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1. (a) Prove that every 2-coloring of E(KN) contains a monochromatic N -vertex tree.

(b) Prove that for every q ⩾ 2, there exists some δ > 0 such that the following holds.
In any q-coloring of E(KN), one of the color classes contains all of the trees on
δN vertices.

Solution.

(a) We prove this by induction on N , with the base case N = 1 being trivial since no
edges are colored and the only 1-vertex tree has no edges. Now suppose the result
has been proved for N − 1, and consider a 2-coloring of E(KN). Fix a vertex
v ∈ V (KN). If all edges incident to v have the same color, then we have found a
monochromatic copy of the N -vertex tree K1,N−1, and we are done.

So we may assume that v is incident to at least one red and at least one blue edge,
say vu is red and vw is blue. Now consider the induced coloring on V (KN) \ {v}.
By the induction hypothesis, there is a monochromatic (N − 1)-vertex tree T in
this coloring. If it is red, then we may add v as a leaf to T , attached to u, and
obtain a red N -vertex tree. Similarly, if T is blue, then we may add v as a leaf
attached to w to obtain a blue N -vertex tree.

(b) There is nothing to prove if N = 1, so we may assume N ⩾ 2. We claim that
this result is true with δ = 1

4q
. Indeed, fix a q-coloring of E(KN). At least one of

the color classes, say red, has at least 1
q

(
N
2

)
edges. If we let G be the graph of red

edges, this implies that the average degree in G is at least 1
q
(N − 1) ⩾ N

2q
, where

we use our assumption N ⩾ 2 to conclude that N −1 ⩾ N
2
. By Lemma 5.2.2, this

implies that G has a subgraph G′ with minimum degree at least N
4q
.

We now claim that every tree on δN vertices is a subgraph of G′, and thus of G,
which means that the red color contains all all of the trees on δN vertices. To
prove this, fix a tree T on δN = N

4q
vertices. By Lemma 5.2.3, T is a subgraph of

G′, as claimed.
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2. Prove that the q-color Ramsey number r(2, 3, . . . , q, q + 1) satisfies the bounds

2cq
2

⩽ r(2, 3, . . . , q, q + 1) ⩽ qCq2

for some absolute constants c, C > 0.

Solution. Let R = r(2, 3, . . . , q, q + 1). By the monotonicity of Ramsey numbers, we
have that R ⩽ r(q + 1; q). Therefore, by Theorem 2.1.5, we have

R ⩽ r(q + 1; q) ⩽ qq(q+1) ⩽ q2q
2

,

which proves the upper bound with C = 2.

For the lower bound, we also apply monotonicity, as follows. Note that at least ⌊q/2⌋
of the numbers 2, 3, . . . , q + 1 are at least ⌊q/2⌋. Therefore, R ⩾ r(⌊q/2⌋; ⌊q/2⌋). By
Proposition 2.2.5, we conclude that

R ⩾ 2⌊q/2⌋⌊⌊q/2⌋/2⌋.

Suppose for the moment that q ⩾ 4, which implies that ⌊q/2⌋ ⩾ q/3 and that
⌊⌊q/2⌋/2⌋ ⩾ q/7. Then we conclude that for q ⩾ 4, we have

R ⩾ 2⌊q/2⌋⌊⌊q/2⌋/2⌋ ⩾ 2(q/3)(q/7) = 2cq
2

,

where c = 1
21
. On the other hand, if q ⩽ 3, then we still have the bound R ⩾ r(2, 3) =

3 ⩾ 2q
2/9. So in either case we conclude that R ⩾ 2cq

2
, where c = 1

21
.
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3. Prove that if N is sufficiently large, then the following holds. Among any N points in
the plane, there are three of them that determine an angle greater than 179◦.

Solution. Recall that in any k-gon, the sum of the internal angles equals (k− 2) · 180◦.
Moreover, if this k-gon is convex, then every internal angle in it is at most 180◦.
Therefore, in any convex k-gon, one of the internal angles is between k−2

k
· 180◦ and

180◦.

Now pick k sufficiently large so that 180k−2
k

> 179, and let N = Kl(k). Fix N points
in the plane. If any three of them are collinear, then they give an angle of 180◦ > 179◦,
so we are done, and we may assume that no three are collinear. By Theorem 10.3.4,
there are k of these points in convex position, meaning that they form the vertices of a
convex k-gon. By the above, this means that one of the internal angles is greater than
179◦, completing the proof.

Alternate solution. Let ℓ be a line in the plane passing through the origin, and denote
by θ(ℓ) ∈ [0, 180) the angle it makes with the x-axis. For a line ℓ not passing through
the origin, we define θ(ℓ) = θ(ℓ′), where ℓ′ is the unique line parallel to ℓ and passing
through the origin.

Let ℓ1 and ℓ2 be intersecting lines. Then the angles formed at their intersection are
exactly |θ(ℓ1)− θ(ℓ2)| and 180− |θ(ℓ1)− θ(ℓ2)|.
Now, let N = r(3; 360), and fix N points p1, . . . , pN in the plane. We define a 360-
coloring of E(KN) as follows. We identify V (KN) with {p1, . . . , pN}, and color define
χ({pi, pj}) := ⌊2θ(ℓij)⌋, where ℓij is the line between the points pi, pj. That is, we color
the edge pipj in one of 360 colors, based on whether θ(ℓij) ∈ [0◦, .5◦), [0.5◦, 1◦), . . . .

By the choice of N , there is a monochromatic triangle in this coloring, say with vertices
p1, p2, p3. This implies that θ(ℓ12), θ(ℓ13), θ(ℓ23) are all nearly equal, in that they all lie
in the same interval [x, x+ 1

2
) for some x. In particular, we have that |θ(ℓ12)−θ(ℓ13)| <

0.5◦, and the same for the other three pairs.

In the triangle formed by p1, p2, p3, all internal angles are the angles of intesection of
two of these lines. By the above, we conclude that each internal angle is either less
than 1◦ or greater than 179◦. Since these three angles must sum to 180◦, we conclude
that one of them must be greater than 179◦.
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4. Let G be a graph. The s-blowup of G, denoted G[s], is the graph obtained by replacing
each vertex of G by s vertices, and replacing each edge of G by a complete bipartite
graph Ks,s. For example, here is a picture of K3[2]:

(a) Prove that for every s ⩾ 2, there exists some N = N(s) such that K6[N ] is
Ramsey for K3[s].

(b) Prove that N(s) > 2s for all s ⩾ 4.

Solution.

(a) We will repeatedly apply the following lemma: for every k, there is some N such
that KN,N is Ramsey for Kk,k. Indeed, in any two-coloring of E(KN,N), one of the
color classes must have at least N2/2 edges, which is greater than k1/k(2N)2−1/k+
kN for N sufficiently large in terms of k. Therefore, by Theorem 5.3.2, this color
class must contain a copy of Kk,k.

Now pick a sequence of numbers N1, . . . , N15 as follows. We set N1 = s. Having
defined Ni, we set Ni+1 to be sufficiently large so that KNi+1,Ni+1

is Ramsey for
KNi,Ni

; such an Ni+1 exists by the lemma above, hence we can define N1, . . . , N15.
Let N = N15; we claim that K6[N ] is Ramsey for K3[s]. To prove this, we fix a
2-coloring of E(K6[N ]).

Arbitrarily order the
(
6
2

)
= 15 edges of K6, and do the following. For the first edge

in this ordering, we consider the coloring of the corresponding KN,N in K6[N ].
By our choice of N = N15, we can find here a monochromatic KN14,N14 . We
now restrict two of the six parts to only be the vertex set of this KN14,N14 , and
arbitrarily shrink the other four parts to subsets of size N14, so we obtain a copy
of K6[N14] in which one of the 15 copies of KN14,N14 is monochromatic. We now
do the same with the next edge in our ordering, and thus restrict to a copy of
K6[N13] where two of the pairs are monochromatic.

Continuing in this fashion, we eventually find within our original coloring a copy
of K6[s] in which all copies of Ks,s are monochromatic, but perhaps not with
the same color. Now, we apply the fact that K6 is Ramsey for K3 to find three
parts such that the three Ks,s among them do have the same color, giving us our
monochromatic K3[s].

(b) Let N = 2s. Consider a uniformly random 2-coloring of K6[N ]. Any given copy
of K3[s] has 3s

2 edges, and hence a probability of 21−3s2 of being monochromatic.
Moreover, the number of copies is at most

(
6N
3s

)
, hence by the union bound, the
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probability that some coloring is monochromatic is at most(
6N

3s

)
21−3s2 <

2 · 63s

(3s)!
N3s2−3s2 ⩽ (N2−s)3s = 1,

by our choice of N = 2s, where we use the fact that 2 · 63s ⩽ (3s)! for all s ⩾ 4.
Hence there exists a coloring of K6[N ] with no monochromatic K3[s], showing
that N(s) > 2s.
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5. Let k ⩾ 3 and N ⩾ 3k be integers. Recall that k-AP is short for k-term arithmetic
progression.

(a) Prove that there are at least N2/(6k) distinct k-APs in JNK.
(b) Let A ⊆ JNK. Prove that A intersects at most

(
k
2

)
|A|2 k-APs in more than one

point.

(c) Prove the canonical van der Waerden theorem, which states the following. For
every k ⩾ 3, there exists some N such that the following holds. In any coloring
of JNK with an arbitrary number of colors, there is a monochromatic or rainbow
k-AP.

Solution.

(a) For every 1 ⩽ a ⩽ ⌈N/2⌉ and every 1 ⩽ r ⩽ ⌊N/(2k)⌋, the k-AP a, a+ r, . . . , a+
(k − 1)r is fully contained within JNK, and all of these k-APs are distinct (since
a k-AP is uniquely determined by its starting point and its common difference).
There are ⌈N/2⌉ ⩾ N/2 choices for a and ⌊N/(2k)⌋ ⩾ N/(3k) choices for r, hence
at least N2/(6k) distinct k-APs in total.

(b) First observe that every pair of integers a, b ∈ JNK lies in at most
(
k
2

)
distinct

k-APs. Indeed, once we fix which position a and b have in the k-AP, we have
determined the common difference and the starting point of the k-AP.

Now, given a k-AP which intersects A in at least two points, fix two such points
a, b ∈ A. There are at most |A|2 choices for a, b, and at most

(
k
2

)
choices for the

k-AP containing them, yielding the claimed bound of
(
k
2

)
|A|2.

(c) Set δ = 1/(6k
(
k
2

)
). Let N be sufficiently large so that every A ⊆ JNK with

|A| ⩾ δN contains a k-AP; such an N exists by Theorem 9.7.1. By potentially
making N larger, we can also assume that N ⩾ 3k. We claim that this choice of
N suffices.

To see this, fix an arbitrary coloring of JNK. Let the color classes of this coloring
be A1, . . . , At, for some t. If |Ai| ⩾ δN for some i, then Ai contains a k-AP, hence
there is a monochromatic k-AP in the coloring. So we may assume that |Ai| < δN
for all i.

A k-AP is rainbow if all of its elements receive distinct colors. Equivalently, a
k-AP is not rainbow if it intersects some Ai in at least two points. By part (b),
the number of non-rainbow k-APs is thus at most

∑t
i=1

(
k
2

)
|Ai|2. Note that

t∑
i=1

(
k

2

)
|Ai|2 =

(
k

2

) t∑
i=1

|Ai|2 <
(
k

2

) t∑
i=1

(δN)|Ai| = δ

(
k

2

)
N2 =

N2

6k
,

where we used our assumption |Ai| < δN and the fact that we have a coloring of
JNK to conclude that

∑
|Ai| = N , and we plug in our choice of δ. By part (a),

we conclude that the number of non-rainbow k-APs is strictly less than the total
number of k-APs, hence there is at least one rainbow k-AP.
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6. The Ramsey game is played between two players, called Builder and Painter. The
game starts with an infinite set of vertices and no edges. At every turn, Builder selects
a pair of vertices that are not joined by an edge, and builds an edge between them.
Painter then immediately has to assign that edge a color, red or blue. The game ends
when a monochromatic Kk is produced. Builder’s goal is to end the game as soon as
possible, while Painter’s goal is to continue for as long as possible. The online Ramsey
number, denoted r̃(k), is the minimum number of edges built during the game if both
players play optimally.

(a) Prove that r̃(k) ⩾ 1
2
· 2k/2.

(b) Prove that r̃(k) ⩽ 4k.

Solution.

(a) To prove a lower bound r̃(k) ⩾ m, it suffices to exhibit a strategy for Painter
which guarantees that at least m edges are built regardless of Builder’s strategy.
Set m = 1

2
·2k/2 and N = 2m. The strategy Painter uses is as follows: he first fixes

a coloring χ : E(KN) → {red, blue} with no monochromatic Kk (such a coloring
exists by Theorem 2.2.2, since r(k) > N). Label the vertices of KN as v1, . . . , vN .

Now, when Builder builds the first edge, Painter calls its endpoints v1, v2, and
colors it according to χ(v1v2). Every time Builder builds an edge between pre-
viously used vertices, Painter again colors it according to χ. Every time Builder
builds an edge incident to a new vertex, Painter gives it the next unused label vi,
and again colors all edges according to χ.

Note that if Builder builds at mostm edges, then in particular, she touches at most
2m = N vertices. Hence, in the stragegy above, the final colored graph produced
will be a subgraph of KN with the coloring χ. As χ has no monochromatic Kk,
there will be no monochromatic Kk produced during this process, proving that
r̃(k) ⩾ m.

(b) We now describe a strategy for Builder that is guaranteed to produce a monochro-
matic Kk after building at most 4k edges. Builder begins by picking a set S1 of
22k−1 vertices, and fixing some vertex v1 ∈ S1. She then builds all edges from v1
to the other vertices in S1. Regardless of how Painter paints these edges, among
them, there are at least ⌈(|S1| − 1)/2⌉ = 22k−2 of the same color, which we call
c1. Let S2 be the endpoints of these edges. Builder now repeats the process in S2:
she picks a vertex v2 ∈ S2, and builds all edges from v2 to the rest of S2. Among
these, at least ⌈(|S2|−1)/2⌉ = 22k−3 have the same color, say c2. Builder restricts
to their endpoints S3, and keeps going.

Note that in this process, we have |Si| = 22k−i for all i, hence this process can
continue up to the choice of v2k, and we have produced a sequence c1, . . . , c2k−1 of
colors. By the pigeonhole principle, there are k of these colors that are the same,
yielding a monochromatic Kk.
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All that remains is to verify that in this process, Builder builds at most 4k edges.
Indeed, in the first phase, builder builds |S1| − 1 edges, namely all edges from v1
to the rest of S1. In the second phase, she builds |S2| − 1 edges, and so on. So
the total number of edges built is

2k∑
i=1

(|Si| − 1) = −2k +
2k∑
i=1

22k−i = −2k +
2k−1∑
j=0

2j = (22k − 1)− 2k < 4k.


