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Minimum degree conditions for triangle-free graphs

Let G be a triangle-free graph with n vertices and min degree δ(G).

Theorem (Mantel)
If δ(G) > 1

2n, then G cannot exist.

Theorem (Andrásfai–Erdős–Sós)
If δ(G) > 2

5n, then G is bipartite.

Theorem (Häggkvist)
If δ(G) > 3

8n, then G is a subgraph of or .

Jin found seven more thresholds for seven more structures.
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The taxonomy of dense triangle-free graphs

δ(G)/n

str
uc

tu
re
s

1
2

2
5

3
8

4
11· · ·10

29· · ·1
3

unbounded
complexity!

Minimum degree Removal lemma Minimum degree & the removal lemma Conclusion



The taxonomy of dense triangle-free graphs

δ(G)/n

str
uc

tu
re
s

1
2

2
5

3
8

4
11· · ·10

29· · ·1
3

unbounded
complexity!

Minimum degree Removal lemma Minimum degree & the removal lemma Conclusion



The taxonomy of dense triangle-free graphs

δ(G)/n

str
uc

tu
re
s

1
2

2
5

3
8

4
11· · ·10

29· · ·1
3

unbounded
complexity!

Minimum degree Removal lemma Minimum degree & the removal lemma Conclusion



The taxonomy of dense triangle-free graphs

δ(G)/n

str
uc

tu
re
s

1
2

2
5

3
8

4
11· · ·10

29· · ·1
3

unbounded
complexity!

Minimum degree Removal lemma Minimum degree & the removal lemma Conclusion



The taxonomy of dense triangle-free graphs

δ(G)/n

str
uc

tu
re
s

1
2

2
5

3
8

4
11· · ·10

29· · ·1
3

unbounded
complexity!

Minimum degree Removal lemma Minimum degree & the removal lemma Conclusion



The taxonomy of dense triangle-free graphs

δ(G)/n

str
uc

tu
re
s

1
2

2
5

3
8

4
11· · ·10

29· · ·1
3

unbounded
complexity!

Minimum degree Removal lemma Minimum degree & the removal lemma Conclusion



The taxonomy of dense triangle-free graphs

δ(G)/n

str
uc

tu
re
s

1
2

2
5

3
8

4
11· · ·10

29· · ·1
3

unbounded
complexity!

Minimum degree Removal lemma Minimum degree & the removal lemma Conclusion



The taxonomy of dense triangle-free graphs

δ(G)/n

str
uc

tu
re
s

1
2

2
5

3
8

4
11· · ·10

29· · ·1
3

unbounded
complexity!

Minimum degree Removal lemma Minimum degree & the removal lemma Conclusion



The taxonomy of dense triangle-free graphs

δ(G)/n

str
uc

tu
re
s

1
2

2
5

3
8

4
11· · ·10

29· · ·1
3

unbounded
complexity!

Minimum degree Removal lemma Minimum degree & the removal lemma Conclusion



The taxonomy of dense triangle-free graphs

δ(G)/n

str
uc

tu
re
s

1
2

2
5

3
8

4
11· · ·10

29· · ·1
3

unbounded
complexity!

Minimum degree Removal lemma Minimum degree & the removal lemma Conclusion



The taxonomy of dense triangle-free graphs

δ(G)/n

str
uc

tu
re
s

1
2

2
5

3
8

4
11· · ·10

29· · ·1
3

unbounded
complexity!

Minimum degree Removal lemma Minimum degree & the removal lemma Conclusion



The taxonomy of dense triangle-free graphs

δ(G)/n

str
uc

tu
re
s

1
2

2
5

3
8

4
11· · ·10

29· · ·1
3

unbounded
complexity!

Minimum degree Removal lemma Minimum degree & the removal lemma Conclusion



What happens at 1
3?

Theorem (Erdős–Hajnal–Simonovits)
For every α > 0 and C > 0, there exists a triangle-free graph G with
δ(G) > (13 − α)n and χ(G) > C.

Theorem (Thomassen)
For every α > 0, there exists C > 0 such that any triangle-free graph
G with δ(G) > (13 + α)n has χ(G) < C.

The chromatic threshold δχ(K3) equals 1
3 .

Theorem (Łuczak)
For every α > 0, there exists a finite set 𝓕 of triangle-free graphs
such that any triangle-free graph G with δ(G) > (13 + α)n is a
subgraph of a blowup of some F ∈ 𝓕.

The homomorphism threshold δhom(K3) equals 1
3 .
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Graphs with few triangles

Can we say anything if we only assume that G has few triangles?

Triangle removal lemma (Ruzsa–Szemerédi)
For every ε > 0 there exists ρ > 0 such that if G has < ρn3 triangles,
then it can be made triangle-free by removing <εn2 edges.

“The only way to make a graph with few triangles is to add few
edges to a triangle-free graph.”
Applications to number theory, computer science, graph theory,…
Despite the simple statement, all known proofs are hard!

Theorem (Alon–Duke–Lefmann–Rödl–Yuster, Füredi)
For every H and ε > 0, there exists ρ > 0 such that if G has < ρn|V(H)|

copies of H, then it can be made H-free by removing <εn2 edges.

Minimum degree Removal lemma Minimum degree & the removal lemma Conclusion
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Bounds for the graph removal lemma
Graph removal lemma
For every H and ε > 0, there exists ρ > 0 such that if G has < ρn|V(H)|

copies of H, then it can be made H-free by removing <εn2 edges.

Let ρ(ε,H) be the largest possible value of ρ.

Original proofs

ρ(ε,H)−1 ≤ 22··
·2

}
ε−CH

Theorem (Ruzsa–Szemerédi, Alon)

ρ(ε,H)−1 ≥ ε−cH log 1
ε

for non-bipartite H.

Upshot: ρ(ε,H) is super-polynomial in ε for non-bipartite H.

Minimum degree Removal lemma Minimum degree & the removal lemma Conclusion
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Triangle removal with high minimum degree

Theorem (Fox–W.)
If δ(G) > (13 + α)n and G has < ρn3 triangles, then G can be made
triangle-free by deleting < 3

α ρn2 edges.

In a sufficiently dense graph, the removal lemma has linear bounds!

Proof.
Consider any triangle {v1, v2, v3} in G. We have |N(vi)| > (13 + α)n.
By pigeonhole, |N(vi) ∩ N(vj)| > αn for some i, j.
So vivj lies in >αn triangles.
So every triangle contains a popular edge, one lying in >αn
triangles. Deleting all popular edges destroys all triangles.
t popular edges yield >αnt/3 triangles. So αnt/3 < ρn3, and
therefore t < 3

α ρn2.

The proof only uses simple averaging arguments!

Minimum degree Removal lemma Minimum degree & the removal lemma Conclusion
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So vivj lies in >αn triangles.

So every triangle contains a popular edge, one lying in >αn
triangles. Deleting all popular edges destroys all triangles.
t popular edges yield >αnt/3 triangles. So αnt/3 < ρn3, and
therefore t < 3

α ρn2.

The proof only uses simple averaging arguments!
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Is 1
3 tight?
Can we still get linear bounds with a weaker condition on δ(G)?

No.

Theorem (Fox–W.)
For any α > 0, there exists G with δ(G) > (13 − α)n such that deleting
all triangles in G is roughly as hard as it is for arbitrary graphs.

Proof.

Let G0 be a “hard” graph for the triangle
removal lemma. We may assume G0 is
tripartite. Add to G0 a huge blowup of the path
P2. G has minimum degree close to n/3, and it
is hard to make it triangle-free.

G0

There are linear bounds in the triangle removal lemma if
δ(G) > (13 + α)n, but super-polynomial is necessary if we only
assume δ(G) > (13 − α)n.
1
3 is a threshold for bounds in the triangle removal lemma.
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Three thresholds

Definition
The polynomial removal threshold δpoly-rem(H) is the infimum of δ
such that the H removal lemma has polynomial bounds if δ(G) > δn.

Earlier we saw the chromatic threshold δχ(H) and the
homomorphism threshold δhom(H).
These are the infimum of δ such that an H-free graph with δ(G) > δn
has bounded chromatic number or bounded “structure”.

H δχ(H) δhom(H) δpoly-rem(H)
K3 1

3
1
3

1
3

Kr 2r−5
2r−3

2r−5
2r−3

2r−5
2r−3

K2,2,2 1
2

1
2

1
3

Ck, k ≥ 5 odd 0 [0, 1k ] [1k , 12 ]

χ(H) = ω(H) = r
{

r−3
r−2 , 2r−5

2r−3 , r−2
r−1

}
[δχ(H), r−2

r−1 ]
2r−5
2r−3
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Proof sketch: linear bounds for Kr removal
Theorem (Fox–W.)
If δ(G) > (2r−5

2r−3 + α)n and G has < ρnr copies of Kr, then G can be
made Kr-free by deleting <cα,rρn2 edges.

As in the case r = 3, it suffices to prove that every copy of Kr
contains a popular edge, i.e. an edge in >cα,rnr−2 copies of Kr.
For simplicity, let r = 4 and δ(G) > (35 + α)n. Fix a K4 in G, v1,…, v4.

V(G)

v1

v2

v3

v4

N(v1)

N(v4)

number of edges > 4 · (35 + α)n > 12
5 n = (2+ 2

5 )n

many vertices on the right have ≥3 neighbors on the left

U
UuSu ⊂ N(u)

|Su| = 3
5n

number of edges > 3 · (15 + α)n > (1+ α)|Su|

many vertices on the right have ≥2 neighbors on the left

S′
u w

S′
w U′

There are cαn2 edges among the common neighbors of v2 and v3.

Minimum degree Removal lemma Minimum degree & the removal lemma Conclusion
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Summary and open problems

• There is a structural threshold at minimum degree 1
3 for

triangle-free graphs: bounded “complexity” above 1
3 , but

unbounded below.
• Similarly, the triangle removal lemma has a threshold at 1

3 :
linear bounds above 1

3 , but super-polynomial below.
• Above the threshold, simple averaging arguments suffice;
below the threshold, it appears that much more powerful
techniques are needed.

• We determine this polynomial removal threshold δpoly-rem(H)
for many graphs H, but there remain many questions.

▶ If χ(H) = ω(H) = r, then δpoly-rem(H) = 2r−5
2r−3 .▶ What is δpoly-rem(C5)? (or odd cycles more generally)

▶ For which graphs H does δpoly-rem(H) = δχ(H) and/or
δpoly-rem(H) = δhom(H)?

• Are there applications of the removal lemma with high
minimum degree? (I only know one application.)

• Are there hypergraph analogues of these results?
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Thank you!
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