red, blue} with the property that

for all 1 ⩽ i < j < ℓ ⩽ r + 1, we have

χ({wi, wj, wℓ}) = ψ({wi, wj}). (10.2)

Before seeing how to find such a W , let’s see why it suffices for our purposes. Recall that
we chose r = r2(k − 1). Therefore, {w1, . . . , wr} contains a monochromatic Kk−1 under the
coloring ψ. Let the vertex set of this monochromatic clique be {v1, . . . , vk−1} ⊆ {w1, . . . , wr}.

Then we claim that {v1, . . . , vk−1, wr+1} is a monochromatic K
(3)
k under χ. Indeed, this is

immediate from the fact that {v1, . . . , vk−1} is monochromatic under ψ, as well as the key
property (10.2) of the set W .

To find W , we proceed as follows. We let w1, w2 be two arbitrary vertices of K
(3)
N .

Consider the remaining vertices. For every w ∈ V (K
(3)
N )\{w1, w2}, the hyperedge {w1, w2, w}

is either red or blue under χ. Therefore, by the pigeonhole principle, there exists some set
S3 ⊆ V (K

(3)
N ) \ {w1, w2} with

|S3| ⩾
⌈
N − 2

2

⌉
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and with all tuples {w1, w2, w}, for w ∈ S3, receiving the same color under χ. That is, each
w ∈ S3 is a valid choice for all future vertices of W , as all vertices in S3 satisfy the key
property we want W to satisfy.

Inductively, suppose we have picked out w1, . . . , wm−1, and we have a set Sm ⊆ V (K
(3)
N )\

{w1, . . . , wm−1} with the property that all vertices in Sm are valid choices for all future
w ∈ W . To continue this process, we first pick an arbitrary wm ∈ Sm. Having made this
choice, we now need to shrink Sm to some subset Sm+1, while maintaining the key property
we want, namely that all vertices in Sm+1 are valid choices for future w ∈ W . Notice that for
this to work, the only tuples we need to worry about are those involving the newly-chosen
wm—all tuples not involving this vertex are already OK by the fact that Sm+1 ⊆ Sm, as well
as our inductive assumption on Sm.

For a vertex in w ∈ Sm \ {wm}, consider all hyperedges of the form {wi, wm, w}, where
1 ⩽ i ⩽ m − 1. There are m − 1 such hyperedges, and each one receives one of two colors
under χ. So the total number of lists of colors for all such hyperedges is 2m−1. Therefore,
by the pigeonhole principle, we can find such an Sm+1, with the key property we want to
maintain, with

|Sm+1| ⩾
⌈
|Sm| − 1

2m−1

⌉
. (10.3)

We continue in this way. As long as we ensure that Sr+1 ̸= ∅, then we can pick some
wr+1 ∈ Sr+1, and this will yield our desired set W .

So all that remains to prove is that by our choice of N , we have that Sr+1 ̸= ∅. To show
this, we claim that for all m ⩾ 3, we have

|Sm| ⩾
N

21+(m−1
2 )

.

We prove this claim by induction. For the base case m = 3, we have that

|S3| ⩾
⌈
N − 2

2

⌉
⩾
N

4
=

N

21+(3−1
2 )
,

where the first inequality r ⩾ 2, hence N ⩾ 4. Inductively, assuming we have proved the
claim for Sm, we know by (10.3) that

|Sm+1| ⩾
⌈
|Sm| − 1

2m−1

⌉
=

|Sm|
2m−1

⩾
N/21+(m−1

2 )

2m−1
=

N

21+(m
2 )
,

where the final equality uses Pascal’s identity
(
m−1
2

)
+ (m − 1) =

(
m
2

)
. This completes the

proof of the claim, and applying it with m = r + 1 we conclude that

|Sr+1| ⩾
N

21+(r
2)

= 1,

and thus we indeed have that Sr+1 ̸= ∅.
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Proof of Theorem 10.1.4. Let r = rt−1(k1−1, . . . , kq−1), let N = q1+(
r

t−1), and fix a q-coloring

χ : E(K
(t)
N ) → JqK. Our goal is to find a set W = {w1, . . . , wr+1} ⊆ V (K

(t)
N ) with the following

property: for every 1 ⩽ i1 < · · · < it−1 < r + 1, the tuples {wi1 , . . . , wit−1 , wi} receive the
same color, for all it−1 < i ⩽ r + 1. Said differently, the color of a t-tuple of vertices in W
depends only on the first t − 1 vertices in the tuple, with the last vertex being irrelevant.
Said differently again, there exists a coloring ψ :

(
W
t−1

)
→ JqK with the property that for all

1 ⩽ i1 < · · · < it ⩽ r + 1, we have

χ({wi1 , . . . , wit}) = ψ({wi1 , . . . , wit−1}). (10.4)

Before seeing how to find such a W , let’s see why it suffices for our purposes. Recall that
we chose r = rt−1(k1 − 1, . . . , kq − 1). Therefore, there exists some color i ∈ JqK such that

{w1, . . . , wr} contains a monochromatic K
(t−1)
ki−1 in color i, under the coloring ψ. Let the vertex

set of this monochromatic clique be {v1, . . . , vki−1} ⊆ {w1, . . . , wr}. Then we claim that

{v1, . . . , vki−1, wr+1} is a monochromatic K
(t)
ki

in color i under χ. Indeed, this is immediate
from the fact that {v1, . . . , vki−1} is monochromatic under ψ, as well as the key property (10.4)
of the set W .

To find W , we proceed as follows. We let w1, . . . , wt−1 be t − 1 arbitrary vertices of

K
(t)
N . Consider the remaining vertices. For every w ∈ V (K

(t)
N ) \ {w1, . . . , wt−1}, the hyperedge

{w1, . . . , wt−1, w} receives one of q colors under χ. Therefore, by the pigeonhole principle,

there exists some set St ⊆ V (K
(t)
N ) \ {w1, . . . , wt−1} with

|St| ⩾
⌈
N − (t− 1)

q

⌉
and with all tuples {w1, . . . , wt−1, w}, for w ∈ St, receiving the same color under χ. That is,
each w ∈ St is a valid choice for all future vertices of W , as all vertices in St satisfy the key
property we want W to satisfy.

Inductively, suppose we have picked out w1, . . . , wm−1, and we have a set Sm ⊆ V (K
(t)
N ) \

{w1, . . . , wm−1} with the property that all vertices in Sm are valid choices for all future w ∈W .
To continue this process, we first pick an arbitrary wm ∈ Sm. Having made this choice, we
now need to shrink Sm to some subset Sm+1, while maintaining the key property we want,
namely that all vertices in Sm+1 are valid choices for future w ∈ W . Notice that for this to
work, the only tuples we need to worry about are those involving the newly-chosen wm—all
tuples not involving this vertex are already OK by the fact that Sm+1 ⊆ Sm, as well as our
inductive assumption on Sm.

For a vertex in w ∈ Sm \{wm}, consider all hyperedges of the form {wi1 , . . . , wit−2 , wm, w},
where 1 ⩽ i1 < · · · < it2 ⩽ m − 1. There are

(
m−1
t−2

)
such hyperedges, and each one receives

one of q colors under χ. So the total number of lists of colors for all such hyperedges is q(
m−1
t−2 ).

Therefore, by the pigeonhole principle, we can find such an Sm+1, with the key property we
want to maintain, with

|Sm+1| ⩾

⌈
|Sm| − 1

q(
m−1
t−2 )

⌉
. (10.5)
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We continue in this way. As long as we ensure that Sr+1 ̸= ∅, then we can pick some
wr+1 ∈ Sr+1, and this will yield our desired set W .

So all that remains to prove is that by our choice of N , we have that Sr+1 ̸= ∅. To show
this, we claim that for all m ⩾ t, we have

|Sm| ⩾ N

q1+(
m−1
t−1 )

.

We prove this claim by induction. For the base case m = t, we have that

St ⩾

⌈
N − (t− 1)

q

⌉
⩾
N

q2
=

N

q1+(
t−1
t−1)

,

where the first inequality uses that r ⩾ maxi(ki − 1) > t− 1, hence N ⩾ qt ⩾ 2t. Inductively,
assuming we have proved the claim for Sm, we know by (10.5) that

|Sm+1| ⩾

⌈
|Sm| − 1

q(
m−1
t−2 )

⌉
=

|Sm|

q(
m−1
t−2 )

⩾
N/q1+(

m−1
t−1 )

q(
m−1
t−2 )

=
N

q1+(
m
t−1)

,

where the final equality uses Pascal’s identity
(
m−1
t−2

)
+
(
m−1
t−1

)
=
(

m
t−1

)
. This completes the proof

of the claim, and applying it with m = r + 1 we conclude that

|Sr+1| ⩾
N

q1+(
r

t−1)
= 1,

and thus we indeed have that Sr+1 ̸= ∅.

10.2 Lower bounds on hypergraph Ramsey numbers

We have improved our original Ackermann-type bounds on hypergraph Ramsey numbers,
but are our new upper bounds close to the truth? Given everything we’ve already seen,
clearly the first thing we should try for lower-bounding rt(k; q) is to use a random coloring.

Proposition 10.2.1. For all t, q ⩾ 2 and k ⩾ max{t, q}, we have

rt(k; q) > qk
t−1/tt = 2ckt−1

,

where c > 0 is a constant depending only on q and t.

Proof. Let N = qk
t−1/tt , and consider a random q-coloring of K

(t)
N , where each of the

(
N
t

)
hyperedges receives one of the q possible colors uniformly at random. For a fixed k-set,

the probability that it is monochromatic is exactly q1−(k
t), since there are q options for the

color, and then all
(
k
t

)
hyperedges in the set must receive this color. Therefore, by the union

bound, the probability that there is a monochromatic k-set is at most(
N

k

)
q1−(k

t) < Nkq−(k/t)t = 1,
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where we use the fact that k ⩾ max{t, q} to conclude that q
(
N
k

)
< Nk and that

(
k
t

)
⩾ (k/t)t.

Since this probability is strictly less than 1, we conclude that rt(k; q) > N .

For t = 2, as we know, this gives the correct dependence, namely exponential in k. But
for any t ⩾ 3, there is a substantial gap relative to Corollary 10.1.5. For example, for t = 3
and q = 2, we have

2ck2 < r3(k) < 22Ck

,

for some absolute constants c, C > 0. For larger values of t, the gap is even worse—the lower
bound is exponential in a power of k, whereas the upper bound is a tower of height t.

Luckily, there is a beautiful argument, called the stepping-up lemma of Erdős–Hajnal–
Rado1 [47], which yields much better lower bounds. At a high level, it allows us to convert a
lower bound for rt−1(k/2; q) into a lower bound for rt(k; q) which is exponentially larger. In
particular, it “should” allow us to close the gap above, by acting in concert with the stepping-
down argument Theorem 10.1.4, as the two yield upper and lower bounds on rt(k; q) which
are exponential in the (t − 1)-uniform Ramsey number. However, there is an important
catch: the stepping-up lemma only works if we start with a construction in uniformity 3 or
above.

Theorem 10.2.2 (Erdős–Hajnal–Rado [47]). For every k ⩾ t ⩾ 3, q ⩾ 2, we have

rt+1(2k + t− 4; q) > 2rt(k;q)−1.

As a corollary, we get a lower bound which “almost” matches Corollary 10.1.5, but there
is a gap of 1 in the height of the tower.

Corollary 10.2.3. We have

r4(k) ⩾ 22ck
2

,

for some absolute constant c > 0. In general, for every t ⩾ 4, there is a constant ct > 0 such
that

rt(k) ⩾ 22·
··
2ctk

2
}

t− 2 twos
.

Proof. Applying Theorem 10.2.2, we find that

r4(k) > 2r3(k/2)−1.

By Proposition 10.2.1, we have that r3(k/2) > 2ck2 , for an appropriate constant c > 0, which
implies the claimed bound. The general case follows by induction, where at each step the
constant ct is roughly four times smaller than ct−1.

1Some sources, such as [27, 68] attribute the stepping-up lemma to Erdős and Hajnal, but it appears to
have first appeared in the seminal paper of Erdős, Hajnal, and Rado [47], and was attributed by Erdős [40]
to Erdős–Hajnal–Rado.
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The most important open problem about hypergraph Ramsey numbers is to close this
exponential gap. Note that if one closes this gap for any uniformity t ⩾ 3, then one auto-
matically closes it for all higher uniformities, thanks to the stepping-down and stepping-up
lemmas, Theorems 10.1.4 and 10.2.2. In particular, closing the gap for uniformity 3 would
close it for all uniformities. It is generally believed that the upper bound is closer to the
truth.

Conjecture 10.2.4 (Erdős–Hajnal–Rado [47]). There exists an absolute constant c > 0 such
that r3(k) ⩾ 22ck . As a consequence, for every t ⩾ 3, there exist constants ct, Ct > 0 such
that

22·
··
2ctk

t− 1 twos

{
⩽ rt(k) ⩽ 22·

··
2Ctk

}
t− 1 twos

.

One important reason to believe this conjecture is that it is known to be true once the
number of colors is at least four, via a variant of the stepping-up lemma due to Hajnal2.

Theorem 10.2.5 (Hajnal). For every k, q ⩾ 2, we have

r3(k; 2q) > 2r2(k−1;q)−1.

In particular,
r3(k; 4) > 22ck

for some absolute constant c > 0.

10.2.1 The stepping-up argument

It remains to prove Theorems 10.2.2 and 10.2.5. We begin with Theorem 10.2.5, since it
is somewhat simpler (both conceptually and notationally), and captures several of the key
ideas of the proof of Theorem 10.2.2.

Proof of Theorem 10.2.5. Let M = r2(k−1; q)−1, and fix a coloring χ : E(KM) → JqK with
no monochromatic Kk−1; such a coloring exists by the definition of M . Let N = 2M . Our

goal is to construct a (2q)-coloring of E(K
(3)
N ) with no monochromatic K

(3)
k .

We think of the vertices of K
(3)
N as being the leaves of a binary tree of depth M . For

x, y ∈ V (K
(3)
N ), we denote by δ(x, y) the depth of the nearest common ancestor3 of x and y.

2It is again not 100% clear to whom this result should correctly be attributed. Graham, Rothschild, and
Spencer [68] attribute it to Erdős–Hajnal, but Erdős [40] attributes it to Hajnal.

3If you’d prefer, you can think of V (K
(3)
N ) as the set of all binary strings of length M , and then δ(x, y)

is simply the first coordinate in which x and y disagree.
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x y z

δ(x, y) = δ(x, z) = 1

δ(y, z) = 2

depth 1

depth 2

depth 3

Let us label the vertices of K
(3)
N as v1, . . . , vN , where they come in this order when read left

to right along the leaves of the tree. The key fact we need about the quantity δ, which is
evident from the picture above, is that whenever i < j < ℓ, we have that

δ(vi, vj) ̸= δ(vj, vℓ) and δ(vi, vℓ) = min{δ(vi, vj), δ(vj, vℓ)}. (10.6)

In other words, the common ancestor of vi and vℓ is either the common ancestor off vi, vj or
the common ancestor of vj, vℓ, whichever of the two is higher in the tree. Actually, we will
use a more general version of this fact, which is that for all i1 < · · · < im, we have that

δ(vi1 , vim) = min{δ(vi1 , vi2), δ(vi2 , vi3), . . . , δ(vim−1 , vim)}. (10.7)

Recall that we have fixed a coloring χ : E(KM) → JqK, and let us identify V (KM) with

JMK. We are now ready to define the coloring ψ of E(K
(3)
N ). ψ will use 2q colors, which we

think of as pairs in JqK × {up, down}. For a triple {vi, vj, vℓ} ⊆ V (K
(3)
N ), where i < j < ℓ,

we define

ψ({vi, vj, vℓ}) :=

{
(A, up) if δ(vi, vj) < δ(vj, vℓ) and χ(δ(vi, vj), δ(vj, vℓ)) = A,

(A, down) if δ(vi, vj) > δ(vj, vℓ) and χ(δ(vi, vj), δ(vj, vℓ)) = A.

Unpacking the definition, we are doing the following. First, we compute δ1 := δ(vi, vj) and
δ2 := δ(vj, vℓ). By (10.6), these are two distinct integers in JMK, so we may view them as
distinct vertices of KM ; thus, we obtain a color A := χ(δ1, δ2). In defining ψ, we write down
this color A, as well as recording the information of whether δ1 < δ2 or δ1 > δ2; “up” is
the former and “down” is the latter. This certainly gives us a (2q)-coloring of E(K

(3)
N ); it

remains to prove that there is no monochromatic K
(3)
k under ψ.

Suppose for contradiction that S = {vi1 , . . . , vik} form a monochromatic clique under
ψ, where i1 < · · · < ik. Let us assume first that this clique is monochromatic in color
(A, up), for some A ∈ JqK. Define δ1 := δ(vi1 , vi2), . . . , δk−1 := δ(vik−1

, vik). We claim
that {δ1, . . . , δk−1} ⊆ V (KM) forms a monochromatic Kk−1 in color A under χ, which is a
contradiction since we assumed that χ contains no monochromatic Kk−1.

We now turn to proving this claim, that is, that for all 1 ⩽ a < b ⩽ k − 1 we have
that χ(δa, δb) = A. First, the fact that {vi1 , vi2 , vi3} is colored (A, up) by ψ implies that
δ1 < δ2. Similarly, the color of {vi2 , vi3 , vi4} implies that δ2 < δ3. Continuing in this fasion,
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we conclude that δ1 < δ2 < · · · < δk−1. Now, consider the hyperedge {via , vib , vib+1
}, which

is also colored (A, up). By (10.7), we have that

δ(via , vib) = min{δ(via , via+1), . . . , δ(vib−1
, vib)} = min{δa, . . . , δb−1} = δa,

where the final step uses the monotonicity δ1 < · · · < δk−1. Additionally, δ(vib , vib+1
) = δb by

definition of δb. But now examining the definition of ψ, we see that

ψ({via , vib , vib+1
}) = (A, up) implies χ(δa, δb) = A.

Since this holds for arbitrary 1 ⩽ a < b ⩽ k − 1, we conclude that {δ1, . . . , δk−1} is indeed a
monochromatic Kk−1 under χ, a contradiction.

The case where S is monochromatic under ψ with color (A, down) yields a contradiction
via a nearly identical argument, completing the proof.

We now turn to the proof of Theorem 10.2.2. As in the proof of Theorem 10.1.4, we
begin by showing the argument in case t = 3 and q = 2, which captures all of the key ideas
with fewer notational difficulties; we will then present the proof in full generality.

Proof of Theorem 10.2.2 in case t = 3, q = 2. We wish to prove that for every k ⩾ 3, we
have that

r4(2k − 1) > 2r3(k)−1.

Let M = r3(k) − 1, and fix a coloring χ : E(K
(3)
M ) → {red, blue} with no monochromatic

K
(3)
k ; such a coloring exists by the definition of M . Let N = 2M . Our goal is to construct a

coloring ψ : E(K
(4)
N ) → {red, blue} with no monochromatic K

(4)
2k−1.

As in the proof of Theorem 10.2.5, we identify V (K
(3)
M ) with JMK, we think of the vertices

v1, . . . , vN of K
(4)
N as being the roots of a binary tree of depth M , and we define the function

δ(xi, xj) as before. For a 4-tuple {va, vb, vc, vd} with 1 ⩽ a < b < c < d ⩽ N , we define
ψ({va, vb, vc, vd}) as follows. Let δ1 = δ(va, vb), δ2 = δ(vb, vc), δ3 = δ(vc, vd). Recall that by
(10.6), we have that δ1 ̸= δ2 and δ2 ̸= δ3. We then set

ψ({va, vb, vc, vd}) :=


χ({δ1, δ2, δ3}) if δ1 < δ2 < δ3,

χ({δ1, δ2, δ3}) if δ1 > δ2 > δ3,

red if δ1 < δ2 > δ3

blue if δ1 > δ2 < δ3.

In other words, ψ is defined based on the relative order of the three integers δ1, δ2, δ3. If
they form a monotonic sequence, then we define ψ to take the same value as χ does on the
hyperedge {δ1, δ2, δ3} ∈ E(K

(3)
M ). However, if this sequence is not monotonic, we completely

ignore the coloring χ, and define ψ based entirely on the order—red if δ2 is the maximum,
and blue if it’s the minimum. We claim that there is no monochromatic K

(4)
2k−1 under ψ.

Indeed, suppose for contradiction that va1 , . . . , va2k−1
form a monochromatic K

(4)
2k−1, where

1 ⩽ a1 < · · · < a2k−1 ⩽ N . Let us assume first that this K
(4)
2k−1 is red under ψ. Let

δi = δ(vai , vai+1
), for 1 ⩽ i ⩽ 2k − 2.
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The key observation is that the sequence δ1, . . . , δ2k−2 cannot be an arbitrary sequence
of integers. First, we recall by (10.6) that any two consecutive numbers in this sequence
are distinct. But more importantly, by our definition of ψ, this sequence can have no local
minimum, that is, there cannot exist i such that δi−1 > δi < δi+1. Indeed, if we had such
an i, then the hyperedge {vai−1

, vai , vai+1
, vai+2

} would be colored blue by ψ, a contradiction.
This implies that the sequence δ1, . . . , δ2k−2 must be unimodal—it increases for a while, then
reaches a maximum, then decreases for a while4.

1 2 3 4 2k − 2· · ·

δ1

δ2

δ3
δ4

δi

δ2k−2

an illegal sequence

1 2 3 4 2k − 2· · ·

δ1
δ2

δ3 δ4

δi
δ2k−2

a legal sequence
(unimodular)

1 2 3 4 2k − 2· · ·

δ1
δ2

δ3 δ4

δi

δ2k−2

a legal sequence
(maximum at one end)

We now simply observe that in any unimodular sequence of 2k − 2 numbers (with every
consecutive pair distinct), we can find k of them (in fact, either the first k or the last k)
which are either strictly increasing or strictly decreasing. Indeed, if the maximum value
occurs at index k − 1 or before, then the last k terms are strictly decreasing, whereas if the
index occurs at value k or later, then the first k terms are strictly increasing.

Let us suppose first that δ1, . . . , δk are strictly increasing. Then the definition of the
coloring ψ, as well as the fact that {va1 , . . . , va2k−1

} is a monochromatic clique under ψ,
implies that {δ1, . . . , δk} must form a monochromatic red clique under χ, thanks to the same
argument we used to finish the proof of Theorem 10.2.5. This is a contradiction to our choice
of χ. Similarly, if δk−1, . . . , δ2k−2 form a decreasing sequence, then we again find that they

span a monochromatic red K
(3)
k under χ, another contradiction.

This completes the proof of the case where {va1 , . . . , va2k−1
} form a monochromatic red

clique under ψ. The remaining case, in which they form a blue clique, is essentially identical;
the only difference is that now, the sequence δ1, . . . , δ2k−2 contains no local maximum, as
such a local maximum would yield a red hyperedge in our putative blue clique. As such, the
sequence δ1, . . . , δ2k−2 must either start with a decreasing sequence of order k, or end with
an increasing sequence of order k, and in either case we obtain a contradiction.

Proof of Theorem 10.2.2 in generality. Let M = rt(k; q)− 1, and fix a coloring χ : E(K
(t)
M ) →

JqK with no monochromatic K
(t)
k ; such a coloring exists by the definition of M . Let N = 2M .

4It is of course possible that the maximum is at one of the two ends, such that there is actually no
increasing or decreasing portion; that is, “for a while” includes the possibility of increasing or decreasing for
zero terms.
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Our goal is to construct a coloring ψ : E(K
(t+1)
N ) → JqK with no monochromatic K

(t+1)
2k+t−4.

As in the proof of Theorem 10.2.5, we identify V (K
(t)
M ) with JMK, we think of the vertices

v1, . . . , vN of K
(t+1)
N as being the roots of a binary tree of depth M , and we define the function

δ(xi, xj) as before. For a (t+1)-tuple {va1 , . . . , vat+1} with 1 ⩽ a1 < · · · < at+1 ⩽ N , we define
ψ({va1 , . . . , vat+1}) as follows. Let δ1 = δ(va1 , va2), δt = δ(vat , vat+1). We then set

ψ({va1 , . . . , vat+1}) :=


χ({δ1, . . . , δt}) if δ1, . . . , δt is a monotonic sequence,

1 if δ1 < δ2 > δ3,

2 if δ1 > δ2 < δ3,

1 in all other cases.

In other words, ψ is defined based on the relative order of the integers δ1, . . . , δt. If they form
a monotonic sequence, then we define ψ to take the same value as χ does on the hyperedge

{δ1, . . . , δt} ∈ E(K
(t)
M ). However, if this sequence is not monotonic, we completely ignore

the coloring χ, and define ψ based entirely on the order—by color 1 if it starts with a local
maximum δ1 < δ2 > δ3, by color 2 if it starts with a local minimum, and again by color 1 in

all other cases†. We claim that there is no monochromatic K
(t+1)
2k+t−4 under ψ.

Indeed, suppose for contradiction that va1 , . . . , va2k+t−4
form a monochromatic K

(4)
2k+t−4,

where 1 ⩽ a1 < · · · < a2k+t−4 ⩽ N . Let us assume first that this K
(4)
2k+t−4 is colored 1 under

ψ. Let δi = δ(vai , vai+1), for 1 ⩽ i ⩽ 2k + t− 5.
The key observation is that the sequence δ1, . . . , δ2k+t−5 cannot be an arbitrary sequence

of integers. First, we recall by (10.6) that any two consecutive numbers in this sequence are
distinct. But more importantly, by our definition of ψ, this sequence can have no local minimum
in the range [2, 2k − 3], that is, there cannot exist 2 ⩽ i ⩽ 2k − 3 such that δi−1 > δi < δi+1.
Indeed, if we had such an i, then the hyperedge {vai−1 , vai , . . . , vai+t−2} would be colored 2 by
ψ, a contradiction. This implies that the sequence δ1, . . . , δ2k−2 must be unimodal—it increases
for a while, then reaches a maximum, then decreases for a while‡.

We now simply observe that in any unimodular sequence of 2k − 2 numbers (with every
consecutive pair distinct), we can find k of them (in fact, either the first k or the last k) which
are either strictly increasing or strictly decreasing. Indeed, if the maximum value occurs at
index k− 1 or before, then the last k terms are strictly decreasing, whereas if the index occurs
at value k or later, then the first k terms are strictly increasing.

Let us suppose first that δ1, . . . , δk are strictly increasing. Then the definition of the
coloring ψ, as well as the fact that {va1 , . . . , va2k+t−4

} is a monochromatic clique under ψ,
implies that {δ1, . . . , δk} must form a monochromatic clique in color 1 under χ, thanks to the
same argument we used to finish the proof of Theorem 10.2.5. This is a contradiction to our
choice of χ. Similarly, if δk−1, . . . , δ2k−2 form a decreasing sequence, then we again find that

they span a monochromatic K
(t)
k under χ, another contradiction.

This completes the proof of the case where {va1 , . . . , va2k+t−4
} form a monochromatic clique

in color 1 under ψ. The next case, in which they form a clique in color 2, is essentially identical;
the only difference is that now, the sequence δ1, . . . , δ2k−2 contains no local maximum, as such
a local maximum would yield a hyperedge of color 1 in our putative clique of color 2. As such,
the sequence δ1, . . . , δ2k−2 must either start with a decreasing sequence of order k, or end with
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an increasing sequence of order k, and in either case we obtain a contradiction.
The final case (which is only relevant when q ⩾ 3), is if {va1 , . . . , va2k+t−4

} form a monochro-
matic clique in color c ⩾ 3 under ψ. But this case is even easier than the previous ones—in
this case, the sequence δ1, . . . , δ2k−2 can contain no local maximum or local minimum, im-

plying that {δ1, . . . , δ2k−2} form a monochromatic K
(t)
2k−2 under χ, and even more resounding

contradiction.

†It doesn’t actually matter how we color these final hyperedges; as we will shortly see, our proof will
not use them at all. We color them 1 only for concretness.

‡It is of course possible that the maximum is at one of the two ends, such that there is actually no
increasing or decreasing portion; that is, “for a while” includes the possibility of increasing or decreasing
for zero terms.

10.3 Points in convex position

The paper of Erdős and Szekeres [52] in which they proved Theorem 2.1.4—one of the most
influential and foundational papers in the field—was titled “A combinatorial problem in
geometry”. We will now study this geometric problem, and see how it relates to Ramsey
theory.

Definition 10.3.1. Let p1, . . . , pk be points in Rd. A point p ∈ Rd is in their convex hull if
there exist numbers λ1, . . . , λk ⩾ 0 with

∑k
i=1 λi = 1 such that

p =
k∑

i=1

λipi.

That is, p is in the convex hull of p1, . . . , pk if p is a weighted average of them.

Definition 10.3.2. A collection p1, . . . , pk of points in Rd is in convex position if no pi is in
the convex hull of p1, . . . , pi−1, pi+1, . . . , pk.

Five points in convex position
(the gray region is their convex hull)

Five points not in convex position
(the gray region is their convex hull)

The question studied by Erdős and Szekeres begins with a simple observation of Esther
Klein.

Proposition 10.3.3 (Klein). Among any five points in R2, no three of them collinear, there
are four points in convex position.
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Proof. Consider the convex hull of the five points. It is a polygon with at most five vertices.
If it has four or five vertices, then four of these vertices yield our four desired points in convex
position. So we may assume that the convex hull is a triangle, meaning that the final two
points lie inside the triangle, as shown in the following picture.

Consider the line through the two interior points. Since no three points are collinear, two
of the vertices of the triangle must lie on one side of this line. But then these two vertices,
plus the two interior points, yield four points in convex position.

Although this was before Ramsey theory really existed, Klein realized that there was
a Ramsey-theoretic flavor to this result. She asked Erdős and Szekeres whether Proposi-
tion 10.3.3 could be generalized to finding arbitrarily large collections of points in convex
position. Erdős and Szekeres proved that the answer is yes.

Theorem 10.3.4 (Erdős–Szekeres [52]). For every k ⩾ 4, there exists some N such that the
following holds. Among any N points in R2, no three of them collinear, there are k points
in convex position.

We will see three proofs of this theorem (and a fourth proof is in the homework); the
first is the original proof of Erdős and Szekeres [52].

Erdős and Szekeres’s proof of Theorem 10.3.4. We will show that the theorem holds with
N = r4(5, k). Fix N points p1, . . . , pN in R2, no three of them collinear. We identify

V (K
(4)
N ) with {p1, . . . , pN}, and define a two-coloring of E(K

(4)
N ) as follows. Given a 4-tuple

{pa, pb, pc, pd}, we color it blue if these four points are in convex position, and red otherwise.

The first observation is that we cannot have a monochromatic red K
(4)
5 . Indeed, this

would correspond to five points in the plane, no three collinear, such that every 4-tuple
among them is not in convex position. Proposition 10.3.3 says that such a configuration
cannot exist.

Therefore, by the choice of N , there must exist k points, say p1, . . . , pk, such that each
hyperedge among them is colored blue. That is, every 4-tuple among them is in convex
position. To complete the proof, we require the following simple lemma.

Lemma 10.3.5 (Carathéodory’s theorem). Let p1, . . . , pk be a collection of points in R2,
such that each 4-tuple among them is in convex position. Then p1, . . . , pk are in convex
position.
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In a moment, we will give a formal proof of Lemma 10.3.5, but the intuitive proof is
the following. Suppose for contradiction that p1, . . . , pk are not in convex position, and say
without loss of generality that pk is in the convex hull of p1, . . . , pk−1, and call this convex
hull P . Then P is a convex polygon, whose vertices are (some subset of) p1, . . . , pk−1. Pick
an arbitrary triangulation of P , that is, a partition of P into triangles whose vertices are
vertices of P itself. Since pk ∈ P , we must have that pk is contained in one of the triangles
of the triangulation. But that means that pk is in the convex hull of three vertices of P ; this
yields four points out of p1, . . . , pk which are not in convex position.

Given Lemma 10.3.5, the proof is complete: we have found k points from our original
collection that are in convex position.

While the geometric proof sketch presented above can be made rigorous, there is also a
fairly simple linear-algebraic proof of Lemma 10.3.5, which we now present.

Proof of Lemma 10.3.5. We may assume that k ⩾ 5, for otherwise there is nothing to prove.
Suppose for contradiction that one of the points, say pk, is in the convex hull of of the remaining
points. This means that there exist numbers λ1, . . . , λk−1 ⩾ 0 with

∑
λi = 1 and

pk =
k−1∑
i=1

λipi.

Let us fix such a collection λ1, . . . , λk−1 with the fewest number of non-zero elements. That is,
we may assume by renaming the points that λ1, . . . , λt > 0, that λt+1, . . . , λk−1 = 0, and that
no such representation is possible with fewer than t non-zero coefficients.

If t ⩽ 3, then we have shown that the points p1, p2, p3, pk are not in convex position (since
pk is in the convex hull of p1, p2, p3), contradicting our assumption that all 4-tuples are in
convex position. Therefore we may assume that t ⩾ 4. Consider the vectors

v1 := p1 − pt, v2 := p2 − pt, . . . , vt−1 := pt−1 − pt.

These are t − 1 ⩾ 3 vectors in R2, so they must be linearly dependent. That is, there exist
α1, . . . , αt−1 ∈ R, at least one of which is non-zero, such that

∑t−1
i=1 αivi = 0. Now note that
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for any ε ⩾ 0, we have

pk =
t∑

i=1

λipi

= λtpt +
t−1∑
i=1

λipi +
t−1∑
i=1

εαivi

= λtpt +

t−1∑
i=1

[(λi + εαi)pi − εαipt]

=

t−1∑
i=1

(λi + εαi)pi +

(
λt − ε

t−1∑
i=1

αi

)
pt

=:
t−1∑
i=1

µi(ε)pi + µt(ε)pt.

Notice that each µi(ε) is a continuous (in fact, linear) function of ε. Also, by assumption, we
have that µi(0) > 0 for all i ∈ JtK. Also, by construction, we have that

∑
i µi(ε) = 1 for all ε.

However, since one of the αi is non-zero, we see that in the limit ε → ∞, at least one of the
µi(ε) must become negative. Therefore, there is some smallest value ε∗ such that µi(ε

∗) = 0
for at least one i, and µj(ε

∗) ⩾ 0 for all j ̸= i. However, this gives us a new representation of
pk as a convex combination of p1, . . . , pk−1 with fewer non-zero coefficients, contradicting our
choice of λ1, . . . , λk−1.

An alternative proof of Theorem 10.3.4 was found by Tarsi, who showed how to obtain
the same result by using a diagonal 3-uniform Ramsey theorem, rather than the off-diagonal
4-uniform Ramsey theorem used by Erdős and Szekeres.

Tarsi’s proof of Theorem 10.3.4. Let N = r3(k), and fix points p1, . . . , pN in R2. By ro-
tating the plane if necessary, we may assume that all the points p1, . . . , pN have distinct
x-coordinates. Let us also relabel them so that they are sorted by x-coordinate, that is, so
that p1 is to the left of p2, which is to the left of p3, and so on. We identify V (K

(3)
N ) with

{p1, . . . , pN}, and color E(K
(3)
N ) as follows. For 1 ⩽ i < j < ℓ ⩽ N , we color the hyperedge

{pi, pj, pℓ} red if pj lies above the line pipℓ, and blue if pj lies below the line pipℓ.

By the choice of N , there is a monochromatic K
(3)
k , say pi1 , . . . , pik , where i1 < · · · < ik.

Let us suppose this K
(3)
k is red. This means that every point in this set lies above the line

between its neighbors on the left and right; intuitively, this means that the points need to
look like this:
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In particular, the points pi1 , . . . , pik are in convex position, as is hopefully intuitive from the
picture. This is in fact true, and is a discrete version of the well-known fact that a function
with non-positive second derivative is concave.

To prove that pi1 , . . . , pik are in convex position, it suffices by Lemma 10.3.5 to show that
any four of them are in convex position. So let pa, pb, pc, pd be four points, ordered from left
to right, with the property that each of the triples they define is red, that is, that each point
lies above the line connecting its two neighbors. If they are not in convex position, then one
of them must be in the convex hull of the other three, and it is not hard to see that the
interior point must be either pb or pc (pa and pd are necessarily extreme points because they
minimize and maximize, respectively, the x-coordinate among these four points). If, say, pb
is in the convex hull of pa, pc, pd, then we see that pb lies below the line between pa and pc,
a contradiction.

pa

pc

pd

pb

Similarly, if pc is an interior point, it lies below the line joining pb, pd, another contradiction.
This shows that all 4-tuples are indeed in convex position, and thus we have found our
desired k-set in convex position by Lemma 10.3.5. In case {pi1 , . . . , pik} form a blue clique,
the same argument works after vertically reflecting the whole picture.

Let us define the Klein number Kl(k) to be the least integer N such that every collection
of N points in the plane, no three collinear, contains k points in convex position. For k = 3
we see that Kl(3) = 3. Proposition 10.3.3 shows that Kl(4) ⩽ 5, and by considering a triangle
with an interior point we conclude that Kl(4) = 5. Makai and Turán proved that Kl(5) = 9,
via an elementary but involved case analysis. More recently, Szekeres and Peters [134] used
a computer search to verify that Kl(6) = 17. Observing the pattern, you may be tempted
to make the following conjecture.

Conjecture 10.3.6 (Erdős–Szekeres [52]). We have Kl(k) = 2k−2 + 1 for every k ⩾ 3.

In a later paper, Erdős and Szekeres [49] proved that Kl(k) > 2k−2 for every k, thus
proving the lower bound in this conjecture. You will see this construction on the homework.
What about the upper bound?

Our first proof showed that Kl(k) ⩽ r4(5, k). Applying Theorem 10.1.4 twice, we find
that

Kl(k) ⩽ r4(5, k) ⩽ 21+(r3(4,k−1)
3 ) ⩽ 2r3(4,k−1)3 ⩽ 22

3(r2(3,k−2)
2 )

⩽ 22O(k4/(log k)2)

,

where the final step uses Theorem 4.1.4. The second proof gives a slightly better bound,

Kl(k) ⩽ r3(k) ⩽ 21+(r2(k−1)
2 ) ⩽ 22O(k)

.

However, already in their original paper, Erdős and Szekeres proved a much stronger bound.
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Theorem 10.3.7 (Erdős–Szekeres [52]). For every k ⩾ 3, we have

Kl(k) ⩽

(
2k − 4

k − 2

)
+ 1 < 4k−2.

We will prove Theorem 10.3.7 in Chapter 11. The geometric part of the proof is essentially
the same as what we saw in Tarsi’s proof of Theorem 10.3.4 above, but there is a different
combinatorial argument that is much more quantitatively efficient than simply reducing to
the hypergraph Ramsey theorem.

Thus, in 1960, Erdős and Szekeres knew that 2k−2 < Kl(k) < 4k−2. These bounds stood
almost unchanged for over 50 years, until a recent breakthrough of Suk [132] proved that
the lower bound is indeed close to the truth, i.e. that 2 is the correct base of the exponent.

Theorem 10.3.8 (Suk [132]). We have

Kl(k) ⩽ 2k+o(k)

as k → ∞.

Suk’s proof is quite short and simple, but uses a number of very clever ideas coming from
both geometry and combinatorics, and we will not discuss it in this course.
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Chapter 11

Canonical Ramsey theorems

This chapter contains several rather disparate topics, which nonetheless share some thematic
connection. The extremely high-level idea is the following. Most mathematical objects
are endowed with a notion of sub-objects (e.g. subsets, subgraphs, subgroups, subspaces,
subschemes, subterfuges. . . ). Certain objects are canonical, in the sense that all of their
sub-objects “look like” the original object. For example, an elementary result in group
theory is that all subgroups of a cyclic group are cyclic; a more pronounced version of the
same fact is that any subgroup of Z is isomorphic to Z. A substantially deeper and more
difficult statement along the same lines is that any subgroup of a free group is again free.

One question we are interested in is a full classification of such examples: for any given
notion of mathematical object, what is a complete list of the canonical ones? Having accom-
plished this task (which requires formalizing what we mean by “looking like” the original
object), one can turn to proving a Ramsey-theoretic statement, along the lines of “any
sufficiently large object must contain an arbitrarily large canonical sub-object”.

We can view Ramsey’s theorem as an instance of this general philosophy. Indeed, con-
sider the class of graphs, endowed with the sub-object relation of induced subgraphs. Then
complete graphs and empty graphs are examples of canonical objects, since any induced sub-
graph of a complete graph is again complete, and any induced subgraph of an empty graph
is empty. Moreover, Ramsey’s theorem implies that every sufficiently large graph contains
an arbitrarily large complete or empty induced subgraph.

11.1 Monotone sequences

Consider a sequence a1, . . . , ak of distinct real numbers. A natural definition for a “canonical”
sequence is a monotone sequence (that is, a sequence which either strictly increasing or
strictly decreasing), since any subsequence of an increasing sequence is again increasing, and
the same holds for decreasing sequences.

As you might expect, there is a Ramsey-theoretic statement, asserting that every sequence
of distinct real numbers contains a long monotone subsequence; this was proved in the same
seminal paper of Erdős and Szekeres [52].

115
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Theorem 11.1.1 (Erdős–Szekeres [52]). Given k ⩾ 2, let N = (k − 1)2 + 1. Then any
sequence a1, . . . , aN of distinct real numbers contains a monotone subsequence of length k.
That is, there exist indices 1 ⩽ i1 < · · · < ik ⩽ N such that

ai1 < ai2 < · · · < aik or ai1 > ai2 > · · · > aik .

There are many known proofs of this theorem (see [131] for an exposition of several
different proofs); we will show a particularly elegant proof discovered by Seidenberg [124].

Proof of Theorem 11.1.1 (Seidenberg [124]). For an index m ∈ JNK, let δ(m) denote the
length of the longest decreasing subsequence ending at am, and let ι(m) denote the length of
the longest increasing sequence ending at am. We wish to prove that δ(m) ⩾ k or ι(m) ⩾ k
for some m ∈ JNK. So suppose for contradiction that this is not the case, that is, that
1 ⩽ δ(m), ι(m) ⩽ k − 1; note that we have a lower bound of 1 on both functions, since we
can always view am itself as both an increasing and a decreasing subsequence ending at am.

This means that there are at most (k−1)2 possible values for the pair (δ(m), ι(m)). Since
N = (k−1)2+1, the pigeonhole principle implies that there exists two indices 1 ⩽ ℓ < m ⩽ N
such that (δ(ℓ), ι(ℓ)) = (δ(m), ι(m)). Since the elements of our sequence are distinct, we have
aℓ < am or aℓ > am. Suppose first that aℓ < am. Then any increasing sequence ending in
aℓ can be extended by one to obtain an increasing sequence ending at am, implying that
ι(m) > ι(ℓ), a contradiction. Similarly, if aℓ > am, then δ(m) > δ(ℓ), another contradiction.
In either case we are done.

It is not hard to show (as you will do on the homework) that this bound is tight, in that
there exist sequences of (k − 1)2 distinct real numbers with no monotone subsequence of
length k.

An equivalent way of viewing Theorem 11.1.1 is as saying that in any function a : JNK → R,
where N = (k − 1)2 + 1, there are k vertices on which a is monotone. If we identify JNK
with V (KN ), then this becomes a statement about functions a : V (KN ) → R. The following
generalization to functions E(KN ) → R was first proved by Chvátal and Komlós [18].

Theorem 11.1.2 (Chvátal–Komlós [18]). Let k ⩾ 3, let N =
(
2k−2
k−1

)
+1, and identify V (KN )

with JNK. Given any function a : E(KN ) → R, there is a monotone path of length k, that is,
there exist indices 1 ⩽ i0 < · · · < ik ⩽ N such that

a((i0, i1)) ⩽ a((i1, i2)) ⩽ · · · ⩽ a((ik−1, ik)) or a((i0, i1)) ⩾ a((i1, i2)) ⩾ · · · ⩾ a((ik−1, ik)).

Note that by length, we mean the number of edges, so we are finding a path with k + 1
vertices. Note too that the path we find is monotone in two senses—the vertices come in the
same order as the given order of V (KN ) ∼= JNK, and the value of a on the edges is monotone.
This is in direct analogy with Theorem 11.1.1, where we pass to a subset of the indices, where
the order is maintained, such that the value of a becomes monotone. The proof we present of
Theorem 11.1.2 is due to Lovász [92, Solution 14.27] and Moshkovitz–Shapira [94].
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Proof of Theorem 11.1.2. For an edge uv, where u < v, we write δ(uv) for the length (that is,
number of edges) of the longest decreasing path ending in the edge uv, and ι(uv) for the length
of the longest increasing path ending in uv. It suffices to prove that δ(uv) ⩾ k or ι(uv) ⩾ k for
some edge uv, so we assume for contradiction that 1 ⩽ δ(uv), ι(uv) ⩽ k−1 for all uv ∈ E(KN ).

We define a partial order ≼ on Z2 by setting (x, y) ≼ (x′, y′) if x ⩽ x′ and y ⩽ y′. For a
vertex v ∈ V (KN ), we now set

Φ(v) := {(x, y) ∈ Jk − 1K2 : (x, y) ≼ (δ(uv), ι(uv)) for some u ∈ V (KN ) with u < v}.

That is, we first write down all pairs (δ(uv), ι(uv)) over all u < v, and then we let Φ(v) be the
“down-set” generated by these points, that is, the collection of all points down or to the left
of these points. Note that Φ(v) ⊆ Jk − 1K2.

The key claim is that Φ(v) ̸= Φ(w) for all v ̸= w. Indeed, suppose that Φ(v) = Φ(w) for
some v, w, and assume without loss of generality that v < w. By definition, we have that
(δ(vw), ι(vw)) ∈ Φ(w), hence (δ(vw), ι(vw)) ∈ Φ(v) as well. Again by the definition of Φ(v),
this implies that there exists some u < v such that

(δ(vw), ι(vw)) ≼ (δ(uv), ι(uv)).

In other words, δ(vw) ⩽ δ(uv) and ι(vw) ⩽ ι(uv). If a((u, v)) ⩾ a((v, w)), then any decreasing
path ending at uv can be extended to an decreasing path ending at vw, contradicting the first
inequality. Similarly, if a((u, v)) ⩽ a((v, w)), then any increasing path ending at uv can be
extended to an increasing path ending at vw, another contradiction. We conclude that, as
claimed, Φ(v) ̸= Φ(w) for all v ̸= w.

Notice that for every v, the set Φ(v) ⊆ Jk − 1K2 is a Ferrers diagram, that is, a collection
of points in Jk − 1K2 such that each row is left-aligned and each column is down-aligned.

Two Ferrers diagrams in J5K2

Indeed, by definition, Φ(v) consists of all points preceding some set in the order ≼, and such
a set is necessarily a Ferrers diagram.

Therefore, Φ gives us an injective function from V (KN ) to the set of all Ferrers diagrams
in Jk − 1K2. So to obtain the desired contradiction, it suffices to prove that the number of
Ferrers diagrams in Jk − 1K2 is exactly

(
2k−2
k−1

)
, since our choice of N would then contradict

the existence of such an injection. In order to count the number of Ferrers diagrams, we can
identify each Ferrers diagram with its boundary, namely the set of edges separating the Ferrers
diagram from its complement in Jk − 1K2.
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Boundaries of Ferrers diagrams (in blue)

Note that we can recover a Ferrers diagram from its boundary, and vice versa, so the number
of possible Ferrers diagrams is the same as the number of possible boundaries. As we can see
from these pictures, the boundary of a Ferrers diagram in Jk − 1K2 can be viewed as a path
from (0, k−1) to (k−1, 0) only going in the directions right and down. The set of such paths is
in bijection with the set of words in the symbols R and D (for right and down), in which both
symbols appear exactly k− 1 times. The number of such words is exactly

(
2k−2
k−1

)
, hence this is

the number of possible boundaries, and thus, the number of Ferrers diagrams, as claimed.

As a corollary of Theorem 11.1.2, we can prove Theorem 10.3.7, giving a much better
estimate on the number of points needed to guarantee k points in convex position.

Proof of Theorem 10.3.7. Let N =
(
2k−4
k−2

)
+1, and let p1, . . . , pN be N points in the plane, with

no three collinear. By rotating the plane, we may assume that the x-coordinates of p1, . . . , pN
are distinct, and that the points are sorted by x-coordinate.

For 1 ⩽ u < v ⩽ N , define a((u, v)) to be the slope† of the line between pu and pv. By
Theorem 11.1.2 (applied with parameter k − 1), we can find indices 1 ⩽ i1 < · · · < ik ⩽ N
such that

a((i1, i2)) ⩽ · · · ⩽ a((ik−1, ik)) or a((i1, i2)) ⩾ · · · ⩾ a((ik−1, ik)).

Note that in fact, all of these inequalities are strict. Indeed, the fact that pij−1 , pij , pij+1 are
not collinear precisely means that a((ij−1, ij)) ̸= a((ij , ij+1)).

If we have a((i1, i2)) < · · · < a((ik−1, ik)), then the points pi1 , . . . , pik form a cup, that is,
a sequence of points where each point lies below the line between its two neighbors. On the
other hand, if a((i1, i2)) > · · · > a((ik−1, ik)), then these points form a cap, where each point
lies above the line between its two neighbors. In either case, as argued in the second proof of
Theorem 10.3.4, these k points are in convex position by Lemma 10.3.5.

We remark that one can construct examples of
(
2k−4
k−2

)
points in the plane with no cup or

cap of size k. This shows that the proof above cannot be further improved, and also implies
that Theorem 11.1.2 is best possible.

†Since we assume the points have distinct x-coordinates, the slope of this line is a well-defined real
number.

11.2 The canonical Ramsey theorem

We now turn to the canonical Ramsey theorem for edge-colorings of the complete graph. Of
course, as discussed above, Ramsey’s theorem itself is such a statement—any coloring of a
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complete graph with a fixed number of colors must contain an arbitrarily large monochro-
matic clique, and monochromatic cliques are clearly canonical, as any subset of a monochro-
matic clique is another monochromatic clique. However, what if we remove the restriction
that the number of colors is fixed?

That is, the question we are asking is the following: we color E(KN), for a large N , with
an arbitrary number of colors. What kinds of subcolorings are canonical, in the sense that
all of their induced subgraphs yield colorings of the same type? Certainly, monochromatic
cliques are still canonical. On the other hand, once the number of colors is unbounded, we
get a new type of canonical coloring: a rainbow coloring of KN , in which each of the edges
receives a different color (so

(
N
2

)
colors are used in total).

It is tempting to conjecture that these are the only ones, but this turns out to not be
the case. There is a third type of coloring, which we will call starry. A coloring of E(KN)
is called starry if there are distinct colors c1, . . . , cN−1 and if one can sort the vertices as
v1, . . . , vN , such that the color of the edge vivj, where i < j, is ci. In other words, each
color class is a star, with the first star centered at v1, the second centered at v2 (and not
containing v1), and so on. Note that this is a canonical coloring, as any subset of vertices
induces another starry coloring.

monochromatic rainbow starry

As it turns out, these really are the only canonical colorings, in the sense that a canonical
Ramsey theorem holds: every sufficiently large edge-colored clique contains an arbitrarily
large clique which is monochromatic, rainbow, or starry. This was proved by Erdős and
Rado [48], in a result that is now usually called the canonical Ramsey theorem.

Theorem 11.2.1 (Erdős–Rado [48]). For every k ⩾ 2, there exists some N such that if
E(KN) is colored (with an arbitrary number of colors), there is a Kk which is monochromatic,
rainbow, or starry.

The original proof of Erdős and Rado used a clever reduction to the hypergraph Ramsey
theorem in uniformity 4. Namely, for every 4-tuple of vertices, they considered the equiva-
lence relation of colors on the

(
4
2

)
= 6 edges. That is, rather than remembering the actual

colors on each of these 6 edges, they only record which pairs of edges receive the same color.
As it turns out, there are 203 equivalence relations1 on a set of size 6, so they obtain a
203-coloring of E(K

(4)
N ). By Theorem 10.1.3, there is a monochromatic K

(4)
k in this coloring

(assuming N is sufficiently large), and an elementary argument (involving some casework)

1The number of equivalence relations on a set of size n is given by the Bell number Bn, and B6 = 203.
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shows that in each of the 203 cases2, this monochromatic K
(4)
k yields a monochromatic, rain-

bow, or starry Kk in the original coloring. A nice exposition of this proof can be found in
[68, Section 5.5].

However, from a quantitative perspective, the proof of Erdős and Rado is not very good.
Letting ER(k) denote the least N such that Theorem 11.2.1 holds, the proof of Erdős–Rado

only shows that ER(k) ⩽ r4(k; 203) ⩽ 222
O(k)

, thanks to the bounds on hypergraph Ramsey
numbers. A much better bound, with an alternative proof that is also extremely elegant,
was found by Lefmann and Rödl [88].

Theorem 11.2.2 (Lefmann–Rödl [88]). We have ER(k) ⩽ k4k
2
for all k ⩾ 2.

In particular, Theorem 11.2.2 gives a finite bound on ER(k), thus proving Theorem 11.2.1.
In the course of the proof of Theorem 11.2.2, we will need the following extremely useful
lemma, which allows us to find rainbow cliques in edge-colored graphs where every color
class is a graph with bounded maximum degree.

Lemma 11.2.3. Let k,M ⩾ 2 be integers, and suppose that E(KM) is colored so that every
vertex is incident to at most M/k4 edges in every color. Then there is a rainbow Kk in this
coloring.

Proof. Every vertex must be incident to at least one edge of some color, hence no such
coloring can exist if M < k4. Thus the statement is vacuously true in these cases, and we
may assume henceforth that M ⩾ k4. Also, since every coloring of E(K2) is rainbow, we
may assume henceforth that k ⩾ 3. Let χ be the coloring of E(KM).

Let v1, . . . , vk be a uniformly random sequence of k distinct vertices from KM . That
is, we pick a set of k distinct vertices uniformly at random among the

(
M
k

)
options, and

then pick a random ordering of that set and label it v1, . . . , vk. Equivalently, we let v1 be a
uniformly random vertex, v2 a uniformly random vertex among the remaining vertices, and
so on. The key property that we need about this distribution is that if we condition on the
outcome of any subset of these vertices, the marginal distribution of any remaining vertex is
that of a uniformly random vertex of KM , apart the ones already picked. Thus, for example,
if x, y are two distinct vertices of KM , and we condition on v3 = x, v7 = y, the marginal
distribution of v4 is uniformly random on the set V (KM) \ {x, y}.

For distinct indices i, j, ℓ ∈ JkK, let Ei,j,ℓ be the event that the edges vivj and vivℓ receive
the same color. We wish to estimate Pr(Ei,j,ℓ). Given two distinct vertices x, y ∈ V (KM), we
begin by estimating Pr(Ei,j,ℓ | vi = x, vj = y). Given vi = x, vj = y, the event Ei,j,ℓ is simply
the event that χ(xvℓ) = χ(xy), where the only randomness remaining is in the choice of vℓ.
By assumption, x is incident to at most M/k4 edges in color χ(xy), and vℓ is a uniformly
random vertex in the set V (KM) \ {x, y}, hence

Pr(Ei,j,ℓ | vi = x, vj = y) ⩽
1

M − 2
· M
k4

⩽
2

k4
.

2In fact, it is not hard to show that most of the 203 cases are actually impossible, so the true number of
cases is much smaller.
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Since the same upper bound holds for Pr(Ei,j,ℓ | vi = x, vj = y) for all x, y, the same bound
holds for Pr(Ei,j,ℓ). More formally, by the law of total probability, we have

Pr(Ei,j,ℓ) =
∑
x,y

Pr(Ei,j,ℓ | vi = x, vj = y) Pr(vi = x, vj = y) ⩽
2

k4

∑
x,y

Pr(vi = x, vj = y) =
2

k4
.

Since the events Ei,j,ℓ and Ei,ℓ,j are the same, there are at most k3/2 such events we need to
consider. Hence, by the union bound, the probability that Ei,j,ℓ occurs for some triple i, j, ℓ

is at most k3

2
· 2
k4

= 1
k
⩽ 1

3
.

Similarly, for four distinct indices i, j, ℓ,m, let Ei,j,ℓ,m be the event that the edges vivj
and vℓvm receive the same color. For fixed vertices x, y, z, we now condition on the outcome
vi = x, vj = y, vℓ = z. By assumption, z has at most M/k4 neighbors in color χ(xy).
Once we condition, the event Ei,j,ℓ,m is just the event that χ(zvm) = χ(xy), where the only
randomness is in the choice of vm, which is uniform on a set of size M − 3. So we have

Pr(Ei,j,ℓ,m | vi = x, vj = y, vℓ = z) ⩽
1

M − 3
· M
k4

⩽
2

k4
.

Again applying the law of total probability, we conclude that Pr(Ei,j,ℓ,m) ⩽ 2
k4

. The total
number of such events is at most k4/4, since we obtain the same event if we swap i, j or ℓ,m.
So by the union bound, the probability that Ei,j,ℓ,m happens for some 4-tuple (i, j, ℓ,m) is at

most k4

4
· 2
k4

= 1
2
.

In total, we find that the probability that v1, . . . , vk span a rainbow Kk is at least 1 −
1
3
− 1

2
> 0, hence there is a rainbow Kk in the coloring.

Now that we have Lemma 11.2.3, we can proceed with the proof of Theorem 11.2.2. Before
doing so, it’s worth thinking of an alternative way of presenting the proof of Theorem 2.1.4.
To show that r(k) ⩽ 4k, let us fix a 2-coloring of E(KN), where N = 4k = 22k. We pick an
arbitrary vertex v1. At least half of its incident edges are of the same color, which we call c1.
We now restrict to the c1-colored neighborhood S1 of v1, and pick from there an arbitrary
vertex v2. At least half of its incident edges in S1 are of the same color, say c2. We let S2 be
this neighborhood, and proceed in this fashion. Since

|Si+1| ⩾
⌈
|Si| − 1

2

⌉
for all i, we conclude that |Si| ⩾ 22k−i for all i. Hence we can continue this process for at
least 2k steps, to produce vertices v1, . . . , v2k and colors c1, . . . , c2k. Again by the pigeonhole
principle, at least k of these colors must be the same, say ci1 , . . . , cik are all red. But by the
way we constructed this sequence, this shows that vi1 , . . . , vik form a red Kk.

The proof of Theorem 11.2.2 uses a very similar argument, which we will now see.

Proof of Theorem 11.2.2. Let N = k4k
2
, and fix an arbitrary coloring of E(KN). We let

S0 = V (KN). We now run the following process, for all i ⩾ 1.
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ETH Zürich Ramsey Theory—Spring 2024 Yuval Wigderson

1. If |Si−1| < 2, stop the process.

2. If every vertex in Si−1 is incident to at most |Si−1|/k4 edges in each color, we apply
Lemma 11.2.3 to Si−1 with M = |Si−1| ⩾ 2. We conclude that Si−1 contains a rainbow
Kk, completing the proof.

3. If not, there is some vertex vi ∈ Si−1 and some color ci such that vi is incident to at
least |Si−1|/k4 edges of color ci in Si−1. We let Si be the ci-colored neighborhood of vi
in Si−1.

4. Increment i by 1 and return to step 1.

If we ever find a rainbow Kk in this process, we are done, so we may assume that that never
happens. Note that as long as the process continues, we have that |Si| ⩾ |Si−1|/k4, so by
induction we have that |Si| ⩾ k4(k

2−i). Hence we can continue this process at least until step
i − 1 = k2 − 1. In other words, this process produces a sequence v1, . . . , vk2 of vertices and
c1, . . . , ck2−1 of colors, with the property that each vi is adjacent in color ci to all vj with
j > i.

Suppose first that k of the colors c1, . . . , ck2−1 are equal, say ci1 , . . . , cik are all red. Then
vi1 , . . . , vik form a monochromatic red Kk, and we are done. But if this does not happen,
then at least k different colors must appear in the list c1, . . . , ck2−1, say cj1 , . . . , cjk are all
distinct. Then vj1 , . . . , vjk form a starry Kk, and we are again done.

Theorem 11.2.2 states that ER(k) ⩽ k4k
2

= 24k2 log k. How good is this bound? The best
known lower bound, which is off by a logarithmic factor in the exponent, is given by the
following simple proposition.

Proposition 11.2.4. We have

ER(k) ⩾ r(k; k − 2).

In particular, using Proposition 2.2.5, we find that

ER(k) ⩾ 2
1
4
k2−k.

Actually, using the techniques of Chapter 3, one can improve the constant factor 1
4
, since

(3.2) states that

r(k; k − 2) ⩾
(2(k−3)/2)k

4(2k)k−4(2(k−4)/8)k
=

2
3
8
k2

4(2k)k−42k
= 2( 3

8
−o(1))k2 .

Similarly, using Lemma 3.3.2 one can get a further small improvement on the constant
3
8
. But it remains a major open problem to close the logarithmic gap in the estimates

2Ω(k2) ⩽ ER(k) ⩽ 2O(k2 log k).
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Proof of Proposition 11.2.4. Let N = r(k; k − 2) − 1, and consider a (k − 2)-coloring χ of
E(KN) with no monochromatic Kk. Note that a starry coloring of Kk must use k−1 colors,
so there is also no starry Kk in χ, since χ only uses k−2 colors. Similarly, a rainbow coloring
of Kk must use

(
k
2

)
> k − 2 colors, hence there is no rainbow Kk in χ either. This shows

that ER(k) > N , proving the proposition.

Note that this construction rules out the existence of starry or rainbow Kk in a pretty
silly fashion, by simply using too few colors to allow these structures to appear. However,
as far as I know, this is the only technique that anyone has ever found for lower-bounding
ER(k); in particular, no one knows of a “smarter” way of excluding rainbow or starry Kk. It
seems quite possible that if one could come up with such a technique, and thus color with,
say, Θ(k log k) colors while still avoiding a starry Kk, then one could close the logarithmic
gap between the lower and upper bounds on ER(k).
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Chapter 12

The book algorithm

12.1 What are books, and why do they matter?

In this chapter, we will see a proof sketch of Theorem 2.3.3, the breakthrough result of
Campos–Griffiths–Morris–Sahasrabudhe [13] showing that r(k) ⩽ (4− δ)k for some absolute
constant δ > 0. The key idea in the proof is a process for finding large monochromatic
cliques in colorings of E(KN), which they termed the book algorithm.

To start with, we need to define book graphs.

Definition 12.1.1. The book graph Bt,m consists of a copy of Kt, plus m additional vertices
which are adjacent to all vertices of the Kt. Equivalently, Bt,m is obtained from Kt,m by
adding in all the

(
t
2

)
possible edges in the side of size t. Equivalently, Bt,m consists of m

copies of Kt+1 which are glued along a common Kk.

Note that two important special cases are t = 1, where B1,m is simply the star graph
K1,m, and m = 1, where Bt,1 is simply the clique Kt+1. The “book” terminology comes from
the case t = 2, in which case B2,m consists of m triangles sharing an edge, which kind of
looks like a book with m triangular pages. Continuing this analogy, the Kt in Bt,m is called
the spine, and the m additional vertices of Bt,m are called the pages.

As it turns out, book graphs are used (implicitly or explicitly) in essentially every known
proof of Ramsey’s theorem. In particular, even Ramsey’s [109] original proof proved the
finiteness of r(k) by an auxiliary double induction, which showed that r(Bt,m) is finite for
all t,m. However, for our purposes, the relation between books and r(k) is given by the
following simple lemma.

Lemma 12.1.2. Suppose that a two-coloring χ of E(KN) contains a monochromatic red
copy of Bt,m, where m ⩾ r(k − t, ℓ). Then χ contains a red Kk or a blue Kℓ.

Proof. Let A be the spine of the book, and let Y be its pages. By assumption, |Y | = m ⩾
r(k − t, ℓ), so Y contains a blue Kℓ or a red Kk−t. In the former case we are done, and in
the latter case, we may add A to the red Kk−t to obtain a red Kk.
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If this proof looks familiar, it should! In fact, if you think about it, the t = 1 case of
this lemma is exactly the proof of Theorem 2.1.4. Indeed, in that proof, we showed that if a
coloring contains (say) a red star with r(k− 1, ℓ) leaves, then it contains a red Kk or a blue
Kℓ. The only new idea in Lemma 12.1.2 is that we don’t need to consider a single vertex
(i.e. the case t = 1), but may take an arbitrary book.

Although the idea of Lemma 12.1.2 basically goes back to the work of Erdős and Szekeres
[52], it was first formulated in this language by Thomason [138]. In particular, Thomason
noted that Lemma 12.1.2 immediately implies that

r(k) ⩽ r(Bt,m), where m = r(k − t, k). (12.1)

Indeed, by the definition of r(Bt,m), every two-coloring of E(KN), where N = r(Bt,m),
contains a monochromatic copy of Bt,m, which then yields a monochromatic copy of Kk by
Lemma 12.1.2. As such, Thomason1 [138] raised the question of determining r(Bt,m). In
particular, Thomason made the following bold conjecture.

Conjecture 12.1.3 (Thomason [138]). r(Bt,m) ⩽ 2t(m+ t− 2) + 2 for all m, t ⩾ 1.

At the moment, Conjecture 12.1.3 is wide open (and there does not seem to be strong
evidence either in favor or against it). Note that this conjecture is extremely powerful, since
even the m = 1 case implies that r(t+1) = r(Bt,1) ⩽ t2t, a much stronger upper bound than
anything we currently know. However, an asymptotic version of the conjecture was recently
proved by Conlon [21].

Theorem 12.1.4 (Conlon [21]). For every fixed t ⩾ 1, we have r(Bt,m) = (2t + o(1))m as
m→ ∞.

It is fairly straightforward to show that a random coloring on (2t−o(1))m vertices contains
no monochromatic Bt,m with positive probability, hence the main result in Theorem 12.1.4
is the upper bound. In particular, Theorem 12.1.4 implies that r(Bt,m) ⩽ 2t+1m for any
m which is sufficiently large in terms of t. Plugging this into (12.1), we find that if k is
sufficiently large in terms of t (so that m = r(k − t, k) is sufficiently large), then

r(k) ⩽ 2t+1m = 2t+1r(k − t, k) ⩽ 2t+1

(
2k − t

k

)
, (12.2)

where the final inequality uses Theorem 2.1.4. Unfortunately, Conlon’s proof of Theo-
rem 12.1.4 uses Szemerédi’s regularity lemma, and therefore requires that m is of tower
type in t for this to hold. This in turn means that k must also be of tower type in t, and
hence (12.2) gives no meaningful improvement to the Erdős–Szekeres bound of r(k) ⩽

(
2k
k

)
.

Conlon’s proof was subsequently improved in [29], so that m is “only” required to be of

order roughly 222
t25

for (12.2) to hold, but this is still far too weak to meaningfully improve
Theorem 2.1.4.

1At roughly the same time, the same question was also raised by Erdős, Faudree, Rousseau, and Schelp
[41], although their motivation was somewhat different.
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Nonetheless, Lemma 12.1.2 was used in what were, prior to the work of Campos–Griffiths–
Morris–Sahasrabudhe [13], the best known upper bounds on r(k), due to Conlon [19] and Sah
[119], who showed2 that r(k) ⩽ 4k−Ω((log k)2). I will not discuss these techniques in any detail,
as they are complex and no longer the state of the art. But the basic idea is to derive, from
the failure of the Erdős–Szekeres argument to yield a stronger bound, good quasirandomness
properties of a given coloring of E(KN). By then applying something like the embedding
lemma, Lemma 6.1.3, one can use this quasirandomness to find a monochromatic Bt,m in
the coloring, and then apply Lemma 12.1.2 to complete the proof.

12.2 The algorithms

One of the many new ideas introduced by Campos–Griffiths–Morris–Sahasrabudhe [13] is to
use Lemma 12.1.2 directly, rather than its consequences (12.1) and (12.2). Namely, rather
than searching for some specific book Bt,m, they define an exploration algorithm for finding
some book, and then prove that regardless of which book is found, the parameters involved
are good enough to plug into Lemma 12.1.2. We now describe this algorithm.

We henceforth fix a two-coloring χ of E(KN). We assume that χ has no monochro-
matic Kk, and our goal is to eventually obtain a contradiction if N is sufficiently large,
namely at least (4− δ)k. Before describing the book algorithm of Campos–Griffiths–Morris–
Sahasrabudhe, we describe for comparison the “Erdős–Szekeres algorithm”, which is essen-
tially an alternative way of presenting the proof of Theorem 2.1.4.

12.2.1 The Erdős–Szekeres algorithm

In the Erdős–Szekeres algorithm, we maintain three sets A,B,X; A and B will grow through-
out the process, whereas X will shrink. The key property we maintain is that (A,X) is a
red book, and (B,X) is a blue book; that is, A is a red clique, B is a blue clique, all edges
between A and X are red, and all edges between B and X are blue. To initialize the process,
we set A = B = ∅, and X = V (KN). We now repeatedly run the following steps.

1. If |X| ⩽ 1, |A| ⩾ k, or |B| ⩾ k, stop the process.

2. Pick a vertex v ∈ X, and check whether v has at least 1
2
(|X| − 1) red neighbors in X.

3. If yes, move v to A and shrink X to the red neighborhood of v. That is, update
A→ A ∪ {v} and X → X ∩NR(v), and keep B the same. Call this a red step.

4. If not, then v has at least 1
2
(|X| − 1) blue neighbors in X. We now move v to B,

and shrink X to the blue neighborhood of v. That is, update B → B ∪ {v} and
X → X ∩NB(v), and keep A the same. Call this a blue step.

5. Return to step 1.

2This bound is due to Sah [119], who managed to remove an extra log log k factor from the exponent in
the result of Conlon [19] by proving an optimized version of the embedding lemma in this setting.
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By the way we update the sets, we certainly maintain the key property that (A,X) and
(B,X) are red and blue books, respectively, throughout the entire process, since every time
we add a vertex v to A (resp. B), we shrink X to the red (resp. blue) neighborhood of v. The
basic observation driving the Erdős–Szekeres argument is that if N ⩾ 4k+o(k), then when this
process stops, we necessarily produce a monochromatic Kk. Indeed, if we ever stop because
|A| ⩾ k or |B| ⩾ k, then we definitely have such a monochromatic Kk. However, since
|A| + |B| increases by 1 through every iteration of the process, we can do at most 2(k − 1)
steps if we never reach |A| ⩾ k or |B| ⩾ k. This in turn means that X shrinks by at most a
factor3 of 22(k−1)+o(k), since it shrinks by a factor of 2 + o(1) at every step. Thus, if we start
with N = 22k+o(k), then we will never terminate the process because X becomes too small,
and thus can only terminate when we find a monochromatic Kk.

For future reference, it is good to observe that also the off-diagonal Erdős–Szekeres bound
r(k, ℓ) ⩽

(
k+ℓ
ℓ

)
can be obtained in this way. To do so, let γ = ℓ

k+ℓ
. Then we can modify the

Erős–Szekeres algorithm as follows:

1. If |X| ⩽ 1, |A| ⩾ k, or |B| ⩾ ℓ, stop the process.

2. Pick a vertex v ∈ X, and check whether v has at least (1 − γ)|X| red neighbors in X.

3. If yes, move v to A and shrink X to the red neighborhood of v. That is, update
A→ A ∪ {v} and X → X ∩NR(v), and keep B the same. Call this a red step.

4. If not, then v has at least4 γ|X| blue neighbors in X. We now move v to B, and shrink
X to the blue neighborhood of v. That is, update B → B ∪ {v} and X → X ∩NB(v),
and keep A the same. Call this a blue step.

5. Return to step 1.

The point now is that we obtain the red Kk or blue Kℓ if |A| ⩾ k or |B| ⩾ ℓ, and thus we
may assume that we do fewer than k red steps and fewer than ℓ blue steps. X shrinks by a
factor of 1 − γ + o(1) at every red step, and by a factor of γ + o(1) at every blue step, so at
the end of the process we have

|X| ⩾ 2−o(k)(1 − γ)kγℓN.

On the other hand, the process only terminates if |X| ⩽ 1, so this implies N ⩽ 2o(k)(1 −
γ)−kγ−ℓ. One can check, by Stirling’s approximation, that(

k + ℓ

ℓ

)
= 2o(k)γ−ℓ(1 − γ)−k

for all ℓ ⩽ k, and hence this is a contradiction if we choose N sufficiently large, namely of
the form 2o(k)

(
k+ℓ
ℓ

)
. This recovers Theorem 2.1.4 up to the subexponential error term.

3For the rest of this chapter, we will start ignoring the additive −1 terms arising from removing a vertex
from X. Of course they need to be carefully dealt with to obtain a correct proof, but they will always
contribute a sub-exponential error, and we will simply absorb them in the o(k) in the exponent.

4Again, we have started dropping the −1 terms, and will now stop commenting on this.
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12.2.2 The book algorithm

We are now ready to describe the book algorithm of Campos–Griffiths–Morris–Sahasrabudhe.
As before, we fix a coloring χ of E(KN), and assume that χ contains no monochromatic Kk;
our goal is to obtain a contradiction if N is sufficiently large. Throughout the process, we
maintain four disjoint sets A,B,X, Y , with the following properties: (A,X) is a red book,
(B,X) is a blue book, and (A, Y ) is another red book. Thus, the only difference from the
Erdős–Szekeres algorithm is the presence of the new set Y . At the end of the process, our goal
is to output the pair (A, Y ), and to prove that t = |A| and m = |Y | satisfy m ⩾ r(k − t, k),
so that we can apply Lemma 12.1.2 to obtain a contradiction. We initialize the process
with A = B = ∅, and X ⊔ Y an arbitrary partition of V (KN). By permuting the colors
if necessary, we may assume that at the beginning of the process, at least half the edges
between X and Y are red.

A

B

X Y

Note that there is a fundamental asymmetry between the colors, in marked contrast to
the Erdős–Szekeres proof. We will really insist on finding a red book (A, Y ), and will do our
best to build it. Only when doing so is really impossible will we take blue steps.

Because of this, our preferred move would be taking a red step. That is, we would like
to pick a vertex v ∈ X, move v to A, and update X → X ∩ NR(v). Moreover, since we
need to maintain that (A, Y ) is a red book, we will also need to update Y → Y ∩NR(v). In
particular, when deciding whether to add a vertex v ∈ X to A, we need to check not only
that v has many red neighbors in X—so that X doesn’t shrink too much—but also that
v has many red neighbors in Y , so that Y doesn’t shrink too much. In particular, we see
that in addition to tracking the sizes of A,B,X, and Y , we will also need to track a fifth
parameter, the red edge density between X and Y . We denote this density by

p := dR(X, Y ) =
eR(X, Y )

|X||Y |
,

and recall that at the beginning of the process we have p ⩾ 1
2
. Note that every time we add

a vertex to A or to B (and thus have to shrink X and potentially Y ), this red density p
might change. For our simplified exposition of the proof of Theorem 2.3.3, we will make the
following (completely unjustified) assumption.
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Assumption 12.2.1. Throughout the entire process, every vertex in X has exactly p|Y | red
neighbors in Y , and every vertex in Y has exactly p|X| red neighbors in X.

In other words, this assumption says that the bipartite graph of red edges between X
and Y is bi-regular. We stress again that X, Y, and p change throughout the process, but
Assumption 12.2.1 asserts that whenever such a change happens, we magically end up back
with the same bi-regularity.

While Assumption 12.2.1 is clearly a bogus assumption, it is actually possible to (es-
sentially) make it rigorous. Indeed, the definition of p implies that the vertices in X have,
on average, p|Y | red neighbors in Y . As we’ve seen in a few places (e.g. Lemma 5.2.2
and Theorem 8.1.4), one can often convert such average degree conditions to minimum or
maximum degree conditions, by deleting a few “outlier” vertices. In the rigorous proof of
Theorem 2.3.3, one must repeatedly “clean” X by removing such outliers, and thus one can
indeed maintain an approximate version of Assumption 12.2.1, at least ensuring that all
vertices in X have roughly the same degree5. However, for our exposition, we ignore these
important technicalities, and stick with Assumption 12.2.1.

The two basic steps in the book algorithm will again be red steps and blue steps, as in
the Erdős–Szekeres algorithm. Note that, when we perform a blue step (moving v ∈ X to B
and updating X → X ∩NB(v)), we do not need to update Y at all, since these changes do
not affect the fact that (A, Y ) is a red book. In particular, thanks to Assumption 12.2.1, the
red density between X and Y remains unchanged during a blue step, since all the remaining
vertices in X still have exactly p|Y | red neighbors in Y . However, as discussed above, red
steps can affect p, since in a red step we update X → X ∩NR(v) and Y → Y ∩NR(v), and
thus our value of p is updated to

p′ := dR(X ∩NR(v), Y ∩NR(v)).

Let us call a vertex prosperous if p′ ⩾ p−α, for some parameter α we will shortly choose. We
will then perform a red step if there is a vertex v ∈ X which is prosperous, and which has at
least 1

2
|X| red neighbors in X. In such a step, we increase |A| by 1, decrease |X| by a factor

of 2, decrease Y by a factor of p (since v has p|Y | red neighbors in Y , by Assumption 12.2.1),
and update p to at least p− α.

In the Erdős–Szekeres algorithm, we were always able to do either a red or a blue step,
since every vertex in X has at least 1

2
|X| neighbors in X in at one of the colors. However, if

we require that our red vertex v be prosperous, then we may be in a position where neither
a red nor a blue step is possible. Namely, we get stuck if all vertices in X have at least 1

2
|X|

red neighbors in X, but none of them is prosperous.
In this case, we implement a density-boost step, which is one of the other main innovations

of Campos–Griffiths–Morris–Sahasrabudhe. Pick a vertex v ∈ X, and consider the following
picture.

5It is much harder to ensure degree-regularity in both X and Y simultaneously. Luckily, it turns out that
degree-regularity in Y is substantially less important in the argument, and in the formal proof one doesn’t
even ensure an approximate version of it.
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U

X Y

v

T

S

red density

< p− α

Since v is not prosperous, the red edge density between T := NR(v)∩X and U := NR(v)∩Y
must be less than p − α. However, by Assumption 12.2.1, every vertex in U has p|X| red
neighbors in X. Therefore,

p|X||U | = eR(X,U) = eR(T, U) + eR(S, U) < (p− α)|T ||U | + eR(S, U).

Rearranging, we find that

eR(S, U) > |U | (p|X| − (p− α)|T |) .

Let β := |S|/|X|, so that β records what fraction of the edges from v to the rest of X are
blue. Then |S| = β|X| and |T | = (1 − β)|X|, and the above can be rewritten as

eR(S, U) > |U ||S|
(
p

β
− (p− α)(1 − β)

β

)
= |S||U |

(
p+ α

1 − β

β

)
,

which implies

dR(S, U) > p+ α
1 − β

β
. (12.3)

Note too that since we cannot do a blue step, we must have β ⩽ 1
2
, implying that dR(S, U) >

p + α. In other words, in the bad situation where we cannot perform a red or a blue step,
we can perform a density-boost step, where we replace X by S = NB(v) ∩X, replace Y by
U = NR(v) ∩ Y , and thus boost the density from p to at least p+ α 1−β

β
⩾ p+ α.

Note that density-boost steps are expensive, in that they shrink X and Y , but don’t
actually make progress by increasing |A| or |B|. In particular, we don’t a priori have any
control on how many density-boost steps we perform. Luckily, there is a simple fix to this
problem: since we are anyway updating X → X ∩ NB(v) in a density-boost step, we may
add v to B for free, while maintaining the property that (B,X) is a blue book. That is, a
density-boost step can also be made a type of blue step, and thus we necessarily perform at
most k density-boost steps without creating a blue Kk.
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The final piece we need before analyzing the book algorithm is to choose α, which de-
termines the threshold above which a vertex is considered prosperous. Note that every red
step may decrease p by α, so if we end up doing up to k red steps, we may decrease p from
its initial value of 1

2
to 1

2
− αk. Moreover, whenever we do a red step, we also shrink Y by a

factor of (the current value of) p. In particular, if p ever drops below (say) 1
4
, we are in big

trouble: then Y shrinks by a factor of 4 at every step, and we have no real hope of proving
a bound stronger than r(k) ⩽ 4k. As such, we want to pick α ⩽ ε/k, so that even after
doing k red steps, we have not meaningfully decreased p below its initial value. Here, one
can think of ε as a tiny absolute constant, although in the final analysis we will actually pick
ε to tend to 0 slowly with k.

Unfortunately, there is a trade-off. A density-boost step only increases p by α, so if we
pick α ⩽ ε/k, then even if we do k density-boost steps (the maximum possible number),
we will only increase the density by ε, which we just argued is some insignificant amount.
In particular, we can just pretend that the density p stays fixed at 1

2
throughout the entire

process. But in this case, we are basically back to the Erdős–Szekeres setting: in the worst
case we will do k red steps and k blue or density-boost steps, each time shrinking |X| by
roughly a factor of 2. As such, we will not be able to prove any bound better than r(k) ⩽ 4k.
The place where the book algorithm wins over the Erdős–Szekeres argument is in obtaining
a stronger upper bound on the number of density-boost steps.

The way to ensure this is to pick α adaptively. Indeed, suppose that at some point in
the process, we have reached a red density of, say, p = 0.51. At this point, it doesn’t make
sense to have the cutoff be α = ε/k—we wouldn’t even mind losing an absolute constant of
1/100 in the density, since that will only bring us back to our original value of p! So we will
instead pick α to be dependent on our current value of p; namely, we set

α(p) :=

{
ε/k if p ⩽ 1

2
+ 1

k
,

ε(p− 1
2
) otherwise.

(12.4)

Again, the point of this is that, if we are at some step of the process where α > 1
2
, then

we can afford to lose more in the density without every dropping p into the “danger zone”
of being substantially smaller than 1

2
. The advantage of this is that the amount we win in

a density-boost step is itself proportional to α = α(p). So if we have already done some
number of density-boost steps, such that p > 1

2
, each subsequent density-boost boosts the

density even further, at an exponential rate.
With all of these preliminaries, we are finally able to define the book algorithm6.

1. If |X| ⩽ 1, |A| ⩾ k, or |B| ⩾ k, stop the process.

2. Let p = dR(X, Y ) be the current red density between X and Y . Define α = α(p) as in
(12.4), where ε is some fixed parameter throughout the process.

6Actually, the algorithm described here is still incomplete, and a substantial simplification of the actual
algorithm defined and analyzed in [13]. For technical reasons I will not go into, things need to be set up
somewhat differently to actually deal with the issues arising from the fact that Assumption 12.2.1, as well
as the further simplifying assumptions we will shortly make, are not actually true.

131
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3. Check if some vertex v ∈ X has at least 1
2
|X| blue neighbors in X. If yes, perform a

blue step, by updating

A→ A, B → B ∪ {v}, X → X ∩NB(v), Y → Y,

and return to step 1.

4. Check if some vertex v ∈ X is prosperous, meaning that dR(NR(v) ∩X,NR(v) ∩ Y ) ⩾
p− α. If yes, perform a red step, by updating

A→ A ∪ {v}, B → B, X → X ∩NR(v), Y → Y ∩NR(v),

and return to step 1.

5. In the remaining case, every vertex v ∈ X is not prosperous, and has β|X| blue
neighbors in X, for some β ⩽ 1

2
. We now perform a density-boost step, by updating

A→ A, B → B ∪ {v}, X → X ∩NB(v), Y → Y ∩NR(v),

and return to step 1.

12.3 Analysis of the book algorithm

Suppose that, when the book algorithm ends, we have done t red steps, s density-boost
steps, and b blue steps. We may assume that t < k and that s + b < k, since otherwise
we have found a monochromatic Kk. We now collect a number of estimates on the various
parameters associated with the process.

Lemma 12.3.1. We have p ⩾ 1
2
− ε throughout the entire process.

Proof. As discussed above, every blue step keeps p constant (by Assumption 12.2.1), every
density-boost step can only increase p, and every red step decreases p by at most α(p).
Additionally, the choice of α(p) shows that p − α(p) ⩾ 1

2
whenever p ⩾ 1

2
+ 1

k
, whereas

p − α(p) = ε/k whenever p ⩽ 1
2

+ 1
k
. Since we do t ⩽ k red steps, p can never drop below

1
2
− t(ε/k) ⩾ 1

2
− ε.

It will now be convenient to pick ε = k−1/4, although we note that this choice is not
particularly important; many functions of k which tend to 0 neither too slowly or too quickly
would work.

Lemma 12.3.2. At the end of the process, we have |Y | ⩾ 2−t−s−o(k)N .

Proof. Y is unchanged by every blue step. On the other hand, during each red or density-
boost step, we decrease Y by a factor of p, by Assumption 12.2.1. By Lemma 12.3.1, we
have that p ⩾ 1

2
− ε at every such step, hence

|Y | ⩾
(

1

2
− ε

)t+s

· N
2

= 2−t−s−o(k)N,

where we plug in our choice of ε and recall that we start the process with |Y | = N/2.
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We next turn to bounding |X| at the end of the process. Just as in the Erdős–Szekeres
algorithm, the main point of this is to estimate how many steps we do, since we recall that
the process terminates when |X| ⩽ 1.

Recall that at each density-boost step, we shrink X by a factor of β, where β is defined
as the fraction |NB(v) ∩ X|/|X| of blue neighbors of the currently chosen vertex v. Let
β1, . . . , βs be the sequence of values of β for each of the s blue steps. Define β by

1

β
=

1

s

s∑
i=1

1

βi
.

Lemma 12.3.3. At the end of the process, we have

|X| ⩾ 2−t−b−o(k)βsN.

Proof. Every red or blue step shrinks X by at most a factor of 2, hence the factor of 2−t−b.
On the other hand, the ith density-boost step decreases |X| by a factor of βi. The AM-GM
inequality implies that

1

β
=

1

s

s∑
i=1

1

βi
⩾

(
s∏

i=1

1

βi

)1/s

,

hence the contribution of the density-boost steps is

s∏
i=1

βi ⩾ βs.

Together with the fact that we begin the process with |X| = N/2, this yields the claimed
bound.

The final, and perhaps most important, result we need is an estimate on the number
of density-boost steps. As discussed above, we can get a good estimate on this quantity
becuase of our “dynamic” choice of α; this is the content of the next lemma, which is called
the zig-zag lemma in [13].

Lemma 12.3.4. We have
s∑

i=1

1 − βi
βi

⩽ t+ o(k).

We won’t give a full proof of Lemma 12.3.47, but the following sketch captures the main
ideas.

7In fact, given all of the places we cheated in setting up the book algorithm, Lemma 12.3.4 is probably
not even true as stated here.
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Proof sketch of Lemma 12.3.4. For the moment, let us assume that we stay in the regime
p ⩾ 1

2
+ 1

k
. It will be more convenient to reparametrize p, by defining q := p − 1

2
. By our

choice of α in (12.4), we have that α(p) = εq.
Suppose we do one step of the book algorithm, and thus update p to some new value p′

(and update q to q′ = q − 1
2
). If the step we do is a blue step, then by Assumption 12.2.1,

the density p does not change, hence p′ = p and q′ = q. If, instead, we do a red step, then v
is prosperous, and hence p′ ⩾ p− α(p). This implies that q′ ⩾ q − α(p) = q − εq = (1 − ε)q.
Finally, if this step is the ith density-boost step, then by (12.3) we have that

p′ ⩾ p+ α(p)
1 − βi
βi

and thus

q′ ⩾ q + α(p)
1 − βi
βi

= q

(
1 + ε

1 − βi
βi

)
.

Putting this all together, we conclude that at each step of the algorithm, we have

q′

q
⩾


1 when we do a blue step,

1 − ε when we do a red step,

1 + ε1−βi

βi
when we do the ith density-boost step.

(12.5)

Let qfinal denote the value of q at the end of the algorithm, and let qinitial be the value of q at
the beginning of the algorithm. Multiplying (12.5) over all steps of the algorithm, we find
that

qfinal
qinitial

⩾ (1 − ε)t
s∏

i=1

(
1 + ε

1 − βi
βi

)
≈ e−εt exp

(
ε

s∑
i=1

1 − βi
βi

)
, (12.6)

where we approximate 1 + x and 1 − x as ex and e−x, respectively, an approximation that
is valid for sufficiently small8 x. We have that qfinal ⩽ 1

2
, since p ⩽ 1 throughout the whole

process. On the other hand, since we are assuming that p ⩾ 1
2

+ 1
k

throughout, we have that
pinitial ⩾ 1

k
. Therefore, qfinal/qinitial ⩽ k

2
⩽ k. Plugging this into (12.6) and taking logarithms,

we find that

ln k ⩾ ln

(
qfinal
qinitial

)
≳ ε

(
−t+

s∑
i=1

1 − βi
βi

)
,

implying that
s∑

i=1

1 − βi
βi

≲ t+
ln k

ε
= t+ o(k),

where we plug in our choice of ε = k−1/4.

8This approxiamtion can be made rigorous (especially for ε, which is sufficiently small for this to be OK),
but we’re still cheating here. We have no guarantee that ε 1−βi

βi
is small, since we have no control over βi. A

real argument would actually need to separate out the contribution from the steps where βi is very small,
and thus where such an approximation is not valid.
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As an immediate consequence of Lemma 12.3.4, we obtain our upper bound on the
number s of density-boost steps.

Lemma 12.3.5. We have

s ⩽

(
β

1 − β

)
t+ o(k).

Equivalently,

β ⩾ (1 + o(1))
s

s+ t
.

Proof. We have that

1

s

s∑
i=1

1 − βi
βi

=
1

s

s∑
i=1

(
1

βi
− 1

)
= −1 +

1

s

s∑
i=1

1

βi
= −1 +

1

β
=

1 − β

β
.

Plugging this into Lemma 12.3.4 shows that

s =

(
β

1 − β

) s∑
i=1

1 − βi
βi

⩽

(
β

1 − β

)
(t+ o(k)).

Moreover, since each βi is at most 1
2
, we find that β/(1 − β) ⩽ 1, yielding the first claimed

bound. The second bound follows by solving for9 β.

We are now ready to put everything together. The process ends when |X| ⩽ 1, which by
Lemma 12.3.3 implies that

N ⩽ β−s2t+b+o(k) ⩽ β−s2t+(k−s)+o(k),

where we plug in the bound b + s ⩽ k, arising from the fact that B never becomes a blue
Kk. We now plug in the lower bound on β from Lemma 12.3.5 to find that

N ⩽

(
t+ s

s

)s

2k+t−s+o(k). (12.7)

At this point everything is in terms of the parameters s and t, which we expect to scale
linearly in k, so it is more convenient to reparametrize everything in terms of x := t/k, y :=
s/k, and C := logN

k
− 1, so that N = 2(1+C)k; our goal is to be able to pick C a little smaller

than 1 and still obtain a contradiction. In terms of these parameters, we can rewrite (12.7)
as

C − o(1) ⩽ (x− y) + y log

(
x+ y

y

)
=: G(x, y).

In other words, we would be done if we could prove that the maximum value of G(x, y) over
the square [0, 1]2 is strictly less than 1. However, this is not true, as shown on the following
contour plot; the maximum value of G is roughly 1.33.

9Again, there is some cheating going on here—one can only obtain the claimed asymptotic if s is not too
small as a function of k, in order to absorb the error terms. We will continue ignoring this issue.
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Of course, if we recall our original strategy, it is way too much to hope for that the maximum
of G is less than 1. Indeed, the whole point of the book algorithm was to output the book
(A, Y ), and to ensure that its parameters are good enough to apply Lemma 12.1.2.

What are the parameters of this book? Well, we have that |A| = t by definition, and

m := |Y | ⩾ 2−t−s−o(k)N

by Lemma 12.3.2. Moreover, by Lemma 12.1.2, we win if m ⩾ r(k − t, k). In other words,
we obtain a contradiction unless

N ⩽ 2t+s+o(k)r(k − t, k). (12.8)

By Theorem 2.1.4, we know that

r(k − t, k) ⩽

(
2k − t

k − t

)
.

A useful upper bound on binomial coefficients is that
(
a
b

)
⩽ 2aH(b/a), whereH(x) := −x log x−

(1 − x) log(1 − x) is the binary entropy function. Plugging this in, we find that

log r(k − t, k) ⩽ log

(
2k − t

k − t

)
⩽ (2k − t)H

(
k − t

2k − t

)
= k

[
(2 − x)H

(
1 − x

2 − x

)]
.

Taking logarithms of (12.8) and dividing by k shows that

C − o(1) ⩽ −1 + (x+ y) + (2 − x)H

(
1 − x

2 − x

)
=: F (x, y).

Putting all of this together, we are done if min{F (x, y), G(x, y)} < 1 for all x, y ∈ [0, 1].
Here is a contour plot of F :
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This looks great! The areas where F is large seem to be different from the areas where G
is large, so there should be no problem to show that their maximum is always strictly less
than 1. In fact, here are the regions where F > 1 and G > 1.

Uhhhhhh. . . that’s not good! There’s a big red region where both functions are greater
than 1, and our whole proof strategy fails. In fact, one can check that min{F (x, y), G(x, y)}
attains a maximum value of roughly 1.054, so this whole complex proof is only able to show
that r(k) ⩽ 22.054k ≈ 4.15k, which is worse than the simple argument in Theorem 2.1.4.
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12.4 Rescuing the argument

The fact that min{F (x, y), G(x, y)} > 1 for some (x, y) ∈ [0, 1]2 is a fundamental problem.
In order to solve it, we will use two tricks, both of which involve tweaking the book algorithm.
The first is to examine our criterion for deciding whether to do red or blue steps. Recall that,
as in the Erdős–Szekeres algorithm, we do a blue step if some vertex in X has at least 1

2
|X|

blue neighbors in X, and otherwise we do a red or density-boost step. In the Erdős–Szekeres
setting, this is the optimal choice—since the argument is symmetric in the two colors, it
would be strictly worse to use any other cutoff.

However, the book algorithm is highly asymmetric, so we should re-examine this assump-
tion. Recall that at the end of the process, we output the red book (A, Y ), where |A| = t and
|Y | ⩾ 2−t−s−o(k)N by Lemma 12.3.2. The fact that |Y | decays like 2−tN is unavoidable (and
best possible) by Theorem 12.1.4, but the fact that |Y | decays exponentially in s shows that
density-boost steps are very expensive, in terms of making this trade-off very bad. As such,
we should try to minimize the number s of density-boost steps we do, in terms of t. Since
Lemma 12.3.5 tells us that s ⩽ β

1−β
t+ o(k), the natural way to decrease s is to decrease β.

To achieve this, we do the following. We fix a number µ ∈ [0, 1], which will be fixed
throughout the argument. In step 3 of the book algorithm, we now perform a blue step
if some vertex in X has at least µ|X| blue neighbors in X; otherwise, we proceed to the
subsequent steps of the algorithm unchanged. An important effect of this choice is that now,
when we perform the ith density-boost step, the parameter βi is now constrained to be at
most µ, and thus also β ⩽ µ at the end of the process. In particular, if we pick µ < 1

2
, we

will have accomplished our goal of decreasing s relative to t. This suggests we should pick µ
very small, but of course there is a tradeoff—if µ is very small then every blue step decreases
|X| by a lot, and thus the process will terminate quickly, and we need to balance these two
effects.

In this modified book algorithm, Lemmas 12.3.1, 12.3.2, 12.3.4 and 12.3.5 remain true;
the only change is that Lemma 12.3.3 needs to be modified to the following statement,
reflecting the fact that each blue (resp. red) step shrinks X by a factor of µ (resp. 1 − µ) in
the worst case. The proof is otherwise identical to that of Lemma 12.3.3.

Lemma 12.4.1 (Modified Lemma 12.3.3). At the end of the process, we have

|X| ⩾ 2−o(k)(1 − µ)tµbβsN.

In particular, since b+ s ⩽ k, we have

|X| ⩾ 2−o(k)(1 − µ)tµk−sβsN.

Since the process terminates when |X| ⩽ 1, we conclude from Lemma 12.4.1 that

N ⩽ 2o(k)(1 − µ)−tµs−kβ−s ⩽ 2o(k)(1 − µ)−tµs−k

(
s+ t

s

)s

,
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where the final inequality follows from the lower bound on β in Lemma 12.3.5. Taking
logarithms and dividing by k, we conclude that

C − o(1) ⩽ −1 + x log

(
1

1 − µ

)
+ (1 − y) log

1

µ
+ y log

(
x+ y

y

)
=: Gµ(x, y).

Note that in the case µ = 1
2
, we precisely recover the previous function G, which of course

makes sense as we are then recovering the previous book algorithm. Here are contour plots
of Gµ for µ ∈ { 1

10
, 2
10
, 3
10
, 4
10
}, respectively.

And here are pictures of the regions where F > 1 and Gµ > 1, for µ ∈ { 1
10
, 2
10
, 3
10
, 4
10
}.

It looks like we’re already done at µ = 2
5
, but unfortunately we’re not: one can check that

min{F (x, y), G2/5(x, y)} attains a maximum value of 1.0017, hence we only obtain a bound
of r(k) ⩽ 4.006k. Here is a closer view of what happens at µ = 2

5
:

139
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But we’re definitely making progress! The bad red region is extremely small now, and our
maximum value of min{F,Gµ} is extraordinarily close to 1. Unfortunately, one can check
that no choice of µ will actually decrease this value below 1—which would complete the
proof—so another idea is needed.

12.4.1 Off-diagonal Ramsey numbers

So far, we have played with the parameter µ in order to move around the region where
Gµ > 1, and have almost succeeded in making it disjoint from the region where F > 1. We
will now try to tweak F , in order to move this latter region. Recall that the way we defined
F was in terms of an upper bound on r(k − t, k). If we can obtain a better upper bound
on r(k − t, k), then F will decrease, and we may be in business. In fact, we don’t need to
improve the upper bound on r(k − t, k) in all cases; it suffices to improve this upper bound
for pairs (k − t, k) near the problematic region where both F and G2/5 are greater than 1.
Since this problematic region is near x ≈ 0.75, we could hope to improve the upper bound
on r(k − t, k) where k − t ≈ 0.75k, or equivalently on r(k, ℓ) where ℓ ≈ k/4.

There is actually a good reason to expect this to work. Remember that in the Erdős–
Szekeres algorithm, as presented in Section 12.2.1, we choose whether to do red or blue steps
based on the cutoff γ = ℓ

k+ℓ
. If we just blindly import the same idea into the book algorithm,

it makes sense to set µ ≈ ℓ
k+ℓ

in order to upper-bound r(k, ℓ). In case ℓ ≈ k/4, we have

µ ≈ 1
5
. In our argument above, we saw that it is good to take µ small, except for the trade-off

that now X shrinks by a factor of µ for every blue step. However, in this regime, we will do
at most ℓ blue steps, and µℓ ≈ (1/5)k/4 ≈ 0.67k; in contrast, in the argument above, the blue
steps shrink X by (2/5)k = 0.4k, which is much smaller. Hence we may expect the trade-offs
to work well for us.

For completeness, here is our modified book algorithm, suited for upper-bounding r(k, ℓ).
We set µ = ℓ

k+ℓ
and ε = k−1/4. We initiate A = B = ∅, and X ⊔ Y an arbitrary partition of
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V (KN) into two equally-sized parts. Let p0 = dR(X, Y ) be the density of red edges between
X and Y at the beginning of the process, and define

α(p) :=

{
ε/k if p ⩽ p0 + 1

k
,

ε(p− p0) otherwise.
(12.9)

1. If |X| ⩽ 1, |A| ⩾ k, or |B| ⩾ ℓ, stop the process.

2. Let p = dR(X, Y ) be the current red density between X and Y . Define α = α(p) as in
(12.4).

3. Check if some vertex v ∈ X has at least µ|X| blue neighbors in X. If yes, perform a
blue step, by updating

A→ A, B → B ∪ {v}, X → X ∩NB(v), Y → Y,

and return to step 1.

4. Check if some vertex v ∈ X is prosperous, meaning that dR(NR(v) ∩X,NR(v) ∩ Y ) ⩾
p− α. If yes, perform a red step, by updating

A→ A ∪ {v}, B → B, X → X ∩NR(v), Y → Y ∩NR(v),

and return to step 1.

5. In the remaining case, every vertex v ∈ X is not prosperous, and has β|X| blue
neighbors in X, for some β ⩽ µ. We now perform a density-boost step, by updating

A→ A, B → B ∪ {v}, X → X ∩NB(v), Y → Y ∩NR(v),

and return to step 1.

Of course, Lemmas 12.3.4, 12.3.5 and 12.4.1 remain true in this setting. Unfortunately, there
is an additional complication introduced by moving to the diagonal setting. Before, when
we seeked to upper-bound r(k), we could assume that the initial red density p0 was at least
1
2
, by simply swapping the roles of the two colors if necessary. However, once we are in the

off-diagonal setting, this is no longer allowed, and we may have no control on p0. Let us
make another completely unjustified assumption.

Assumption 12.4.2. At the beginning of the process, we have p0 ⩾ k
k+ℓ

= 1 − µ.

Note that this is a natural assumption, since if the red edge density were substantially
smaller 1 − µ “everywhere”, then the simple Erdős–Szekeres algorithm should already be
able to prove a stronger upper bound than r(k, ℓ) ⩽

(
k+ℓ
ℓ

)
. In fact, one can essentially force

Assumption 12.4.2 to hold because of such an argument; if we start with p0 <
k

k+ℓ
, we can

run a number of steps of the Erdős–Szekeres algorithm, until we end up with p ⩾ k
k+ℓ

. If

this never happens, then the Erdős–Szekeres algorithm itself will prove that r(k, ℓ) ≪
(
k+ℓ
ℓ

)
.
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Given Assumption 12.4.2, we obtain the following modified versions of Lemmas 12.3.1
and 12.3.2. The proof is identical (recall the modified definition of α in (12.9)), and the
only other thing to note is that Y shrinks by a factor of p ⩾ 1 − µ − ε during every red or
density-boost step.

Lemma 12.4.3. We have p ⩾ p0− ε ⩾ (1−µ)− ε throughout the entire process. Therefore,
at the end of the process, we have

|Y | ⩾ (1 − µ)t+s−o(k)N.

With all of this setup, we are finally able to prove (modulo Assumptions 12.2.1 and 12.4.2,
and the sketchiness in the proof of Lemma 12.3.4) an exponentially-improved upper bound
on r(k, ℓ). The bound claimed below is actually stronger than anything proved in [13]; it
is very possible that this bound is stronger than anything that can actually be rigorously
proved without dozens of pages of computation, so you should take the theorem statement
with a grain of salt.

Theorem 12.4.4. We have r(k, ℓ) ⩽ 2− 1
3
k+o(k)

(
k+ℓ
ℓ

)
for all ℓ ⩽ k/4.

Proof. Let N = 2(1+C+o(1))k, and fix a 2-coloring of E(KN). Let us assume for contradiction
that there is no red Kk or blue Kℓ in this coloring. We apply the off-diagonal book algorithm
above, with µ = ℓ

k+ℓ
⩽ 1

5
. Note that this choice of µ implies that ℓ

k
= µ

1−µ
. If we never

output that A is a red Kk or B is a blue Kℓ, then the process only terminates when |X| ⩽ 1,
and we also have that b+ s ⩽ ℓ. Plugging this into Lemma 12.4.1, we find that

N ⩽ 2o(k)(1 − µ)−tµs−ℓβ−s ⩽ 2o(k)(1 − µ)−tµs−ℓ

(
s+ t

s

)s

. (12.10)

Note that we have plugged in the assumption b+ s ⩽ ℓ, which gives us the better exponent
s− ℓ on µ. Taking logarithms and dividing by k shows that

C − o(1) ⩽ −1 + x log

(
1

1 − µ

)
+

(
µ

1 − µ
− y

)
log

1

µ
+ y log

(
x+ y

y

)
=: G̃µ(x, y),

where the only difference between Gµ and G̃µ is the the term µ
1−µ

in the latter, which is
simply 1 in the former. It comes from the ℓ in the exponent; upon dividing by k we obtain
ℓ
k

= µ
1−µ

.
Additionally, by Lemma 12.4.3, we have

|Y | ⩾ (1 − µ)t+s+o(k)N.

If |Y | ⩾ r(k−t, ℓ), then we are done by Lemma 12.1.2, so we may assume that |Y | < r(k−t, ℓ).
Taking logarithms and dividing by k again shows that

C − o(1) ⩽ −1 + (x+ y) log

(
1

1 − µ

)
+

1

k
log r(k − t, ℓ). (12.11)
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By Theorem 2.1.4, we have

log r(k − t, ℓ) ⩽ log

(
k − t+ ℓ

k − t

)
⩽ (k − t+ ℓ)H

(
k − t

k − t+ ℓ

)
= k ·

(
1 − x+

µ

1 − µ

)
H

(
1 − x

1 − x+ µ/(1 − µ)

)
.

Plugging this into (12.11) shows that

C−o(1) ⩽ −1+(x+y) log

(
1

1 − µ

)
+

(
1 − x+

µ

1 − µ

)
H

(
µ/(1 − µ)

1 − x+ µ/(1 − µ)

)
=: F̃µ(x, y).

We are no longer trying to beat the bound r(k) ⩽ 4k, so our goal is no longer obtaining
a contradiction for some C < 1. Instead, we are comparing to 1

k
log
(
k+ℓ
ℓ

)
, which equals

(1 + µ
1−µ

)H(µ) + o(1). So what we would like to show is that for all µ ⩽ 1
5
, we have

min{F̃µ(x, y), G̃µ(x, y)} < µ
1−µ

H(µ) − δ for all x, y ∈ [0, 1], where δ > 0 is some absolute
constant that will end up in the exponent of N .

In fact, one can check that for µ ⩽ 1
5
, we may take δ as large as 1

3
. Indeed, here is a plot

of the regions where F̃µ >
µ

1−µ
H(µ)− 1

3
and G̃µ >

µ
1−µ

H(µ)− 1
3
, respectivey, for µ = 1

5
. One

can verify that the regions only move further apart as µ decreases, so µ = 1
5

is the worst
case.

This shows that we do indeed get a contradiction whenever C > µ
1−µ

H(µ) − 1
3
, proving the

bound

r(k, ℓ) ⩽ 2(1+ µ
1−µ

H(µ)− 1
3
+o(1))k = 2− 1

3
k+o(k)

(
k + ℓ

ℓ

)
for all ℓ ⩽ k

4
.
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12.4.2 Back to diagonal

Now that we have an upper bound on r(k, ℓ) for ℓ ⩽ k/4, we can finally complete the proof
of Theorem 2.3.3. We will actually prove the following bound; again, the exact statement
is slightly stronger than what is in [13], and should not be taken too literally, since there
are many parts of the proof that need to be made formal, and would likely lead to a worse
bound.

Theorem 12.4.5. We have r(k) ⩽ 2(2− 1
200

+o(1))k ≈ 3.986k.

Proof. Let N = 2(1+C+o(1))k, and fix a two-coloring χ of E(KN), which we may assume has
no monochromatic Kk. We run the book algorithm with k = ℓ and µ = 2

5
. Thanks to

Theorem 12.4.4 (plus Theorem 2.1.4), we know that

r(k − t, k) ⩽

{(
2k−t
k−t

)
if t < 3

4
k,

2− 1
3
k+o(k)

(
2k−t
k−t

)
if t ⩾ 3

4
k.

Recall that we obtain a contradiction if |Y | ⩾ r(k− t, k) at the end of the process, hence we
may assume that |Y | ⩽ r(k− t, k). Combining this with Lemma 12.3.210, we see that we get
a contradiction if

C − o(1) ⩽ −1 + (x+ y) +
1

k
log r(k − t, k)

⩽

{
−1 + (x+ y) + (2 − x)H(1−x

2−x
) if x < 3

4
,

−1 + (x+ y) − 1
3

+ (2 − x)H(1−x
2−x

) if x ⩾ 3
4

= F (x, y) − 1

3
1x⩾ 4

5

=: F̂ (x, y).

In particular, it suffices for us to prove that min{F̂ (x, y), G 2
5
(x, y)} ⩽ 1−δ for all x, y ∈ [0, 1],

where δ > 0 is a constant that will end up in the exponent in N .
This indeed works! Here are the plots of where F̂ and G 2

5
are greater than 1; the

second plot is just zoomed in to show the “dangerous area”, where the two regions no longer
intersect.

10We are back to the diagonal setting, so we may assume that p0 ⩾ 1
2 . Therefore Lemmas 12.3.1 and 12.3.2

are again valid.
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In fact, one can check that maxx,y∈[0,1] min{F̂ (x, y), G 2
5
(x, y)} < 0.995. Therefore, we obtain

a contradiction if C ⩾ .995 = 1 − 1
200

, proving that r(k) ⩽ 2(2− 1
200

+o(1))k, as claimed.
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step towards Erdős–Hajnal, 2023. Preprint available at arXiv:2301.10147.
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[45] P. Erdős and A. Hajnal, Ramsey-type theorems, Discrete Appl. Math. 25 (1989), 37–
52. Combinatorics and complexity (Chicago, IL, 1987).
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bin. 30 (2009), 1630–1645.

[57] J. Fox and B. Sudakov, Dependent random choice, Random Structures Algorithms 38
(2011), 68–99.

[58] H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on
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[66] R. L. Graham, V. Rödl, and A. Ruciński, On graphs with linear Ramsey numbers, J.
Graph Theory 35 (2000), 176–192.
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(Proc. Colloq., Balatonfüred, 1969), Colloq. Math. Soc. János Bolyai, vol. 4, North-
Holland, Amsterdam-London, 1970, 929–936.

[109] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2) 30 (1929),
264–286.
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[133] T. Szabó, On nearly regular co-critical graphs, Discrete Math. 160 (1996), 279–281.

[134] G. Szekeres and L. Peters, Computer solution to the 17-point Erdős-Szekeres problem,
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