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“We shall all be changed, in a moment, in the twinkling of an eye”

Paul the Apostle, 1 Corinthians 15:51–2

“Do I dare
Disturb the universe?
In a minute there is time
For decisions and revisions which a minute will reverse.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I have seen the moment of my greatness flicker,
And I have seen the eternal Footman hold my coat, and snicker,
And in short, I was afraid.”

T. S. Eliot, “The Love Song of J. Alfred Prufrock”

1 Introduction and Old Results

Definition. For n ∈ N, p ∈ [0, 1], the Erdős-Rényi random graph model G(n, p) is a probability distribu-
tion on the set of graphs on n vertices, where each of the

(
n
2

)
potential edges appears independently with

probability p.
For any graph property P , we denote by Pp(P ) the probability that a graph drawn from G(n, p) will have

the property P .

Example. Here are several theorems about random graphs having various properties:

1. (Erdős-Rényi 1960) For any ε > 0,

Pp(G is connected)→


0 if p < (1− ε) log n

n

1 if p > (1 + ε)
log n

n

2. (Erdős-Rényi 1960)

Pp(G contains a triangle)→

{
0 if p� 1

n

1 if p� 1
n

More generally, for any fixed graph H, we morally have (the truth is a bit more complicated)

Pp(G has a copy of H)→

{
0 if p� n−|V (H)|/|E(H)|

1 if p� n−|V (H)|/|E(H)|

3. (Erdős-Rényi 1960)

Pp(G is bipartite)→

{
0 if p� 1

n

1 if p� 1
n

4. (Erdős-Rényi 1960) For any ε > 0,

Pp(G is planar)→

{
1 if p < (1− ε) 1

n

0 if p > (1 + ε) 1
n

1



Yuval Wigderson Random Graphs April 20, 2017

5. (Erdős-Rényi 1966) For any ε > 0,

Pp(G has a perfect matching)→


0 if p < (1− ε) log n

n

1 if p > (1 + ε)
log n

n

6. (Komlós-Szemerédi 1983, Bollobás 1983) For any ε > 0,

Pp(G has a Hamiltonian cycle)→


0 if p < (1− ε) log n+ log log n

n

1 if p > (1 + ε)
log n+ log log n

n

7. (Achlioptas-Naor 2005) For any integer k ≥ 3 and any ε > 0,

Pp(G is k-colorable)→


1 if p < (1− ε)2k log k

n

0 if p > (1 + ε)
2k log k

n

In fact, they proved a stronger result: for any 0 < d < ∞ and kd the smallest integer k satisfying
d < 2k log k, we have that

χ

(
G
(
n,
d

n

))
∈ {kd, kd + 1} with probability→ 1 as n→∞

There are several remarks to be made about these examples.

Remark 1. If we imagine, for fixed n, plotting Pp as a function of p, then all of these results say that as we
let n → ∞, our plot looks more and more like that of a step function, namely it’s constant for most of the
interval with a big jump somewhere in the middle. This is very reminiscient of the Kolmogorov Zero-One
Law, which roughly says that in any infinite analogue of these, wherein we are looking at a property that is
independent of any finite collection of edges, its plot will actually be a step function. So it’s often insightful
to think of these examples, and what comes next, as a finitary analogue of the Kolmogorov Zero-One Law.

Remark 2. Why does water always freeze at 0◦ C? In theory, since hydrogen bonds between molecules
are being formed in a very unpredictable way, we might expect that the order in which they form could
affect when crystallization takes place. Results like these, especially the ones concerning connectivity, can
be viewed as a mathematical explanation of this physical fact. Moreover, the general result we’ll soon state
can be used to explain many such “phase transitions” in physics.

Remark 3. This random model turns necessary conditions into sufficient ones. Indeed, it can be shown e.g.
that if p < n/ log n, then G(n, p) will have an isolated node with high probability. Having no isolated nodes
is necessary for being connected, but is in general not sufficient—but in the random model it is. Similarly,
a perfect matching appears once every vertex has degree ≥ 1 and a Hamiltonian cycle appears once every
vertex has degree ≥ 2.

2 Friedgut-Kalai

Definition. Let N =
(
n
2

)
. Then a graph on n vertices is a subset of {1, 2, . . . , N}, or equivalently an element

of {0, 1}N .
A graph property is some set P of graphs on n vertices, or equivalently a subset P ⊆ {0, 1}N .
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Definition. A property is called monotone if it is upward closed, meaning that adding edges preserves the
property. More formally, P is monotone if for all x, y ∈ {0, 1}N with x ∈ P and x ≤ y pointwise, then y ∈ P .
Examples include connectivity, non-planarity, having a Hamiltonian cycle, having chromatic number at least
17, etc. A non-example is having an Eulerian cycle.

Definition. A property is called symmetric if for all i, j ∈ {1, . . . , N} there is a permutation π ∈ SN such
that π(i) = j and P is invariant under P (or, more formally, the induced permutation on {0, 1}N ). If you’re
studying a non-symmetric property, you’re not doing graph theory.

Theorem (Friedgut-Kalai, 1996). Every symmetric monotone property has a threshold. More formally,
there is an absolute constant c such that for any N ∈ N and any monotone symmetric property P ⊆ {0, 1}N
with Pp(P ) ≥ ε for 0 < ε < 1/2, we have Pq(P ) > 1− ε for any

q ≥ p+ c
log(1/2ε)

logN

In other words, the threshold has width ∼ log(1/2ε)/ logN .

Remark 4. This implies all the facts we saw above, although it comes with a very important caveat: the
Friedgut-Kalai theorem does not help us locate where the threshold will be, it only tells us that a threshold
must exist.

Remark 5. In addition to these applications in random graph theory, it also has many important implica-
tions in other areas of math; Erik’s talk showed us applications in pure probability theory (percolation), and
Kumar-Pfister and independently Kudekar-Mondelli-Šašoğlu-Urbanke (2015) used it as a key tool in proving
that Reed-Muller codes achieve capacity on the BEC.

3 Interlude: Voting

Suppose we have N voters who each cast a ballot for one of two candidates, and we have some system
according to which a winner is selected. More formally, we simply have a function f : {0, 1}N → {0, 1},
where we think of an element of {0, 1}N as the sequence of votes by the N voters. Here are some examples:

• A democracy: f is the majority function (for simplicity, say N is odd)

• A dictatorship: voter i decides, namely f(x) = xi.

• A rigged system: in this case, f would be just a constant function, and the votes don’t matter.

• The electoral college: the input is partitioned into blocks, there is a majority function within each
block, and the final result is a weighted majority of the winners in the blocks.

• Insanity:

f(x) =

N∑
i=1

xi mod 2

One natural notion is that of the influence of the ith voter, which is intuitively how likely the ith voter is
to swing the election. In a rigged system, everyone’s influence is zero. In a dictatorship, everyone has zero
influence except the dictator, who has influence 1. In a democracy, everyone has a pretty small (and equal)
influence (in fact, Θ(1/

√
n)), whereas in the electoral college system some voters have a greater influence

than others (as we know very well from real life). In the insane system, everyone has influence 1, since
changing your vote will definitely flip the outcome.
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Definition. Fix f : {0, 1}N → {0, 1}. For any input x ∈ {0, 1}N and an index i ∈ {1, . . . , N}, we say that i
is pivotal for x if

f(x1, . . . , xi−1, 0, xi+1, . . . , xN ) 6= f(x1, . . . , xi−1, 1, xi+1, . . . , xN )

Note that this notion depends both on the voter i and on how everyone else votes, namely x.
For p ∈ [0, 1], we define the influence of voter i as

βi(f) = Pp(i is pivotal)

In other words, we make every other voter vote for 1 with probability p, and then we ask for the probability
that voter i affects the outcome.

Intuitively, the smaller everyone’s influence is, the “fairer” the voting system is. Then a natural question
is how fair we can get. Of course, this notion is imperfect: in the “rigged” system, everyone has influence
zero, and indeed we need to include the probability that each candidate wins.

Theorem (Kahn-Kalai-Linial, 1988). For any function f : {0, 1}N → {0, 1} and any p ∈ [0, 1], we have

max
1≤i≤N

βi(f) ≥ cm logN

N

for some universal constant c and

m = min{Pp(f = 0),Pp(f = 1)}

namely the probability of an upset. This is tight up to constants (thanks to the “tribes” example).

This was later generalized to an arbitrary probability spaces by Bourgain-Kahn-Kalai-Katznelson-Linial
(1992). The proof of both of these uses some discrete Fourier analysis and hypercontractivity inequalities.

4 Proof

We will need the following simple lemma, due to Margulis (1974) and again Russo (1981).

Lemma. Let P ⊆ {0, 1}N be a monotone property. Then

d

dp
Pp(P ) =

N∑
i=1

βi(P )

where by βi(P ), we mean βi(χP ), the influence of the characteristic function of P .

Proof sketch. Let p = (p1, . . . , pN ) be a vector of probabilities, and let Pp(P ) denote the probability of P
where the ith index is 1 with probability pi. Then since P is monotone, we have

Pp+∆pi(P )− Pp(P ) = P(increasing pi by ∆pi moves from out of P into P )

= P(increasing pi changes coordinate i)P(chaning coordinate i changes the outcome)

= ∆piβi(P )

Therefore,
∂

∂pi
Pp(P ) = βi(P )

So by the multivariate chain rule, setting p = (p, . . . , p), we get that

d

dp
Pp(P ) =

N∑
i=1

βi(P )
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Proof of Friedgut-Kalai. Since P is symmetric, we get that βi(P ) = βj(P ) for all i, j. So the Margulis-Russo
formula becomes, for any r ∈ [0, 1]

d

dr
Pr(P ) = Nβ(P )

where β(P ) is the influence of any coordinate. For any r such that Pr(P ) ≤ 1/2, Kahn-Kalai-Linial tells us
that

β(P ) ≥ cPr(P )
logN

N

since
m = min(Pr(P ), 1− Pr(P )) = Pr(P )

Combining these, we get
d

dr
Pr(P ) ≥ cPr(P ) logN

and thus
d

dr
logPr(P ) =

d
drPr(P )

Pr(P )
≥ cPr(P ) logN

Pr(P )
= c logN

Now, suppose p is such that Pp(P ) ≥ ε. Set

q1 = p+
log(1/2ε)

c logN

Then integrating the above inequality from p to q1 gives

logPq1(P )− logPp(P ) =

∫ q1

p

d

dr
logPr(P )dr

≥
∫ q1

p

c logNdr

= (q1 − p)c logN

= log(1/2ε)

Therefore,
logPq1(P ) ≥ logPp(P ) + log(1/2ε) ≥ log(ε) + log(1/2ε) = log(1/2)

and thus Pq1(P ) ≥ 1/2. In other words, by increasing p a little bit, we’ve increased the probability of P
from ε to 1/2.

We now repeat this argument, with a slight variation. For r such that Pr(P ) ≥ 1/2, Kahn-Kalai-Linial
gives us

β(P ) ≥ c(1− Pr(P ))
logN

N

Then repeating all the above gives

d

dr
Pr(P ) = Nβ(P ) ≥ c(1− Pr(P )) logN

and so
d

dr
log(1− Pr(P )) =

d
dr (1− Pr(P ))

(1− Pr(P ))
≤ −c(1− Pr(P )) logN

(1− Pr(P ))
= −c logN

We set

q = q1 +
log(1/2ε)

c logN

5



Yuval Wigderson Random Graphs April 20, 2017

and integrate from q1 to q and get

log(1− Pq(P ))− log(1− Pq1(P )) =

∫ q

q1

d

dr
log(1− Pr(P ))dr

≤
∫ q

q1

(−c logN)dr

= −c logN
log(1/2ε)

c logN

= − log(1/2ε)

Thus,
log(1− Pq(P )) ≤ log(1− Pq1(P ))− log(1/2ε) ≤ log(1/2)− log(1/2ε) = log(ε)

which gives
Pq(P ) ≥ 1− ε

as desired.

5 Coarse vs. Sharp Thresholds

If we return to the set of examples at the beginning, we see that there seems to be a pretty important
qualitative difference: on the one hand, the results about containing a subgraph and being bipartite seem
sort of fluffy, whereas the other ones seem much more precise. We can formalize this as follows:

Definition. A monotone property P has a sharp threshold if there is a function f∗(n) such that for all
ε > 0,

Pp(P )→

{
0 if p < (1− ε)f∗(n)

1 if p > (1 + ε)f∗(n)

If this doesn’t happen, the threshold is called coarse.
An equivalent definition is as follows: for any ε > 0, we define the threshold width to be

w(ε) = p(1− ε)− p(ε)

where
p(ε) = sup{p : Pp(P ) < ε}

Then a sharp threshold is one that satisfies w(ε) = o(f∗) for any threshold function f∗, while a coarse
threshold satisfies w(ε) = Θ(f∗).

The astonishing observation of Friedgut is that local properties have coarse thresholds, while global
properties have sharp thresholds.

Theorem (Friedgut, 1999). For any ε > 0, C > 0, there is some constant K(C, ε) so that the following

holds. For any n and any property P ⊆ {0, 1}(
n
2) with a coarse threshold, specifically one satisfying

f∗(n)
dPp(P )

dp

∣∣∣∣
p=f∗(n)

≤ C

there exists a finite collection of graphs H1, . . . ,Hm, each having at most K(C, ε) edges, so that

Pf∗(n)(P 4 PH) ≤ ε

where PH is the property of containing a copy of some Hi.
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Corollary (Friedgut, 1999). Every coarse graph property has a threshold function given by n−α for some
α ∈ Q. Therefore, any graph property whose threshold function is not a rational power of n must have a
sharp threshold.

Proof idea. As we saw in the beginning, containing a copy of H has a threshold function, more or less,
of n−|V (H)|/|E(H)|. If P had a sharp threshold, by Friedgut’s theorem, it would have to have a threshold
function of this form.

6 Extensions, Briefly

There has been much work in random graphs after Friedgut-Kalai, most of which I can’t get to. One
important follow-up paper is due to Bourgain-Kalai, who studied what happens to threshold widths if we
assume stronger symmetry conditions on P . In particular, observe that any property that is invariant under
graph isomorphism is actually stronger than symmetric (as defined above), since Sn permutes the n vertices,
which induces a fairly large group action on N =

(
n
2

)
. One consequence of their work is the following theorem

in this special case:

Theorem (Bourgain-Kalai, 1997). For any ε > 0, η > 0, and any monotone property P that is invariant
under graph isomorphism, we have that the threshold width satisfies

w(ε) ≤ C(ε)
1

(logN)2−η

for some universal constant C(ε).

Recent work, started by Linial-Meshulam, has focused on models of random simplicial complexes, which
has proved very fruitful. In particular, there are results about the threshold for the vanishing of kth homology,
which, much like the random graph case, is an instance of a necessary condition becoming sufficient.

Finally, let me mention a beautiful open problem in this field, known as the Kahn-Kalai conjecture. Let
us count the expected number of Hamiltonian cycles in G(n, p). There are (n − 1)! possible Hamiltonian
cycles (one for each cyclic permutation of {1, . . . , n}), and each one is a Hamiltonian cycle with probability
p−n, since all n edges must appear. Therefore,

E(#(Hamiltonian cycles)) = (n− 1)!pn ∼
(np
e

)n
Therefore, this expectation becomes ≥ 1 when p is of the order of 1/n. However, we know that the actual
threshold for Hamiltonicity is at log n/n, so we see a logarithmic gap between the “expectation threshold”
and the real threshold. We can do something similar for the number of spanning trees: by Cayley’s Theorem,

E(#(spanning trees)) = nn−2p(n−1) ∼ (np)n

so the expectation threshold is again when p ∼ 1/n. However, a spanning tree exists iff the graph is
connected, so again the actual threshold for the existence of a spanning tree is just the connectivity threshold,
p = log n/n. An analogous thing happens for the existence of a perfect matching, with the expectation
threshold being at 1/n despite the real threshold being at log n/n. The Kahn-Kalai conjecture says that
these results are general: that for any property, there is at most a logarithmic gap between the expectation
threshold and the connectivity threshold.
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