1. (a) Prove that every 2-coloring of $E\left(K_{N}\right)$ contains a monochromatic N-vertex tree.
(b) Prove that for every $q \geqslant 2$, there exists some $\delta>0$ such that the following holds. In any q-coloring of $E\left(K_{N}\right)$, one of the color classes contains all of the trees on δN vertices.
2. Prove that the q-color Ramsey number $r(2,3, \ldots, q, q+1)$ satisfies the bounds

$$
2^{c q^{2}} \leqslant r(2,3, \ldots, q, q+1) \leqslant q^{C q^{2}}
$$

for some absolute constants $c, C>0$.
3. Prove that if N is sufficiently large, then the following holds. Among any N points in the plane, there are three of them that determine an angle greater than 179°.
4. Let G be a graph. The s-blowup of G, denoted $G[s]$, is the graph obtained by replacing each vertex of G by s vertices, and replacing each edge of G by a complete bipartite graph $K_{s, s}$. For example, here is a picture of $K_{3}[2]$:

(a) Prove that for every $s \geqslant 2$, there exists some $N=N(s)$ such that $K_{6}[N]$ is Ramsey for $K_{3}[s]$.
(b) Prove that $N(s)>2^{s}$ for all $s \geqslant 4$.
5. Let $k \geqslant 3$ and $N \geqslant 3 k$ be integers. Recall that k-AP is short for k-term arithmetic progression.
(a) Prove that there are at least $N^{2} /(6 k)$ distinct k-APs in $\llbracket N \rrbracket$.
(b) Let $A \subseteq \llbracket N \rrbracket$. Prove that A intersects at most $\binom{k}{2}|A|^{2} k$-APs in more than one point.
(c) Prove the canonical van der Waerden theorem, which states the following. For every $k \geqslant 3$, there exists some N such that the following holds. In any coloring of $\llbracket N \rrbracket$ with an arbitrary number of colors, there is a monochromatic or rainbow k-AP.
6. The Ramsey game is played between two players, called Builder and Painter. The game starts with an infinite set of vertices and no edges. At every turn, Builder selects a pair of vertices that are not joined by an edge, and builds an edge between them. Painter then immediately has to assign that edge a color, red or blue. The game ends when a monochromatic K_{k} is produced. Builder's goal is to end the game as soon as possible, while Painter's goal is to continue for as long as possible. The online Ramsey number, denoted $\widetilde{r}(k)$, is the minimum number of edges built during the game if both players play optimally.
(a) Prove that $\widetilde{r}(k) \geqslant \frac{1}{2} \cdot 2^{k / 2}$.
(b) Prove that $\widetilde{r}(k) \leqslant 4^{k}$.

