Minimum degree and the graph removal lemma

Yuval Wigderson (Stanford)
Joint with Jacob Fox

June 30, 2021

Outline

Minimum degree conditions

The graph removal lemma

Minimum degree conditions and the graph removal lemma

Conclusion

Outline

Minimum degree conditions

The graph removal lemma

Minimum degree conditions and the graph removal lemma

Conclusion

Minimum degree conditions for triangle-free graphs

Let G be a triangle-free graph with n vertices and min degree $\delta(G)$.

Minimum degree conditions for triangle-free graphs

Let G be a triangle-free graph with n vertices and min degree $\delta(G)$.
Theorem (Mantel)
If $\delta(G)>\frac{1}{2} n$, then G cannot exist.

Minimum degree conditions for triangle-free graphs

Let G be a triangle-free graph with n vertices and min degree $\delta(G)$.
Theorem (Mantel)
If $\delta(G)>\frac{1}{2} n$, then G cannot exist.

Minimum degree conditions for triangle-free graphs

Let G be a triangle-free graph with n vertices and min degree $\delta(G)$.
Theorem (Mantel)
If $\delta(G)>\frac{1}{2} n$, then G cannot exist.

Theorem (Andrásfai-Erdős-Sós)
If $\delta(G)>\frac{2}{5} n$, then G is bipartite.

Minimum degree conditions for triangle-free graphs

Let G be a triangle-free graph with n vertices and min degree $\delta(G)$.
Theorem (Mantel)
If $\delta(G)>\frac{1}{2} n$, then G cannot exist.

Theorem (Andrásfai-Erdős-Sós)
If $\delta(G)>\frac{2}{5} n$, then G is bipartite.

Minimum degree conditions for triangle-free graphs

Let G be a triangle-free graph with n vertices and min degree $\delta(G)$.
Theorem (Mantel)
If $\delta(G)>\frac{1}{2} n$, then G cannot exist.

Theorem (Andrásfai-Erdős-Sós)
If $\delta(G)>\frac{2}{5} n$, then G is a subgraph of O.

Minimum degree conditions for triangle-free graphs

Let G be a triangle-free graph with n vertices and min degree $\delta(G)$.
Theorem (Mantel)
If $\delta(G)>\frac{1}{2} n$, then G cannot exist.

Theorem (Andrásfai-Erdős-Sós)
If $\delta(G)>\frac{2}{5} n$, then G is a subgraph of $\bigcirc 0$.

Theorem (Häggkvist)
If $\delta(G)>\frac{3}{8} n$, then G is a subgraph of O or

Minimum degree conditions for triangle-free graphs

Let G be a triangle-free graph with n vertices and min degree $\delta(G)$.
Theorem (Mantel)
If $\delta(G)>\frac{1}{2} n$, then G cannot exist.

Theorem (Andrásfai-Erdős-Sós)
If $\delta(G)>\frac{2}{5} n$, then G is a subgraph of $\bigcirc 0$.

Theorem (Häggkvist)
If $\delta(G)>\frac{3}{8} n$, then G is a subgraph of $\bigcirc 0$ or

Minimum degree conditions for triangle-free graphs

Let G be a triangle-free graph with n vertices and min degree $\delta(G)$.
Theorem (Mantel)
If $\delta(G)>\frac{1}{2} n$, then G cannot exist.

Theorem (Andrásfai-Erdős-Sós)
If $\delta(G)>\frac{2}{5} n$, then G is a subgraph of \cap.

Theorem (Häggkvist)
If $\delta(G)>\frac{3}{8} n$, then G is a subgraph of O or

Jin found seven more thresholds for seven more structures.

The taxonomy of dense triangle-free graphs

What happens at $\frac{1}{3}$?

What happens at $\frac{1}{3}$?

Theorem (Erdős-Hajnal-Simonovits)

For every $\alpha>0$ and $C>0$, there exists a triangle-free graph G with $\delta(G)>\left(\frac{1}{3}-\alpha\right) n$ and $x(G)>C$.

What happens at $\frac{1}{3}$?

Theorem (Erdős-Hajnal-Simonovits)

For every $\alpha>0$ and $C>0$, there exists a triangle-free graph G with $\delta(G)>\left(\frac{1}{3}-\alpha\right) n$ and $x(G)>C$.

Theorem (Thomassen)

For every $\alpha>0$, there exists $C>0$ such that any triangle-free graph G with $\delta(G)>\left(\frac{1}{3}+\alpha\right)$ n has $x(G)<C$.

What happens at $\frac{1}{3}$?

Theorem (Erdős-Hajnal-Simonovits)

For every $\alpha>0$ and $C>0$, there exists a triangle-free graph G with $\delta(G)>\left(\frac{1}{3}-\alpha\right) n$ and $x(G)>C$.

Theorem (Thomassen)

For every $\alpha>0$, there exists $C>0$ such that any triangle-free graph G with $\delta(G)>\left(\frac{1}{3}+\alpha\right) n$ has $x(G)<C$.

Theorem (Łuczak)

For every $\alpha>0$, there exists a finite set \mathcal{F} of triangle-free graphs such that any triangle-free graph G with $\delta(G)>\left(\frac{1}{3}+\alpha\right) n$ is a subgraph of a blowup of some $F \in \mathcal{F}$.

What happens at $\frac{1}{3}$?

Theorem (Erdős-Hajnal-Simonovits)

For every $\alpha>0$ and $C>0$, there exists a triangle-free graph G with $\delta(G)>\left(\frac{1}{3}-\alpha\right) n$ and $x(G)>C$.

Theorem (Thomassen)

For every $\alpha>0$, there exists $C>0$ such that any triangle-free graph G with $\delta(G)>\left(\frac{1}{3}+\alpha\right)$ n has $x(G)<C$.

The chromatic threshold $\delta_{X}\left(K_{3}\right)$ equals $\frac{1}{3}$.

Theorem (Łuczak)

For every $\alpha>0$, there exists a finite set \mathcal{F} of triangle-free graphs such that any triangle-free graph G with $\delta(G)>\left(\frac{1}{3}+\alpha\right) n$ is a subgraph of a blowup of some $F \in \mathcal{F}$.

What happens at $\frac{1}{3}$?

Theorem (Erdős-Hajnal-Simonovits)

For every $\alpha>0$ and $C>0$, there exists a triangle-free graph G with $\delta(G)>\left(\frac{1}{3}-\alpha\right) n$ and $x(G)>C$.

Theorem (Thomassen)

For every $\alpha>0$, there exists $C>0$ such that any triangle-free graph G with $\delta(G)>\left(\frac{1}{3}+\alpha\right)$ n has $x(G)<C$.

The chromatic threshold $\delta_{X}\left(K_{3}\right)$ equals $\frac{1}{3}$.

Theorem (Łuczak)

For every $\alpha>0$, there exists a finite set \mathcal{F} of triangle-free graphs such that any triangle-free graph G with $\delta(G)>\left(\frac{1}{3}+\alpha\right) n$ is a subgraph of a blowup of some $F \in \mathcal{F}$.

The homomorphism threshold $\delta_{\text {hom }}\left(K_{3}\right)$ equals $\frac{1}{3}$.

Outline

Minimum degree conditions

The graph removal lemma

Minimum degree conditions and the graph removal lemma

Conclusion

Graphs with few triangles

Graphs with few triangles

Can we say anything if we only assume that G has few triangles?

Graphs with few triangles

Can we say anything if we only assume that G has few triangles?
Triangle removal lemma (Ruzsa-Szemerédi)
For every $\varepsilon>0$ there exists $\rho>0$ such that if G has $<\rho n^{3}$ triangles, then it can be made triangle-free by removing $<\varepsilon n^{2}$ edges.

Graphs with few triangles

Can we say anything if we only assume that G has few triangles?

Triangle removal lemma (Ruzsa-Szemerédi)

For every $\varepsilon>0$ there exists $\rho>0$ such that if G has $<\rho n^{3}$ triangles, then it can be made triangle-free by removing $<\varepsilon n^{2}$ edges.
"The only way to make a graph with few triangles is to add few edges to a triangle-free graph."

Graphs with few triangles

Can we say anything if we only assume that G has few triangles?

Triangle removal lemma (Ruzsa-Szemerédi)

For every $\varepsilon>0$ there exists $\rho>0$ such that if G has $<\rho n^{3}$ triangles, then it can be made triangle-free by removing $<\varepsilon n^{2}$ edges.
"The only way to make a graph with few triangles is to add few edges to a triangle-free graph."
Applications to number theory, computer science, graph theory,...

Graphs with few triangles

Can we say anything if we only assume that G has few triangles?

Triangle removal lemma (Ruzsa-Szemerédi)

For every $\varepsilon>0$ there exists $\rho>0$ such that if G has $<\rho n^{3}$ triangles, then it can be made triangle-free by removing $<\varepsilon n^{2}$ edges.
"The only way to make a graph with few triangles is to add few edges to a triangle-free graph."
Applications to number theory, computer science, graph theory,... Despite the simple statement, all known proofs are hard!

Graphs with few triangles

Can we say anything if we only assume that G has few triangles?

Triangle removal lemma (Ruzsa-Szemerédi)

For every $\varepsilon>0$ there exists $\rho>0$ such that if G has $<\rho n^{3}$ triangles, then it can be made triangle-free by removing $<\varepsilon n^{2}$ edges.
"The only way to make a graph with few triangles is to add few edges to a triangle-free graph."
Applications to number theory, computer science, graph theory,... Despite the simple statement, all known proofs are hard!

Theorem (Alon-Duke-Lefmann-Rödl-Yuster, Füredi)

For every H and $\varepsilon>0$, there exists $\rho>0$ such that if G has $<\rho n^{|V(H)|}$ copies of H, then it can be made H-free by removing $<\varepsilon n^{2}$ edges.

Bounds for the graph removal lemma

Graph removal lemma
For every H and $\varepsilon>0$, there exists $\rho>0$ such that if G has $<\rho n^{|V(H)|}$ copies of H, then it can be made H-free by removing $<\varepsilon n^{2}$ edges.

Bounds for the graph removal lemma

Graph removal lemma

For every H and $\varepsilon>0$, there exists $\rho>0$ such that if G has $<\rho \eta^{|V(H)|}$ copies of H, then it can be made H-free by removing $<\varepsilon n^{2}$ edges.

Let $\rho(\varepsilon, H)$ be the largest possible value of ρ.

Bounds for the graph removal lemma

Graph removal lemma

For every H and $\varepsilon>0$, there exists $\rho>0$ such that if G has $<\rho n^{|V(H)|}$ copies of H, then it can be made H-free by removing $<\varepsilon n^{2}$ edges.

Let $\rho(\varepsilon, H)$ be the largest possible value of ρ.
Original proofs

$$
\left.\rho(\varepsilon, H)^{-1} \leq 2^{2 \cdot \cdot^{2}}\right\} \varepsilon^{-C_{H}}
$$

Bounds for the graph removal lemma

Graph removal lemma

For every H and $\varepsilon>0$, there exists $\rho>0$ such that if G has $<\rho n^{|V(H)|}$ copies of H, then it can be made H-free by removing $<\varepsilon n^{2}$ edges.

Let $\rho(\varepsilon, H)$ be the largest possible value of ρ.
Theorem (Fox)

$$
\left.\rho(\varepsilon, H)^{-1} \leq 2^{2 \cdot \cdot^{2}}\right\} C_{H} \log \frac{1}{\varepsilon}
$$

Bounds for the graph removal lemma

Graph removal lemma

For every H and $\varepsilon>0$, there exists $\rho>0$ such that if G has $<\rho n^{|V(H)|}$ copies of H, then it can be made H-free by removing $<\varepsilon n^{2}$ edges.

Let $\rho(\varepsilon, H)$ be the largest possible value of ρ.
Theorem (Fox)

$$
\left.\rho(\varepsilon, H)^{-1} \leq 2^{2 \cdot} \quad \cdot^{2}\right\} C_{H} \log \frac{1}{\varepsilon}
$$

Theorem (Ruzsa-Szemerédi, Alon)

$$
\rho(\varepsilon, H)^{-1} \geq \varepsilon^{-c_{H} \log \frac{1}{\varepsilon}}
$$

for non-bipartite H.

Bounds for the graph removal lemma

Graph removal lemma

For every H and $\varepsilon>0$, there exists $\rho>0$ such that if G has $<\rho n^{|V(H)|}$ copies of H, then it can be made H-free by removing $<\varepsilon n^{2}$ edges.

Let $\rho(\varepsilon, H)$ be the largest possible value of ρ.
Theorem (Fox)

$$
\left.\rho(\varepsilon, H)^{-1} \leq 2^{2 \cdot \cdot^{2}}\right\} C_{H} \log \frac{1}{\varepsilon}
$$

Theorem (Ruzsa-Szemerédi, Alon)

$$
\rho(\varepsilon, H)^{-1} \geq \varepsilon^{-c_{H} \log \frac{1}{\varepsilon}}
$$

for non-bipartite H.
Upshot: $\rho(\varepsilon, H)$ is super-polynomial in ε for non-bipartite H.

Outline

Minimum degree conditions

The graph removal lemma

Minimum degree conditions and the graph removal lemma

Conclusion

Triangle removal with high minimum degree

Triangle removal with high minimum degree

Theorem (Fox-W.)
If $\delta(G)>\left(\frac{1}{3}+\alpha\right) n$ and G has $<\rho n^{3}$ triangles, then G can be made triangle-free by deleting $<\frac{3}{\alpha} \rho n^{2}$ edges.

Triangle removal with high minimum degree

Theorem (Fox-W.)
If $\delta(G)>\left(\frac{1}{3}+\alpha\right) n$ and G has $<p n^{3}$ triangles, then G can be made triangle-free by deleting $<\frac{3}{\alpha} \rho n^{2}$ edges.

In a sufficiently dense graph, the removal lemma has linear bounds!

Triangle removal with high minimum degree

Theorem (Fox-W.)
If $\delta(G)>\left(\frac{1}{3}+\alpha\right) n$ and G has $<\rho n^{3}$ triangles, then G can be made triangle-free by deleting $<\frac{3}{\alpha} \rho n^{2}$ edges.

In a sufficiently dense graph, the removal lemma has linear bounds!

Proof.

Consider any triangle $\left\{v_{1}, v_{2}, v_{3}\right\}$ in G. We have $\left|N\left(v_{i}\right)\right|>\left(\frac{1}{3}+\alpha\right) n$.

Triangle removal with high minimum degree

Theorem (Fox-W.)
If $\delta(G)>\left(\frac{1}{3}+\alpha\right) n$ and G has $<\rho n^{3}$ triangles, then G can be made triangle-free by deleting $<\frac{3}{\alpha} \rho n^{2}$ edges.

In a sufficiently dense graph, the removal lemma has linear bounds!

Proof.

Consider any triangle $\left\{v_{1}, v_{2}, v_{3}\right\}$ in G. We have $\left|N\left(v_{i}\right)\right|>\left(\frac{1}{3}+\alpha\right) n$. By pigeonhole, $\left|N\left(v_{i}\right) \cap N\left(v_{j}\right)\right|>\alpha n$ for some i, j.

Triangle removal with high minimum degree

Theorem (Fox-W.)
If $\delta(G)>\left(\frac{1}{3}+\alpha\right) n$ and G has $<\rho n^{3}$ triangles, then G can be made triangle-free by deleting $<\frac{3}{\alpha} \rho n^{2}$ edges.

In a sufficiently dense graph, the removal lemma has linear bounds!

Proof.

Consider any triangle $\left\{v_{1}, v_{2}, v_{3}\right\}$ in G. We have $\left|N\left(v_{i}\right)\right|>\left(\frac{1}{3}+\alpha\right) n$. By pigeonhole, $\left|N\left(v_{i}\right) \cap N\left(v_{j}\right)\right|>\alpha n$ for some i, j. So $v_{i} v_{j}$ lies in $>\alpha n$ triangles.

Triangle removal with high minimum degree

Theorem (Fox-W.)

If $\delta(G)>\left(\frac{1}{3}+\alpha\right) n$ and G has $<\rho n^{3}$ triangles, then G can be made triangle-free by deleting $<\frac{3}{\alpha} \rho n^{2}$ edges.

In a sufficiently dense graph, the removal lemma has linear bounds!

Proof.

Consider any triangle $\left\{v_{1}, v_{2}, v_{3}\right\}$ in G. We have $\left|N\left(v_{i}\right)\right|>\left(\frac{1}{3}+\alpha\right) n$. By pigeonhole, $\left|N\left(v_{i}\right) \cap N\left(v_{j}\right)\right|>\alpha n$ for some i, j. So $v_{i} v_{j}$ lies in $>\alpha n$ triangles.
So every triangle contains a popular edge, one lying in >an triangles. Deleting all popular edges destroys all triangles.

Triangle removal with high minimum degree

Theorem (Fox-W.)

If $\delta(G)>\left(\frac{1}{3}+\alpha\right) n$ and G has $<\rho n^{3}$ triangles, then G can be made triangle-free by deleting $<\frac{3}{\alpha} \rho n^{2}$ edges.

In a sufficiently dense graph, the removal lemma has linear bounds!

Proof.

Consider any triangle $\left\{v_{1}, v_{2}, v_{3}\right\}$ in G. We have $\left|N\left(v_{i}\right)\right|>\left(\frac{1}{3}+\alpha\right) n$. By pigeonhole, $\left|N\left(v_{i}\right) \cap N\left(v_{j}\right)\right|>\alpha n$ for some i, j. So $v_{i} v_{j}$ lies in $>\alpha n$ triangles.
So every triangle contains a popular edge, one lying in >an triangles. Deleting all popular edges destroys all triangles. t popular edges yield > ant/3 triangles.

Triangle removal with high minimum degree

Theorem (Fox-W.)

If $\delta(G)>\left(\frac{1}{3}+\alpha\right) n$ and G has $<\rho n^{3}$ triangles, then G can be made triangle-free by deleting $<\frac{3}{\alpha} \rho n^{2}$ edges.

In a sufficiently dense graph, the removal lemma has linear bounds!

Proof.

Consider any triangle $\left\{v_{1}, v_{2}, v_{3}\right\}$ in G. We have $\left|N\left(v_{i}\right)\right|>\left(\frac{1}{3}+\alpha\right) n$. By pigeonhole, $\left|N\left(v_{i}\right) \cap N\left(v_{j}\right)\right|>\alpha n$ for some i, j. So $v_{i} v_{j}$ lies in $>\alpha n$ triangles.
So every triangle contains a popular edge, one lying in >an triangles. Deleting all popular edges destroys all triangles. t popular edges yield $>\alpha n t / 3$ triangles. So $\alpha n t / 3<\rho n^{3}$

Triangle removal with high minimum degree

Theorem (Fox-W.)

If $\delta(G)>\left(\frac{1}{3}+\alpha\right) n$ and G has $<\rho n^{3}$ triangles, then G can be made triangle-free by deleting $<\frac{3}{\alpha} \rho n^{2}$ edges.

In a sufficiently dense graph, the removal lemma has linear bounds!

Proof.

Consider any triangle $\left\{v_{1}, v_{2}, v_{3}\right\}$ in G. We have $\left|N\left(v_{i}\right)\right|>\left(\frac{1}{3}+\alpha\right) n$. By pigeonhole, $\left|N\left(v_{i}\right) \cap N\left(v_{j}\right)\right|>\alpha n$ for some i, j. So $v_{i} v_{j}$ lies in > αn triangles.
So every triangle contains a popular edge, one lying in > $>\alpha$ triangles. Deleting all popular edges destroys all triangles. t popular edges yield $>\alpha n t / 3$ triangles. So $\alpha n t / 3<\rho n^{3}$, and therefore $t<\frac{3}{\alpha} \rho n^{2}$.

Triangle removal with high minimum degree

Theorem (Fox-W.)

If $\delta(G)>\left(\frac{1}{3}+\alpha\right) n$ and G has $<\rho n^{3}$ triangles, then G can be made triangle-free by deleting $<\frac{3}{\alpha} \rho n^{2}$ edges.

In a sufficiently dense graph, the removal lemma has linear bounds!

Proof.

Consider any triangle $\left\{v_{1}, v_{2}, v_{3}\right\}$ in G. We have $\left|N\left(v_{i}\right)\right|>\left(\frac{1}{3}+\alpha\right) n$. By pigeonhole, $\left|N\left(v_{i}\right) \cap N\left(v_{j}\right)\right|>\alpha n$ for some i, j. So $v_{i} v_{j}$ lies in $>\alpha n$ triangles.
So every triangle contains a popular edge, one lying in >an triangles. Deleting all popular edges destroys all triangles. t popular edges yield $>\alpha n t / 3$ triangles. So $\alpha n t / 3<\rho n^{3}$, and therefore $t<\frac{3}{\alpha} \rho n^{2}$.

The proof only uses simple averaging arguments!

Is $\frac{1}{3}$ tight?

Can we still get linear bounds with a weaker condition on $\delta(G)$?

Is $\frac{1}{3}$ tight?

Can we still get linear bounds with a weaker condition on $\delta(G)$? No.
Theorem (Fox-W.)
For any $\alpha>0$, there exists G with $\delta(G)>\left(\frac{1}{3}-\alpha\right) n$ such that deleting all triangles in G is roughly as hard as it is for arbitrary graphs.

Is $\frac{1}{3}$ tight?

Can we still get linear bounds with a weaker condition on $\delta(G)$? No.
Theorem (Fox-W.)
For any $\alpha>0$, there exists G with $\delta(G)>\left(\frac{1}{3}-\alpha\right) n$ such that deleting all triangles in G is roughly as hard as it is for arbitrary graphs.

Proof.

Let G_{0} be a "hard" graph for the triangle removal lemma.

Is $\frac{1}{3}$ tight?

Can we still get linear bounds with a weaker condition on $\delta(G)$? No.
Theorem (Fox-W.)
For any $\alpha>0$, there exists G with $\delta(G)>\left(\frac{1}{3}-\alpha\right) n$ such that deleting all triangles in G is roughly as hard as it is for arbitrary graphs.

Proof.

Let G_{0} be a "hard" graph for the triangle removal lemma. We may assume G_{0} is tripartite.

Is $\frac{1}{3}$ tight?

Can we still get linear bounds with a weaker condition on $\delta(G)$? No.
Theorem (Fox-W.)
For any $\alpha>0$, there exists G with $\delta(G)>\left(\frac{1}{3}-\alpha\right) n$ such that deleting all triangles in G is roughly as hard as it is for arbitrary graphs.

Proof.

Let G_{0} be a "hard" graph for the triangle removal lemma. We may assume G_{0} is tripartite. Add to G_{0} a huge blowup of the path P_{2}.

Is $\frac{1}{3}$ tight?

Can we still get linear bounds with a weaker condition on $\delta(G)$? No.

Theorem (Fox-W.)

For any $\alpha>0$, there exists G with $\delta(G)>\left(\frac{1}{3}-\alpha\right) n$ such that deleting all triangles in G is roughly as hard as it is for arbitrary graphs.

Proof.

Let G_{0} be a "hard" graph for the triangle removal lemma. We may assume G_{0} is tripartite. Add to G_{0} a huge blowup of the path P_{2}.

Is $\frac{1}{3}$ tight?

Can we still get linear bounds with a weaker condition on $\delta(G)$? No.

Theorem (Fox-W.)

For any $\alpha>0$, there exists G with $\delta(G)>\left(\frac{1}{3}-\alpha\right) n$ such that deleting all triangles in G is roughly as hard as it is for arbitrary graphs.

Proof.

Let G_{0} be a "hard" graph for the triangle removal lemma. We may assume G_{0} is tripartite. Add to G_{0} a huge blowup of the path P_{2}. G has minimum degree close to $n / 3$, and it is hard to make it triangle-free.

Is $\frac{1}{3}$ tight?

Can we still get linear bounds with a weaker condition on $\delta(G)$? No.

Theorem (Fox-W.)

For any $\alpha>0$, there exists G with $\delta(G)>\left(\frac{1}{3}-\alpha\right) n$ such that deleting all triangles in G is roughly as hard as it is for arbitrary graphs.

Proof.

Let G_{0} be a "hard" graph for the triangle removal lemma. We may assume G_{0} is tripartite. Add to G_{0} a huge blowup of the path P_{2}. G has minimum degree close to $n / 3$, and it is hard to make it triangle-free.

There are linear bounds in the triangle removal lemma if $\delta(G)>\left(\frac{1}{3}+\alpha\right) n$, but super-polynomial is necessary if we only assume $\delta(G)>\left(\frac{1}{3}-\alpha\right) n$.

Is $\frac{1}{3}$ tight?

Can we still get linear bounds with a weaker condition on $\delta(G)$? No.

Theorem (Fox-W.)

For any $\alpha>0$, there exists G with $\delta(G)>\left(\frac{1}{3}-\alpha\right) n$ such that deleting all triangles in G is roughly as hard as it is for arbitrary graphs.

Proof.

Let G_{0} be a "hard" graph for the triangle removal lemma. We may assume G_{0} is tripartite. Add to G_{0} a huge blowup of the path P_{2}. G has minimum degree close to $n / 3$, and it is hard to make it triangle-free.

There are linear bounds in the triangle removal lemma if $\delta(G)>\left(\frac{1}{3}+\alpha\right) n$, but super-polynomial is necessary if we only assume $\delta(G)>\left(\frac{1}{3}-\alpha\right) n$.
$\frac{1}{3}$ is a threshold for bounds in the triangle removal lemma.

Three thresholds

Three thresholds

Definition

The polynomial removal threshold $\delta_{\text {poly-rem }}(H)$ is the infimum of δ such that the H removal lemma has polynomial bounds if $\delta(G)>\delta n$.

Three thresholds

Definition

The polynomial removal threshold $\delta_{\text {poly-rem }}(H)$ is the infimum of δ such that the H removal lemma has polynomial bounds if $\delta(G)>\delta n$.

Earlier we saw the chromatic threshold $\delta_{x}(H)$ and the homomorphism threshold $\delta_{\text {hom }}(H)$.
These are the infimum of δ such that an H-free graph with $\delta(G)>\delta n$ has bounded chromatic number or bounded "structure".

Three thresholds

Definition

The polynomial removal threshold $\delta_{\text {poly-rem }}(H)$ is the infimum of δ such that the H removal lemma has polynomial bounds if $\delta(G)>\delta n$.

Earlier we saw the chromatic threshold $\delta_{x}(H)$ and the homomorphism threshold $\delta_{\text {hom }}(H)$.
These are the infimum of δ such that an H-free graph with $\delta(G)>\delta n$ has bounded chromatic number or bounded "structure".

H	$\delta_{X}(H)$	$\delta_{\text {hom }}(H)$	$\delta_{\text {poly-rem }}(H)$
K_{3}	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

Three thresholds

Definition

The polynomial removal threshold $\delta_{\text {poly-rem }}(H)$ is the infimum of δ such that the H removal lemma has polynomial bounds if $\delta(G)>\delta n$.

Earlier we saw the chromatic threshold $\delta_{x}(H)$ and the homomorphism threshold $\delta_{\text {hom }}(H)$.
These are the infimum of δ such that an H-free graph with $\delta(G)>\delta n$ has bounded chromatic number or bounded "structure".

H	$\delta_{X}(H)$	$\delta_{\text {hom }}(H)$	$\delta_{\text {poly-rem }}(H)$
K_{3}	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
K_{r}	$\frac{2 r-5}{2 r-3}$	$\frac{2 r-5}{2 r-3}$	$\frac{2 r-5}{2 r-3}$

Three thresholds

Definition

The polynomial removal threshold $\delta_{\text {poly-rem }}(H)$ is the infimum of δ such that the H removal lemma has polynomial bounds if $\delta(G)>\delta n$.

Earlier we saw the chromatic threshold $\delta_{x}(H)$ and the homomorphism threshold $\delta_{\text {hom }}(H)$.
These are the infimum of δ such that an H-free graph with $\delta(G)>\delta n$ has bounded chromatic number or bounded "structure".

H	$\delta_{X}(H)$	$\delta_{\text {hom }}(H)$	$\delta_{\text {poly-rem }}(H)$
K_{3}	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
K_{r}	$\frac{2 r-5}{2 r-3}$	$\frac{2 r-5}{2 r-3}$	$\frac{2 r-5}{2 r-3}$
$K_{2,2,2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{3}$

Three thresholds

Definition

The polynomial removal threshold $\delta_{\text {poly-rem }}(H)$ is the infimum of δ such that the H removal lemma has polynomial bounds if $\delta(G)>\delta n$.

Earlier we saw the chromatic threshold $\delta_{x}(H)$ and the homomorphism threshold $\delta_{\text {hom }}(H)$.
These are the infimum of δ such that an H-free graph with $\delta(G)>\delta n$ has bounded chromatic number or bounded "structure".

H	$\delta_{X}(H)$	$\delta_{\text {hom }}(H)$	$\delta_{\text {poly-rem }}(H)$
K_{3}	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
K_{r}	$\frac{2 r-5}{2 r-3}$	$\frac{2 r-5}{2 r-3}$	$\frac{2 r-5}{2 r-3}$
$K_{2,2,2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{3}$
$C_{k}, k \geq 5$ odd	0	$\left[0, \frac{1}{k}\right]$	$\left[\frac{1}{k}, \frac{1}{2}\right]$

Three thresholds

Definition

The polynomial removal threshold $\delta_{\text {poly-rem }}(H)$ is the infimum of δ such that the H removal lemma has polynomial bounds if $\delta(G)>\delta n$.

Earlier we saw the chromatic threshold $\delta_{x}(H)$ and the homomorphism threshold $\delta_{\text {hom }}(H)$.
These are the infimum of δ such that an H-free graph with $\delta(G)>\delta n$ has bounded chromatic number or bounded "structure".

H	$\delta_{X}(H)$	$\delta_{\text {hom }}(H)$	$\delta_{\text {poly-rem }}(H)$
K_{3}	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
K_{r}	$\frac{2 r-5}{2 r-3}$	$\frac{2 r-5}{2 r-3}$	$\frac{2 r-5}{2 r-3}$
$K_{2,2,2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{3}$
$C_{k}, k \geq 5$ odd	0	$\left[0, \frac{1}{k}\right]$	$\left[\frac{1}{k}, \frac{1}{2}\right]$
$X(H)=\omega(H)=r$	$\left\{\frac{r-3}{r-2}, \frac{2 r-5}{2 r-3}, \frac{r-2}{r-1}\right\}$	$\left[\delta_{X}(H), \frac{r-2}{r-1}\right]$	$\frac{2 r-5}{2 r-3}$

Proof sketch: linear bounds for K_{r} removal

Theorem (Fox-W.)
If $\delta(G)>\left(\frac{2 r-5}{2 r-3}+\alpha\right) n$ and G has $<\rho n^{r}$ copies of K_{r}, then G can be made $K_{r}-$ free by deleting $<c_{\alpha, r} \rho n^{2}$ edges.

Proof sketch: linear bounds for K_{r} removal

Theorem (Fox-W.)
If $\delta(G)>\left(\frac{2 r-5}{2 r-3}+\alpha\right) n$ and G has $<\rho n^{r}$ copies of K_{r}, then G can be made K_{r}-free by deleting $<c_{\alpha, r} \rho n^{2}$ edges.

As in the case $r=3$, it suffices to prove that every copy of K_{r} contains a popular edge, i.e. an edge in $>c_{\alpha, r} n^{r-2}$ copies of K_{r}.

Proof sketch: linear bounds for K_{r} removal

Theorem (Fox-W.)
If $\delta(G)>\left(\frac{2 r-5}{2 r-3}+\alpha\right) n$ and G has $<\rho n^{r}$ copies of K_{r}, then G can be made K_{r}-free by deleting $<c_{\alpha, r} \rho n^{2}$ edges.

As in the case $r=3$, it suffices to prove that every copy of K_{r} contains a popular edge, i.e. an edge in $>c_{\alpha, r} n^{r-2}$ copies of K_{r}. For simplicity, let $r=4$ and $\delta(G)>\left(\frac{3}{5}+\alpha\right) n$.

Proof sketch: linear bounds for K_{r} removal

Theorem (Fox-W.)
If $\delta(G)>\left(\frac{2 r-5}{2 r-3}+\alpha\right) n$ and G has $<\rho n^{r}$ copies of K_{r}, then G can be made K_{r}-free by deleting $<c_{\alpha, r} \rho n^{2}$ edges.

As in the case $r=3$, it suffices to prove that every copy of K_{r} contains a popular edge, i.e. an edge in $>c_{\alpha, r} n^{r-2}$ copies of K_{r}. For simplicity, let $r=4$ and $\delta(G)>\left(\frac{3}{5}+\alpha\right) n$. Fix a K_{4} in G, v_{1}, \ldots, v_{4}.

Proof sketch: linear bounds for K_{r} removal

Theorem (Fox-W.)
If $\delta(G)>\left(\frac{2 r-5}{2 r-3}+\alpha\right) n$ and G has $<\rho n^{r}$ copies of K_{r}, then G can be made K_{r}-free by deleting $<c_{\alpha, r} \rho n^{2}$ edges.

As in the case $r=3$, it suffices to prove that every copy of K_{r} contains a popular edge, i.e. an edge in $>c_{\alpha, r} n^{r-2}$ copies of K_{r}. For simplicity, let $r=4$ and $\delta(G)>\left(\frac{3}{5}+\alpha\right) n$. Fix a K_{4} in G, v_{1}, \ldots, v_{4}.

Proof sketch: linear bounds for K_{r} removal

Theorem (Fox-W.)
If $\delta(G)>\left(\frac{2 r-5}{2 r-3}+\alpha\right) n$ and G has $<\rho n^{r}$ copies of K_{r}, then G can be made K_{r}-free by deleting $<c_{\alpha, r} \rho n^{2}$ edges.

As in the case $r=3$, it suffices to prove that every copy of K_{r} contains a popular edge, i.e. an edge in $>c_{\alpha, r} n^{r-2}$ copies of K_{r}. For simplicity, let $r=4$ and $\delta(G)>\left(\frac{3}{5}+\alpha\right) n$. Fix a K_{4} in G, v_{1}, \ldots, v_{4}.

Proof sketch: linear bounds for K_{r} removal

Theorem (Fox-W.)
If $\delta(G)>\left(\frac{2 r-5}{2 r-3}+\alpha\right) n$ and G has $<\rho n^{r}$ copies of K_{r}, then G can be made K_{r}-free by deleting $<c_{\alpha, r} \rho n^{2}$ edges.

As in the case $r=3$, it suffices to prove that every copy of K_{r} contains a popular edge, i.e. an edge in $>c_{\alpha, r} n^{r-2}$ copies of K_{r}. For simplicity, let $r=4$ and $\delta(G)>\left(\frac{3}{5}+\alpha\right) n$. Fix a K_{4} in G, v_{1}, \ldots, v_{4}.

number of edges $>4 \cdot\left(\frac{3}{5}+\alpha\right) n>\frac{12}{5} n=\left(2+\frac{2}{5}\right) n$

Proof sketch: linear bounds for K_{r} removal

Theorem (Fox-W.)
If $\delta(G)>\left(\frac{2 r-5}{2 r-3}+\alpha\right) n$ and G has $<\rho n^{r}$ copies of K_{r}, then G can be made K_{r}-free by deleting $<c_{\alpha, \rho n^{2}}$ edges.

As in the case $r=3$, it suffices to prove that every copy of K_{r} contains a popular edge, i.e. an edge in $>c_{\alpha, r} n^{r-2}$ copies of K_{r}. For simplicity, let $r=4$ and $\delta(G)>\left(\frac{3}{5}+\alpha\right) n$. Fix a K_{4} in G, v_{1}, \ldots, v_{4}.

number of edges $>4 \cdot\left(\frac{3}{5}+\alpha\right) n>\frac{12}{5} n=\left(2+\frac{2}{5}\right) n$ many vertices on the right have ≥ 3 neighbors on the left

Proof sketch: linear bounds for K_{r} removal

Theorem (Fox-W.)
If $\delta(G)>\left(\frac{2 r-5}{2 r-3}+\alpha\right) n$ and G has $<\rho n^{r}$ copies of K_{r}, then G can be made K_{r}-free by deleting $<c_{\alpha, \rho n^{2}}$ edges.

As in the case $r=3$, it suffices to prove that every copy of K_{r} contains a popular edge, i.e. an edge in $>c_{\alpha, r} n^{r-2}$ copies of K_{r}. For simplicity, let $r=4$ and $\delta(G)>\left(\frac{3}{5}+\alpha\right) n$. Fix a K_{4} in G, v_{1}, \ldots, v_{4}.

number of edges $>4 \cdot\left(\frac{3}{5}+\alpha\right) n>\frac{12}{5} n=\left(2+\frac{2}{5}\right) n$ many vertices on the right have ≥ 3 neighbors on the left

Proof sketch: linear bounds for K_{r} removal

Theorem (Fox-W.)
If $\delta(G)>\left(\frac{2 r-5}{2 r-3}+\alpha\right) n$ and G has $<\rho n^{r}$ copies of K_{r}, then G can be made K_{r}-free by deleting $<c_{\alpha, \rho n^{2}}$ edges.

As in the case $r=3$, it suffices to prove that every copy of K_{r} contains a popular edge, i.e. an edge in $>c_{\alpha, r} n^{r-2}$ copies of K_{r}. For simplicity, let $r=4$ and $\delta(G)>\left(\frac{3}{5}+\alpha\right) n$. Fix a K_{4} in G, v_{1}, \ldots, v_{4}.

number of edges $>4 \cdot\left(\frac{3}{5}+\alpha\right) n>\frac{12}{5} n=\left(2+\frac{2}{5}\right) n$ many vertices on the right have ≥ 3 neighbors on the left

Proof sketch: linear bounds for K_{r} removal

Theorem (Fox-W.)
If $\delta(G)>\left(\frac{2 r-5}{2 r-3}+\alpha\right) n$ and G has $<\rho n^{r}$ copies of K_{r}, then G can be made K_{r}-free by deleting $<c_{\alpha, r} \rho n^{2}$ edges.

As in the case $r=3$, it suffices to prove that every copy of K_{r} contains a popular edge, i.e. an edge in $>c_{\alpha, r} n^{r-2}$ copies of K_{r}. For simplicity, let $r=4$ and $\delta(G)>\left(\frac{3}{5}+\alpha\right) n$. Fix a K_{4} in G, v_{1}, \ldots, v_{4}.

Proof sketch: linear bounds for K_{r} removal

Theorem (Fox-W.)
If $\delta(G)>\left(\frac{2 r-5}{2 r-3}+\alpha\right) n$ and G has $<\rho n^{r}$ copies of K_{r}, then G can be made K_{r}-free by deleting $<c_{\alpha, r} \rho n^{2}$ edges.

As in the case $r=3$, it suffices to prove that every copy of K_{r} contains a popular edge, i.e. an edge in $>c_{\alpha, r} n^{r-2}$ copies of K_{r}. For simplicity, let $r=4$ and $\delta(G)>\left(\frac{3}{5}+\alpha\right) n$. Fix a K_{4} in G, v_{1}, \ldots, v_{4}.

Proof sketch: linear bounds for K_{r} removal

Theorem (Fox-W.)
If $\delta(G)>\left(\frac{2 r-5}{2 r-3}+\alpha\right) n$ and G has $<\rho n^{r}$ copies of K_{r}, then G can be made K_{r}-free by deleting $<c_{\alpha, r} \rho n^{2}$ edges.

As in the case $r=3$, it suffices to prove that every copy of K_{r} contains a popular edge, i.e. an edge in $>c_{\alpha, r} n^{r-2}$ copies of K_{r}. For simplicity, let $r=4$ and $\delta(G)>\left(\frac{3}{5}+\alpha\right) n$. Fix a K_{4} in G, v_{1}, \ldots, v_{4}.

Proof sketch: linear bounds for K_{r} removal

Theorem (Fox-W.)
If $\delta(G)>\left(\frac{2 r-5}{2 r-3}+\alpha\right) n$ and G has $<\rho n^{r}$ copies of K_{r}, then G can be made K_{r}-free by deleting $<c_{\alpha, r} \rho n^{2}$ edges.

As in the case $r=3$, it suffices to prove that every copy of K_{r} contains a popular edge, i.e. an edge in $>c_{\alpha, r} n^{r-2}$ copies of K_{r}. For simplicity, let $r=4$ and $\delta(G)>\left(\frac{3}{5}+\alpha\right) n$. Fix a K_{4} in G, v_{1}, \ldots, v_{4}.

Proof sketch: linear bounds for K_{r} removal

Theorem (Fox-W.)
If $\delta(G)>\left(\frac{2 r-5}{2 r-3}+\alpha\right) n$ and G has $<\rho n^{r}$ copies of K_{r}, then G can be made K_{r}-free by deleting $<c_{\alpha, r} \rho n^{2}$ edges.

As in the case $r=3$, it suffices to prove that every copy of K_{r} contains a popular edge, i.e. an edge in $>c_{\alpha, r} n^{r-2}$ copies of K_{r}. For simplicity, let $r=4$ and $\delta(G)>\left(\frac{3}{5}+\alpha\right) n$. Fix a K_{4} in G, v_{1}, \ldots, v_{4}.

Proof sketch: linear bounds for K_{r} removal

Theorem (Fox-W.)
If $\delta(G)>\left(\frac{2 r-5}{2 r-3}+\alpha\right) n$ and G has $<\rho n^{r}$ copies of K_{r}, then G can be made K_{r}-free by deleting $<c_{\alpha, r} \rho n^{2}$ edges.

As in the case $r=3$, it suffices to prove that every copy of K_{r} contains a popular edge, i.e. an edge in $>c_{\alpha, r} n^{r-2}$ copies of K_{r}. For simplicity, let $r=4$ and $\delta(G)>\left(\frac{3}{5}+\alpha\right) n$. Fix a K_{4} in G, v_{1}, \ldots, v_{4}.

number of edges $>3 \cdot\left(\frac{1}{5}+\alpha\right) n>(1+\alpha)\left|S_{u}\right|$ many vertices on the right have ≥ 2 neighbors on the left

Proof sketch: linear bounds for K_{r} removal

Theorem (Fox-W.)
If $\delta(G)>\left(\frac{2 r-5}{2 r-3}+\alpha\right) n$ and G has $<\rho n^{r}$ copies of K_{r}, then G can be made K_{r}-free by deleting $<c_{\alpha, \rho n^{2}}$ edges.

As in the case $r=3$, it suffices to prove that every copy of K_{r} contains a popular edge, i.e. an edge in $>c_{\alpha, r} n^{r-2}$ copies of K_{r}. For simplicity, let $r=4$ and $\delta(G)>\left(\frac{3}{5}+\alpha\right) n$. Fix a K_{4} in G, v_{1}, \ldots, v_{4}.

number of edges $>3 \cdot\left(\frac{1}{5}+\alpha\right) n>(1+\alpha)\left|S_{u}\right|$ many vertices on the right have ≥ 2 neighbors on the left

Proof sketch: linear bounds for K_{r} removal

Theorem (Fox-W.)
If $\delta(G)>\left(\frac{2 r-5}{2 r-3}+\alpha\right) n$ and G has $<\rho n^{r}$ copies of K_{r}, then G can be made K_{r}-free by deleting $<c_{\alpha, \rho n^{2}}$ edges.

As in the case $r=3$, it suffices to prove that every copy of K_{r} contains a popular edge, i.e. an edge in $>c_{\alpha, r} n^{r-2}$ copies of K_{r}. For simplicity, let $r=4$ and $\delta(G)>\left(\frac{3}{5}+\alpha\right) n$. Fix a K_{4} in G, v_{1}, \ldots, v_{4}.

number of edges $>3 \cdot\left(\frac{1}{5}+\alpha\right) n>(1+\alpha)\left|S_{u}\right|$ many vertices on the right have ≥ 2 neighbors on the left

Proof sketch: linear bounds for K_{r} removal

Theorem (Fox-W.)
If $\delta(G)>\left(\frac{2 r-5}{2 r-3}+\alpha\right) n$ and G has $<\rho n^{r}$ copies of K_{r}, then G can be made K_{r}-free by deleting $<c_{\alpha, r} \rho n^{2}$ edges.

As in the case $r=3$, it suffices to prove that every copy of K_{r} contains a popular edge, i.e. an edge in $>c_{\alpha, r} n^{r-2}$ copies of K_{r}. For simplicity, let $r=4$ and $\delta(G)>\left(\frac{3}{5}+\alpha\right) n$. Fix a K_{4} in G, v_{1}, \ldots, v_{4}.

Proof sketch: linear bounds for K_{r} removal

Theorem (Fox-W.)
If $\delta(G)>\left(\frac{2 r-5}{2 r-3}+\alpha\right) n$ and G has $<\rho n^{r}$ copies of K_{r}, then G can be made K_{r}-free by deleting $<c_{\alpha, r} \rho n^{2}$ edges.

As in the case $r=3$, it suffices to prove that every copy of K_{r} contains a popular edge, i.e. an edge in $>c_{\alpha, r} n^{r-2}$ copies of K_{r}. For simplicity, let $r=4$ and $\delta(G)>\left(\frac{3}{5}+\alpha\right) n$. Fix a K_{4} in G, v_{1}, \ldots, v_{4}.

Proof sketch: linear bounds for K_{r} removal

Theorem (Fox-W.)
If $\delta(G)>\left(\frac{2 r-5}{2 r-3}+\alpha\right) n$ and G has $<\rho n^{r}$ copies of K_{r}, then G can be made K_{r}-free by deleting $\left\langle c_{\alpha, r} \rho n^{2}\right.$ edges.

As in the case $r=3$, it suffices to prove that every copy of K_{r} contains a popular edge, i.e. an edge in $>c_{\alpha, r} n^{r-2}$ copies of K_{r}. For simplicity, let $r=4$ and $\delta(G)>\left(\frac{3}{5}+\alpha\right) n$. Fix a K_{4} in G, v_{1}, \ldots, v_{4}.

There are $c_{\alpha} n^{2}$ edges among the common neighbors of v_{2} and v_{3}.

Outline

> Minimum degree conditions

> The graph removal lemma

> Minimum degree conditions and the graph removal lemma

Conclusion

Summary and open problems

Summary and open problems

- There is a structural threshold at minimum degree $\frac{1}{3}$ for triangle-free graphs: bounded "complexity" above $\frac{1}{3}$, but unbounded below.

Summary and open problems

- There is a structural threshold at minimum degree $\frac{1}{3}$ for triangle-free graphs: bounded "complexity" above $\frac{1}{3}$, but unbounded below.
- Similarly, the triangle removal lemma has a threshold at $\frac{1}{3}$: linear bounds above $\frac{1}{3}$, but super-polynomial below.

Summary and open problems

- There is a structural threshold at minimum degree $\frac{1}{3}$ for triangle-free graphs: bounded "complexity" above $\frac{1}{3}$, but unbounded below.
- Similarly, the triangle removal lemma has a threshold at $\frac{1}{3}$: linear bounds above $\frac{1}{3}$, but super-polynomial below.
- Above the threshold, simple averaging arguments suffice; below the threshold, it appears that much more powerful techniques are needed.

Summary and open problems

- There is a structural threshold at minimum degree $\frac{1}{3}$ for triangle-free graphs: bounded "complexity" above $\frac{1}{3}$, but unbounded below.
- Similarly, the triangle removal lemma has a threshold at $\frac{1}{3}$: linear bounds above $\frac{1}{3}$, but super-polynomial below.
- Above the threshold, simple averaging arguments suffice; below the threshold, it appears that much more powerful techniques are needed.
- We determine this polynomial removal threshold $\delta_{\text {poly-rem }}(H)$ for many graphs H, but there remain many questions.

Summary and open problems

- There is a structural threshold at minimum degree $\frac{1}{3}$ for triangle-free graphs: bounded "complexity" above $\frac{1}{3}$, but unbounded below.
- Similarly, the triangle removal lemma has a threshold at $\frac{1}{3}$: linear bounds above $\frac{1}{3}$, but super-polynomial below.
- Above the threshold, simple averaging arguments suffice; below the threshold, it appears that much more powerful techniques are needed.
- We determine this polynomial removal threshold $\delta_{\text {poly-rem }}(H)$ for many graphs H, but there remain many questions.
- If $X(H)=\omega(H)=r$, then $\delta_{\text {poly-rem }}(H)=\frac{2 r-5}{2 r-3}$.

Summary and open problems

- There is a structural threshold at minimum degree $\frac{1}{3}$ for triangle-free graphs: bounded "complexity" above $\frac{1}{3}$, but unbounded below.
- Similarly, the triangle removal lemma has a threshold at $\frac{1}{3}$: linear bounds above $\frac{1}{3}$, but super-polynomial below.
- Above the threshold, simple averaging arguments suffice; below the threshold, it appears that much more powerful techniques are needed.
- We determine this polynomial removal threshold $\delta_{\text {poly-rem }}(H)$ for many graphs H, but there remain many questions.
- If $X(H)=\omega(H)=r$, then $\delta_{\text {poly-rem }}(H)=\frac{2 r-5}{2 r-3}$.
- What is $\delta_{\text {poly-rem }}\left(C_{5}\right)$? (or odd cycles more generally)

Summary and open problems

- There is a structural threshold at minimum degree $\frac{1}{3}$ for triangle-free graphs: bounded "complexity" above $\frac{1}{3}$, but unbounded below.
- Similarly, the triangle removal lemma has a threshold at $\frac{1}{3}$: linear bounds above $\frac{1}{3}$, but super-polynomial below.
- Above the threshold, simple averaging arguments suffice; below the threshold, it appears that much more powerful techniques are needed.
- We determine this polynomial removal threshold $\delta_{\text {poly-rem }}(H)$ for many graphs H, but there remain many questions.
- If $X(H)=\omega(H)=r$, then $\delta_{\text {poly-rem }}(H)=\frac{2 r-5}{2 r-3}$.
-What is $\delta_{\text {poly-rem }}\left(C_{5}\right)$? (or odd cycles more generally)
- For which graphs H does $\delta_{\text {poly-rem }}(H)=\delta_{\chi}(H)$ and/or $\delta_{\text {poly-rem }}(H)=\delta_{\text {hom }}(H)$?

Summary and open problems

- There is a structural threshold at minimum degree $\frac{1}{3}$ for triangle-free graphs: bounded "complexity" above $\frac{1}{3}$, but unbounded below.
- Similarly, the triangle removal lemma has a threshold at $\frac{1}{3}$: linear bounds above $\frac{1}{3}$, but super-polynomial below.
- Above the threshold, simple averaging arguments suffice; below the threshold, it appears that much more powerful techniques are needed.
- We determine this polynomial removal threshold $\delta_{\text {poly-rem }}(H)$ for many graphs H, but there remain many questions.
- If $\chi(H)=\omega(H)=r$, then $\delta_{\text {poly-rem }}(H)=\frac{2 r-5}{2 r-3}$.
- What is $\delta_{\text {poly-rem }}\left(\mathrm{C}_{5}\right)$? (or odd cycles more generally)
- For which graphs H does $\delta_{\text {poly-rem }}(H)=\delta_{x}(H)$ and/or

$$
\delta_{\text {poly-rem }}(H)=\delta_{\text {hom }}(H) ?
$$

- Are there applications of the removal lemma with high minimum degree? (I only know one application.)

Summary and open problems

- There is a structural threshold at minimum degree $\frac{1}{3}$ for triangle-free graphs: bounded "complexity" above $\frac{1}{3}$, but unbounded below.
- Similarly, the triangle removal lemma has a threshold at $\frac{1}{3}$: linear bounds above $\frac{1}{3}$, but super-polynomial below.
- Above the threshold, simple averaging arguments suffice; below the threshold, it appears that much more powerful techniques are needed.
- We determine this polynomial removal threshold $\delta_{\text {poly-rem }}(H)$ for many graphs H, but there remain many questions.
- If $\chi(H)=\omega(H)=r$, then $\delta_{\text {poly-rem }}(H)=\frac{2 r-5}{2 r-3}$.
- What is $\delta_{\text {poly-rem }}\left(\mathrm{C}_{5}\right)$? (or odd cycles more generally)
- For which graphs H does $\delta_{\text {poly-rem }}(H)=\delta_{X}(H)$ and/or

$$
\delta_{\text {poly-rem }}(H)=\delta_{\text {hom }}(H) ?
$$

- Are there applications of the removal lemma with high minimum degree? (I only know one application.)
- Are there hypergraph analogues of these results?

Thank you!

