Minimum degree and the graph removal lemma

Yuval Wigderson (Stanford)

Joint with Jacob Fox

June 30, 2021

Outline

Minimum degree conditions

The graph removal lemma

Minimum degree conditions and the graph removal lemma

Conclusion

Outline

Minimum degree conditions

The graph removal lemma

Minimum degree conditions and the graph removal lemma

Conclusion

Let G be a triangle-free graph with n vertices and min degree $\delta(G)$.

Let G be a triangle-free graph with n vertices and min degree $\delta(G)$.

Theorem (Mantel)

If $\delta(G) > \frac{1}{2}n$, then G cannot exist.

Let G be a triangle-free graph with n vertices and min degree $\delta(G)$.

Theorem (Mantel)

If $\delta(G) > \frac{1}{2}n$, then G cannot exist.

Let G be a triangle-free graph with n vertices and min degree $\delta(G)$.

Theorem (Mantel)

If $\delta(G) > \frac{1}{2}n$, then G cannot exist.

Theorem (Andrásfai-Erdős-Sós)

If $\delta(G) > \frac{2}{5}n$, then G is bipartite.

Let G be a triangle-free graph with n vertices and min degree $\delta(G)$.

Theorem (Mantel)

If $\delta(G) > \frac{1}{2}n$, then G cannot exist.

Theorem (Andrásfai-Erdős-Sós)

If $\delta(G) > \frac{2}{5}n$, then G is bipartite.

Let G be a triangle-free graph with n vertices and min degree $\delta(G)$.

Theorem (Mantel)

If $\delta(G) > \frac{1}{2}n$, then G cannot exist.

Theorem (Andrásfai-Erdős-Sós)

If $\delta(G) > \frac{2}{5}n$, then G is a subgraph of \bigcirc .

Let G be a triangle-free graph with n vertices and min degree $\delta(G)$.

Theorem (Mantel)

If $\delta(G) > \frac{1}{2}n$, then G cannot exist.

Theorem (Andrásfai-Erdős-Sós)

If $\delta(G) > \frac{2}{5}n$, then G is a subgraph of \bigcirc .

Theorem (Häggkvist)

If $\delta(G) > \frac{3}{8}n$, then G is a subgraph of \bigcirc or \diamondsuit .

Let G be a triangle-free graph with n vertices and min degree $\delta(G)$.

Theorem (Mantel)

If $\delta(G) > \frac{1}{2}n$, then G cannot exist.

Theorem (Andrásfai-Erdős-Sós)

If $\delta(G) > \frac{2}{5}n$, then G is a subgraph of \bigcirc .

Theorem (Häggkvist)

If $\delta(G) > \frac{3}{8}n$, then G is a subgraph of \bigcirc or $^{\circ}$.

Let G be a triangle-free graph with n vertices and min degree $\delta(G)$.

Theorem (Mantel)

If $\delta(G) > \frac{1}{2}n$, then G cannot exist.

Theorem (Andrásfai-Erdős-Sós)

If $\delta(G) > \frac{2}{5}n$, then G is a subgraph of \bigcirc .

Theorem (Häggkvist)

If $\delta(G) > \frac{3}{8}n$, then G is a subgraph of \bigcirc or $^{\circ}$.

Jin found seven more thresholds for seven more structures.

Theorem (Erdős-Hajnal-Simonovits)

For every $\alpha > 0$ and C > 0, there exists a triangle-free graph G with $\delta(G) > (\frac{1}{3} - \alpha)n$ and $\chi(G) > C$.

Theorem (Erdős-Hajnal-Simonovits)

For every $\alpha > 0$ and C > 0, there exists a triangle-free graph G with $\delta(G) > (\frac{1}{3} - \alpha)n$ and $\chi(G) > C$.

Theorem (Thomassen)

For every $\alpha > 0$, there exists C > 0 such that any triangle-free graph G with $\delta(G) > (\frac{1}{3} + \alpha)n$ has $\chi(G) < C$.

Theorem (Erdős-Hajnal-Simonovits)

For every $\alpha > 0$ and C > 0, there exists a triangle-free graph G with $\delta(G) > (\frac{1}{3} - \alpha)n$ and $\chi(G) > C$.

Theorem (Thomassen)

For every $\alpha > 0$, there exists C > 0 such that any triangle-free graph G with $\delta(G) > (\frac{1}{3} + \alpha)n$ has $\chi(G) < C$.

Theorem (Łuczak)

For every $\alpha > 0$, there exists a finite set \mathcal{F} of triangle-free graphs such that any triangle-free graph G with $\delta(G) > (\frac{1}{3} + \alpha)n$ is a subgraph of a blowup of some $F \in \mathcal{F}$.

Theorem (Erdős-Hajnal-Simonovits)

For every $\alpha > 0$ and C > 0, there exists a triangle-free graph G with $\delta(G) > (\frac{1}{3} - \alpha)n$ and $\chi(G) > C$.

Theorem (Thomassen)

For every $\alpha > 0$, there exists C > 0 such that any triangle-free graph G with $\delta(G) > (\frac{1}{3} + \alpha)n$ has $\chi(G) < C$.

The chromatic threshold $\delta_{\chi}(K_3)$ equals $\frac{1}{3}$.

Theorem (Łuczak)

For every $\alpha > 0$, there exists a finite set \mathcal{F} of triangle-free graphs such that any triangle-free graph G with $\delta(G) > (\frac{1}{3} + \alpha)n$ is a subgraph of a blowup of some $F \in \mathcal{F}$.

Theorem (Erdős-Hajnal-Simonovits)

For every $\alpha > 0$ and C > 0, there exists a triangle-free graph G with $\delta(G) > (\frac{1}{3} - \alpha)n$ and $\chi(G) > C$.

Theorem (Thomassen)

For every $\alpha > 0$, there exists C > 0 such that any triangle-free graph G with $\delta(G) > (\frac{1}{3} + \alpha)n$ has $\chi(G) < C$.

The chromatic threshold $\delta_{\chi}(K_3)$ equals $\frac{1}{3}$.

Theorem (Łuczak)

For every $\alpha > 0$, there exists a finite set \mathcal{F} of triangle-free graphs such that any triangle-free graph G with $\delta(G) > (\frac{1}{3} + \alpha)n$ is a subgraph of a blowup of some $F \in \mathcal{F}$.

The homomorphism threshold $\delta_{hom}(K_3)$ equals $\frac{1}{3}$.

Outline

Minimum degree conditions

The graph removal lemma

Minimum degree conditions and the graph removal lemma

Conclusion

Can we say anything if we only assume that *G* has few triangles?

Can we say anything if we only assume that *G* has few triangles?

Triangle removal lemma (Ruzsa-Szemerédi)

For every $\varepsilon > 0$ there exists $\rho > 0$ such that if G has $< \rho n^3$ triangles, then it can be made triangle-free by removing $< \varepsilon n^2$ edges.

Can we say anything if we only assume that G has few triangles?

Triangle removal lemma (Ruzsa-Szemerédi)

For every $\varepsilon > 0$ there exists $\rho > 0$ such that if G has $< \rho n^3$ triangles, then it can be made triangle-free by removing $< \varepsilon n^2$ edges.

"The only way to make a graph with few triangles is to add few edges to a triangle-free graph."

Can we say anything if we only assume that *G* has few triangles?

Triangle removal lemma (Ruzsa-Szemerédi)

For every $\varepsilon > 0$ there exists $\rho > 0$ such that if G has $< \rho n^3$ triangles, then it can be made triangle-free by removing $< \varepsilon n^2$ edges.

"The only way to make a graph with few triangles is to add few edges to a triangle-free graph."

Applications to number theory, computer science, graph theory,...

Graphs with few triangles

Can we say anything if we only assume that G has few triangles?

Triangle removal lemma (Ruzsa-Szemerédi)

For every $\varepsilon > 0$ there exists $\rho > 0$ such that if G has $< \rho n^3$ triangles, then it can be made triangle-free by removing $< \varepsilon n^2$ edges.

"The only way to make a graph with few triangles is to add few edges to a triangle-free graph."

Applications to number theory, computer science, graph theory,...

Despite the simple statement, all known proofs are hard!

Graphs with few triangles

Can we say anything if we only assume that *G* has few triangles?

Triangle removal lemma (Ruzsa-Szemerédi)

For every $\varepsilon > 0$ there exists $\rho > 0$ such that if G has $< \rho n^3$ triangles, then it can be made triangle-free by removing $< \varepsilon n^2$ edges.

"The only way to make a graph with few triangles is to add few edges to a triangle-free graph."

Applications to number theory, computer science, graph theory,... Despite the simple statement, all known proofs are hard!

Theorem (Alon-Duke-Lefmann-Rödl-Yuster, Füredi)

For every H and $\varepsilon > 0$, there exists $\rho > 0$ such that if G has $<\rho n^{|V(H)|}$ copies of H, then it can be made H-free by removing $<\varepsilon n^2$ edges.

Graph removal lemma

For every H and $\varepsilon > 0$, there exists $\rho > 0$ such that if G has $<\rho n^{|V(H)|}$ copies of H, then it can be made H-free by removing $<\varepsilon n^2$ edges.

Graph removal lemma

For every H and $\varepsilon > 0$, there exists $\rho > 0$ such that if G has $<\rho n^{|V(H)|}$ copies of H, then it can be made H-free by removing $<\varepsilon n^2$ edges.

Let $\rho(\varepsilon, H)$ be the largest possible value of ρ .

Graph removal lemma

For every H and $\varepsilon > 0$, there exists $\rho > 0$ such that if G has $<\rho n^{|V(H)|}$ copies of H, then it can be made H-free by removing $<\varepsilon n^2$ edges.

Let $\rho(\varepsilon, H)$ be the largest possible value of ρ .

Original proofs

$$\rho(\varepsilon,H)^{-1} \leq 2^{2} \cdot \varepsilon^{2}$$

Graph removal lemma

For every H and $\varepsilon > 0$, there exists $\rho > 0$ such that if G has $<\rho n^{|V(H)|}$ copies of H, then it can be made H-free by removing $<\varepsilon n^2$ edges.

Let $\rho(\varepsilon, H)$ be the largest possible value of ρ .

Theorem (Fox)

$$\rho(\varepsilon,H)^{-1} \leq 2^{2^{\cdot^{\cdot^{2}}}} \right\}^{C_{H} \log \frac{1}{\varepsilon}}$$

Graph removal lemma

For every H and $\varepsilon > 0$, there exists $\rho > 0$ such that if G has $<\rho n^{|V(H)|}$ copies of H, then it can be made H-free by removing $<\varepsilon n^2$ edges.

Let $\rho(\varepsilon, H)$ be the largest possible value of ρ .

Theorem (Fox)

$$\rho(\varepsilon,H)^{-1} \leq 2^{2^{\cdot \cdot \cdot^{2}}} \right\}^{C_{H} \log \frac{1}{\varepsilon}}$$

Theorem (Ruzsa-Szemerédi, Alon)

$$\rho(\varepsilon, H)^{-1} \geq \varepsilon^{-c_H \log \frac{1}{\varepsilon}}$$

for non-bipartite H.

Graph removal lemma

For every H and $\varepsilon > 0$, there exists $\rho > 0$ such that if G has $<\rho n^{|V(H)|}$ copies of H, then it can be made H-free by removing $<\varepsilon n^2$ edges.

Let $\rho(\varepsilon, H)$ be the largest possible value of ρ .

Theorem (Fox)

$$\rho(\varepsilon,H)^{-1} \leq 2^{2^{\cdot \cdot \cdot^{2}}} \right\}^{C_{H} \log \frac{1}{\varepsilon}}$$

Theorem (Ruzsa-Szemerédi, Alon)

$$\rho(\varepsilon, H)^{-1} \geq \varepsilon^{-c_H \log \frac{1}{\varepsilon}}$$

for non-bipartite H.

Upshot: $\rho(\varepsilon, H)$ is super-polynomial in ε for non-bipartite H.

Outline

Minimum degree conditions

The graph removal lemma

Minimum degree conditions and the graph removal lemma

Conclusion

Theorem (Fox-W.)

If $\delta(G) > (\frac{1}{3} + \alpha)n$ and G has $< \rho n^3$ triangles, then G can be made triangle-free by deleting $< \frac{3}{\alpha} \rho n^2$ edges.

Theorem (Fox-W.)

If $\delta(G) > (\frac{1}{3} + \alpha)n$ and G has $< \rho n^3$ triangles, then G can be made triangle-free by deleting $< \frac{3}{\alpha} \rho n^2$ edges.

In a sufficiently dense graph, the removal lemma has linear bounds!

Theorem (Fox-W.)

If $\delta(G) > (\frac{1}{3} + \alpha)n$ and G has $< \rho n^3$ triangles, then G can be made triangle-free by deleting $< \frac{3}{\alpha} \rho n^2$ edges.

In a sufficiently dense graph, the removal lemma has linear bounds!

Proof.

Consider any triangle $\{v_1, v_2, v_3\}$ in G. We have $|N(v_i)| > (\frac{1}{3} + \alpha)n$.

Theorem (Fox-W.)

If $\delta(G) > (\frac{1}{3} + \alpha)n$ and G has $< \rho n^3$ triangles, then G can be made triangle-free by deleting $< \frac{3}{\alpha} \rho n^2$ edges.

In a sufficiently dense graph, the removal lemma has linear bounds!

Proof.

Consider any triangle $\{v_1, v_2, v_3\}$ in G. We have $|N(v_i)| > (\frac{1}{3} + \alpha)n$. By pigeonhole, $|N(v_i) \cap N(v_j)| > \alpha n$ for some i, j.

Theorem (Fox-W.)

If $\delta(G) > (\frac{1}{3} + \alpha)n$ and G has $< \rho n^3$ triangles, then G can be made triangle-free by deleting $< \frac{3}{\alpha} \rho n^2$ edges.

In a sufficiently dense graph, the removal lemma has linear bounds!

Proof.

Consider any triangle $\{v_1, v_2, v_3\}$ in G. We have $|N(v_i)| > (\frac{1}{3} + \alpha)n$. By pigeonhole, $|N(v_i) \cap N(v_j)| > \alpha n$ for some i, j. So $v_i v_j$ lies in $> \alpha n$ triangles.

Theorem (Fox-W.)

If $\delta(G) > (\frac{1}{3} + \alpha)n$ and G has $< \rho n^3$ triangles, then G can be made triangle-free by deleting $< \frac{3}{\alpha} \rho n^2$ edges.

In a sufficiently dense graph, the removal lemma has linear bounds!

Proof.

Consider any triangle $\{v_1, v_2, v_3\}$ in G. We have $|N(v_i)| > (\frac{1}{3} + \alpha)n$. By pigeonhole, $|N(v_i) \cap N(v_j)| > \alpha n$ for some i, j.

So $v_i v_j$ lies in $> \alpha n$ triangles.

So every triangle contains a popular edge, one lying in $> \alpha n$ triangles. Deleting all popular edges destroys all triangles.

Theorem (Fox-W.)

If $\delta(G) > (\frac{1}{3} + \alpha)n$ and G has $< \rho n^3$ triangles, then G can be made triangle-free by deleting $< \frac{3}{\alpha} \rho n^2$ edges.

In a sufficiently dense graph, the removal lemma has linear bounds!

Proof.

Consider any triangle $\{v_1, v_2, v_3\}$ in G. We have $|N(v_i)| > (\frac{1}{3} + \alpha)n$. By pigeonhole, $|N(v_i) \cap N(v_i)| > \alpha n$ for some i, j.

So $v_i v_j$ lies in $> \alpha n$ triangles.

So every triangle contains a popular edge, one lying in $> \alpha n$ triangles. Deleting all popular edges destroys all triangles. t popular edges yield $> \alpha nt/3$ triangles.

Theorem (Fox-W.)

If $\delta(G) > (\frac{1}{3} + \alpha)n$ and G has $< \rho n^3$ triangles, then G can be made triangle-free by deleting $< \frac{3}{\alpha} \rho n^2$ edges.

In a sufficiently dense graph, the removal lemma has linear bounds!

Proof.

Consider any triangle $\{v_1, v_2, v_3\}$ in G. We have $|N(v_i)| > (\frac{1}{3} + \alpha)n$. By pigeonhole, $|N(v_i) \cap N(v_j)| > \alpha n$ for some i, j.

So $v_i v_j$ lies in $> \alpha n$ triangles.

So every triangle contains a popular edge, one lying in $> \alpha n$ triangles. Deleting all popular edges destroys all triangles. t popular edges yield $> \alpha nt/3$ triangles. So $\alpha nt/3 < \rho n^3$

Theorem (Fox-W.)

If $\delta(G) > (\frac{1}{3} + \alpha)n$ and G has $< \rho n^3$ triangles, then G can be made triangle-free by deleting $< \frac{3}{\alpha} \rho n^2$ edges.

In a sufficiently dense graph, the removal lemma has linear bounds!

Proof.

Consider any triangle $\{v_1, v_2, v_3\}$ in G. We have $|N(v_i)| > (\frac{1}{3} + \alpha)n$. By pigeonhole, $|N(v_i) \cap N(v_j)| > \alpha n$ for some i, j. So $v_i v_i$ lies in $> \alpha n$ triangles.

So every triangle contains a popular edge, one lying in $> \alpha n$ triangles. Deleting all popular edges destroys all triangles. t popular edges yield $> \alpha nt/3$ triangles. So $\alpha nt/3 < \rho n^3$, and therefore $t < \frac{3}{\alpha}\rho n^2$.

Theorem (Fox-W.)

If $\delta(G) > (\frac{1}{3} + \alpha)n$ and G has $< \rho n^3$ triangles, then G can be made triangle-free by deleting $< \frac{3}{\alpha} \rho n^2$ edges.

In a sufficiently dense graph, the removal lemma has linear bounds!

Proof.

Consider any triangle $\{v_1, v_2, v_3\}$ in G. We have $|N(v_i)| > (\frac{1}{3} + \alpha)n$. By pigeonhole, $|N(v_i) \cap N(v_j)| > \alpha n$ for some i, j. So $v_i v_i$ lies in $> \alpha n$ triangles.

So every triangle contains a popular edge, one lying in $> \alpha n$ triangles. Deleting all popular edges destroys all triangles. t popular edges yield $> \alpha nt/3$ triangles. So $\alpha nt/3 < \rho n^3$, and therefore $t < \frac{3}{\alpha}\rho n^2$.

The proof only uses simple averaging arguments!

Can we still get linear bounds with a weaker condition on $\delta(G)$?

Can we still get linear bounds with a weaker condition on $\delta(G)$? No.

Theorem (Fox-W.)

For any $\alpha > 0$, there exists G with $\delta(G) > (\frac{1}{3} - \alpha)n$ such that deleting all triangles in G is roughly as hard as it is for arbitrary graphs.

Can we still get linear bounds with a weaker condition on $\delta(G)$? No.

Theorem (Fox-W.)

For any $\alpha > 0$, there exists G with $\delta(G) > (\frac{1}{3} - \alpha)n$ such that deleting all triangles in G is roughly as hard as it is for arbitrary graphs.

Proof.

Let G_0 be a "hard" graph for the triangle removal lemma.

Can we still get linear bounds with a weaker condition on $\delta(G)$? No.

Theorem (Fox-W.)

For any $\alpha > 0$, there exists G with $\delta(G) > (\frac{1}{3} - \alpha)n$ such that deleting all triangles in G is roughly as hard as it is for arbitrary graphs.

Proof.

Let G_0 be a "hard" graph for the triangle removal lemma. We may assume G_0 is tripartite.

Can we still get linear bounds with a weaker condition on $\delta(G)$? No.

Theorem (Fox-W.)

For any $\alpha > 0$, there exists G with $\delta(G) > (\frac{1}{3} - \alpha)n$ such that deleting all triangles in G is roughly as hard as it is for arbitrary graphs.

Proof.

Let G_0 be a "hard" graph for the triangle removal lemma. We may assume G_0 is tripartite. Add to G_0 a huge blowup of the path P_2 .

Can we still get linear bounds with a weaker condition on $\delta(G)$? No.

Theorem (Fox-W.)

For any $\alpha > 0$, there exists G with $\delta(G) > (\frac{1}{3} - \alpha)n$ such that deleting all triangles in G is roughly as hard as it is for arbitrary graphs.

Proof.

Let G_0 be a "hard" graph for the triangle removal lemma. We may assume G_0 is tripartite. Add to G_0 a huge blowup of the path P_2 .

Can we still get linear bounds with a weaker condition on $\delta(G)$? No.

Theorem (Fox-W.)

For any $\alpha > 0$, there exists G with $\delta(G) > (\frac{1}{3} - \alpha)n$ such that deleting all triangles in G is roughly as hard as it is for arbitrary graphs.

Proof.

Let G_0 be a "hard" graph for the triangle removal lemma. We may assume G_0 is tripartite. Add to G_0 a huge blowup of the path P_2 . G has minimum degree close to n/3, and it is hard to make it triangle-free.

Can we still get linear bounds with a weaker condition on $\delta(G)$? No.

Theorem (Fox-W.)

For any $\alpha > 0$, there exists G with $\delta(G) > (\frac{1}{3} - \alpha)n$ such that deleting all triangles in G is roughly as hard as it is for arbitrary graphs.

Proof.

Let G_0 be a "hard" graph for the triangle removal lemma. We may assume G_0 is tripartite. Add to G_0 a huge blowup of the path P_2 . G has minimum degree close to n/3, and it is hard to make it triangle-free.

There are linear bounds in the triangle removal lemma if $\delta(G) > (\frac{1}{3} + \alpha)n$, but super-polynomial is necessary if we only assume $\delta(G) > (\frac{1}{3} - \alpha)n$.

Can we still get linear bounds with a weaker condition on $\delta(G)$? No.

Theorem (Fox-W.)

For any $\alpha > 0$, there exists G with $\delta(G) > (\frac{1}{3} - \alpha)n$ such that deleting all triangles in G is roughly as hard as it is for arbitrary graphs.

Proof.

Let G_0 be a "hard" graph for the triangle removal lemma. We may assume G_0 is tripartite. Add to G_0 a huge blowup of the path P_2 . G has minimum degree close to n/3, and it is hard to make it triangle-free.

There are linear bounds in the triangle removal lemma if $\delta(G) > (\frac{1}{3} + \alpha)n$, but super-polynomial is necessary if we only assume $\delta(G) > (\frac{1}{3} - \alpha)n$.

 $\frac{1}{3}$ is a threshold for bounds in the triangle removal lemma.

Definition

The polynomial removal threshold $\delta_{\text{poly-rem}}(H)$ is the infimum of δ such that the H removal lemma has polynomial bounds if $\delta(G) > \delta n$.

Definition

The polynomial removal threshold $\delta_{poly-rem}(H)$ is the infimum of δ such that the H removal lemma has polynomial bounds if $\delta(G) > \delta n$.

Earlier we saw the chromatic threshold $\delta_{\chi}(H)$ and the homomorphism threshold $\delta_{\text{hom}}(H)$.

Definition

The polynomial removal threshold $\delta_{poly-rem}(H)$ is the infimum of δ such that the H removal lemma has polynomial bounds if $\delta(G) > \delta n$.

Earlier we saw the chromatic threshold $\delta_{\chi}(H)$ and the homomorphism threshold $\delta_{\text{hom}}(H)$.

H	$\delta_{\chi}(H)$	$\delta_{hom}(H)$	$\delta_{ ext{poly-rem}}(H)$
<i>K</i> ₃	<u>1</u>	<u>1</u>	<u>1</u>
	3	3	3

Definition

The polynomial removal threshold $\delta_{\text{poly-rem}}(H)$ is the infimum of δ such that the H removal lemma has polynomial bounds if $\delta(G) > \delta n$.

Earlier we saw the chromatic threshold $\delta_{\chi}(H)$ and the homomorphism threshold $\delta_{\text{hom}}(H)$.

Н	$\delta_{\chi}(H)$	$\delta_{hom}(H)$	$\delta_{poly-rem}(H)$
K ₃	<u>1</u> 3	<u>1</u>	1/3
K_r	$\frac{2r-5}{2r-3}$	$\frac{2r-5}{2r-3}$	$\frac{2r-5}{2r-3}$

Definition

The polynomial removal threshold $\delta_{poly-rem}(H)$ is the infimum of δ such that the H removal lemma has polynomial bounds if $\delta(G) > \delta n$.

Earlier we saw the chromatic threshold $\delta_{\chi}(H)$ and the homomorphism threshold $\delta_{\text{hom}}(H)$.

Н	$\delta_{\chi}(H)$	$\delta_{hom}(H)$	$\delta_{ ext{poly-rem}}(H)$
<i>K</i> ₃	1/3	1 /3	1 3
K _r	$\frac{2r-5}{2r-3}$	$\frac{2r-5}{2r-3}$	$\frac{2r-5}{2r-3}$
K _{2,2,2}	$\frac{1}{2}$	1/2	<u>1</u> 3

Definition

The polynomial removal threshold $\delta_{poly-rem}(H)$ is the infimum of δ such that the H removal lemma has polynomial bounds if $\delta(G) > \delta n$.

Earlier we saw the chromatic threshold $\delta_{\chi}(H)$ and the homomorphism threshold $\delta_{\text{hom}}(H)$.

Н	$\delta_{\chi}(H)$	$\delta_{hom}(H)$	$\delta_{ ext{poly-rem}}(H)$
K ₃	<u>1</u> 3	1 3	1/3
K _r	$\frac{2r-5}{2r-3}$	$\frac{2r-5}{2r-3}$	$\frac{2r-5}{2r-3}$
K _{2,2,2}	1/2	$\frac{1}{2}$	<u>1</u> 3
C_k , $k \geq 5$ odd	0	$[0, \frac{1}{k}]$	$\left[\frac{1}{k},\frac{1}{2}\right]$

Three thresholds

Definition

The polynomial removal threshold $\delta_{poly-rem}(H)$ is the infimum of δ such that the H removal lemma has polynomial bounds if $\delta(G) > \delta n$.

Earlier we saw the chromatic threshold $\delta_{\chi}(H)$ and the homomorphism threshold $\delta_{\text{hom}}(H)$.

These are the infimum of δ such that an H-free graph with $\delta(G) > \delta n$ has bounded chromatic number or bounded "structure".

Н	$\delta_{\chi}(H)$	$\delta_{hom}(H)$	$\delta_{ m poly-rem}(H)$
K ₃	<u>1</u> 3	1/3	<u>1</u> 3
K _r	$\frac{2r-5}{2r-3}$	$\frac{2r-5}{2r-3}$	$\frac{2r-5}{2r-3}$
K _{2,2,2}	1/2	1/2	<u>1</u> 3
C_k , $k \ge 5$ odd	0	$[0, \frac{1}{k}]$	$\left[\frac{1}{k}, \frac{1}{2}\right]$
$\chi(H) = \omega(H) = r$	$\left\{ \frac{r-3}{r-2}, \frac{2r-5}{2r-3}, \frac{r-2}{r-1} \right\}$	$\left[\delta_{\chi}(H), \frac{r-2}{r-1}\right]$	$\frac{2r-5}{2r-3}$

Theorem (Fox-W.)

If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges.

Theorem (Fox-W.)

If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges.

As in the case r = 3, it suffices to prove that every copy of K_r contains a popular edge, i.e. an edge in $> c_{\alpha,r}n^{r-2}$ copies of K_r .

Theorem (Fox-W.)

If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges.

Theorem (Fox-W.)

If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges.

Theorem (Fox-W.)

If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges.

Theorem (Fox-W.)

If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges.

Theorem (Fox-W.)

If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges.

Theorem (Fox-W.)

If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges.

As in the case r=3, it suffices to prove that every copy of K_r contains a popular edge, i.e. an edge in $> c_{\alpha,r}n^{r-2}$ copies of K_r . For simplicity, let r=4 and $\delta(G)>(\frac{3}{5}+\alpha)n$. Fix a K_4 in $G, v_1,...,v_4$.

number of edges > $4 \cdot (\frac{3}{5} + \alpha)n > \frac{12}{5}n = (2 + \frac{2}{5})n$ many vertices on the right have ≥ 3 neighbors on the left

Theorem (Fox-W.)

If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges.

As in the case r=3, it suffices to prove that every copy of K_r contains a popular edge, i.e. an edge in $> c_{\alpha,r}n^{r-2}$ copies of K_r . For simplicity, let r=4 and $\delta(G)>(\frac{3}{5}+\alpha)n$. Fix a K_4 in $G, v_1,...,v_4$.

number of edges $> 4 \cdot (\frac{3}{5} + \alpha)n > \frac{12}{5}n = (2 + \frac{2}{5})n$ many vertices on the right have ≥ 3 neighbors on the left

Theorem (Fox-W.)

If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges.

As in the case r=3, it suffices to prove that every copy of K_r contains a popular edge, i.e. an edge in $> c_{\alpha,r}n^{r-2}$ copies of K_r . For simplicity, let r=4 and $\delta(G)>(\frac{3}{5}+\alpha)n$. Fix a K_4 in $G, V_1, ..., V_4$.

number of edges > $4 \cdot (\frac{3}{5} + \alpha)n > \frac{12}{5}n = (2 + \frac{2}{5})n$ many vertices on the right have ≥ 3 neighbors on the left

Theorem (Fox-W.)

If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges.

Theorem (Fox-W.)

If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges.

Theorem (Fox-W.)

If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges.

Theorem (Fox-W.)

If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges.

Theorem (Fox-W.)

If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges.

Theorem (Fox-W.)

If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges.

As in the case r=3, it suffices to prove that every copy of K_r contains a popular edge, i.e. an edge in $> c_{\alpha,r}n^{r-2}$ copies of K_r . For simplicity, let r=4 and $\delta(G)>(\frac{3}{5}+\alpha)n$. Fix a K_4 in $G, v_1,...,v_4$.

number of edges > $3 \cdot (\frac{1}{5} + \alpha)n > (1 + \alpha)|S_u|$ many vertices on the right have ≥ 2 neighbors on the left

Theorem (Fox-W.)

If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges.

As in the case r=3, it suffices to prove that every copy of K_r contains a popular edge, i.e. an edge in $> c_{\alpha,r} n^{r-2}$ copies of K_r . For simplicity, let r=4 and $\delta(G)>(\frac{3}{5}+\alpha)n$. Fix a K_4 in $G, v_1, ..., v_4$.

number of edges > $3 \cdot (\frac{1}{5} + \alpha)n > (1 + \alpha)|S_u|$ many vertices on the right have ≥ 2 neighbors on the left

Theorem (Fox-W.)

If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges.

As in the case r=3, it suffices to prove that every copy of K_r contains a popular edge, i.e. an edge in $> c_{\alpha,r}n^{r-2}$ copies of K_r . For simplicity, let r=4 and $\delta(G)>(\frac{3}{5}+\alpha)n$. Fix a K_4 in $G, V_1, ..., V_4$.

number of edges > $3 \cdot (\frac{1}{5} + \alpha)n > (1 + \alpha)|S_u|$ many vertices on the right have ≥ 2 neighbors on the left

Theorem (Fox-W.)

If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges.

Theorem (Fox-W.)

If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges.

Theorem (Fox-W.)

If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges.

As in the case r=3, it suffices to prove that every copy of K_r contains a popular edge, i.e. an edge in $> c_{\alpha,r} n^{r-2}$ copies of K_r . For simplicity, let r=4 and $\delta(G)>(\frac{3}{5}+\alpha)n$. Fix a K_4 in $G, V_1, ..., V_4$.

There are $c_{\alpha}n^2$ edges among the common neighbors of v_2 and v_3 .

Outline

Minimum degree conditions

The graph removal lemma

Minimum degree conditions and the graph removal lemma

Conclusion

• There is a structural threshold at minimum degree $\frac{1}{3}$ for triangle-free graphs: bounded "complexity" above $\frac{1}{3}$, but unbounded below.

- There is a structural threshold at minimum degree $\frac{1}{3}$ for triangle-free graphs: bounded "complexity" above $\frac{1}{3}$, but unbounded below.
- Similarly, the triangle removal lemma has a threshold at $\frac{1}{3}$: linear bounds above $\frac{1}{3}$, but super-polynomial below.

- There is a structural threshold at minimum degree $\frac{1}{3}$ for triangle-free graphs: bounded "complexity" above $\frac{1}{3}$, but unbounded below.
- Similarly, the triangle removal lemma has a threshold at $\frac{1}{3}$: linear bounds above $\frac{1}{3}$, but super-polynomial below.
- Above the threshold, simple averaging arguments suffice; below the threshold, it appears that much more powerful techniques are needed.

- There is a structural threshold at minimum degree $\frac{1}{3}$ for triangle-free graphs: bounded "complexity" above $\frac{1}{3}$, but unbounded below.
- Similarly, the triangle removal lemma has a threshold at $\frac{1}{3}$: linear bounds above $\frac{1}{3}$, but super-polynomial below.
- Above the threshold, simple averaging arguments suffice; below the threshold, it appears that much more powerful techniques are needed.
- We determine this polynomial removal threshold $\delta_{poly-rem}(H)$ for many graphs H, but there remain many questions.

- There is a structural threshold at minimum degree $\frac{1}{3}$ for triangle-free graphs: bounded "complexity" above $\frac{1}{3}$, but unbounded below.
- Similarly, the triangle removal lemma has a threshold at $\frac{1}{3}$: linear bounds above $\frac{1}{3}$, but super-polynomial below.
- Above the threshold, simple averaging arguments suffice; below the threshold, it appears that much more powerful techniques are needed.
- We determine this polynomial removal threshold $\delta_{poly-rem}(H)$ for many graphs H, but there remain many questions.
 - If $\chi(H) = \omega(H) = r$, then $\delta_{\text{poly-rem}}(H) = \frac{2r-5}{2r-3}$.

- There is a structural threshold at minimum degree $\frac{1}{3}$ for triangle-free graphs: bounded "complexity" above $\frac{1}{3}$, but unbounded below.
- Similarly, the triangle removal lemma has a threshold at $\frac{1}{3}$: linear bounds above $\frac{1}{3}$, but super-polynomial below.
- Above the threshold, simple averaging arguments suffice; below the threshold, it appears that much more powerful techniques are needed.
- We determine this polynomial removal threshold $\delta_{poly-rem}(H)$ for many graphs H, but there remain many questions.
 - If $\chi(H) = \omega(H) = r$, then $\delta_{\text{poly-rem}}(H) = \frac{2r-5}{2r-3}$.
 - What is $\delta_{poly-rem}(C_5)$? (or odd cycles more generally)

- There is a structural threshold at minimum degree $\frac{1}{3}$ for triangle-free graphs: bounded "complexity" above $\frac{1}{3}$, but unbounded below.
- Similarly, the triangle removal lemma has a threshold at $\frac{1}{3}$: linear bounds above $\frac{1}{3}$, but super-polynomial below.
- Above the threshold, simple averaging arguments suffice; below the threshold, it appears that much more powerful techniques are needed.
- We determine this polynomial removal threshold $\delta_{poly-rem}(H)$ for many graphs H, but there remain many questions.
 - If $\chi(H) = \omega(H) = r$, then $\delta_{\text{poly-rem}}(H) = \frac{2r-5}{2r-3}$.
 - What is $\delta_{\text{poly-rem}}(C_5)$? (or odd cycles more generally)
 - For which graphs H does $\delta_{\text{poly-rem}}(H) = \delta_{\chi}(H)$ and/or $\delta_{\text{poly-rem}}(H) = \delta_{\text{hom}}(H)$?

- There is a structural threshold at minimum degree $\frac{1}{3}$ for triangle-free graphs: bounded "complexity" above $\frac{1}{3}$, but unbounded below.
- Similarly, the triangle removal lemma has a threshold at $\frac{1}{3}$: linear bounds above $\frac{1}{3}$, but super-polynomial below.
- Above the threshold, simple averaging arguments suffice; below the threshold, it appears that much more powerful techniques are needed.
- We determine this polynomial removal threshold $\delta_{poly-rem}(H)$ for many graphs H, but there remain many questions.
 - If $\chi(H) = \omega(H) = r$, then $\delta_{\text{poly-rem}}(H) = \frac{2r-5}{2r-3}$.
 - What is $\delta_{poly-rem}(C_5)$? (or odd cycles more generally)
 - For which graphs H does $\delta_{\text{poly-rem}}(H) = \delta_{\chi}(H)$ and/or $\delta_{\text{poly-rem}}(H) = \delta_{\text{hom}}(H)$?
- Are there applications of the removal lemma with high minimum degree? (I only know one application.)

- There is a structural threshold at minimum degree $\frac{1}{3}$ for triangle-free graphs: bounded "complexity" above $\frac{1}{3}$, but unbounded below.
- Similarly, the triangle removal lemma has a threshold at $\frac{1}{3}$: linear bounds above $\frac{1}{3}$, but super-polynomial below.
- Above the threshold, simple averaging arguments suffice; below the threshold, it appears that much more powerful techniques are needed.
- We determine this polynomial removal threshold $\delta_{poly-rem}(H)$ for many graphs H, but there remain many questions.
 - If $\chi(H) = \omega(H) = r$, then $\delta_{\text{poly-rem}}(H) = \frac{2r-5}{2r-3}$.
 - What is $\delta_{\text{poly-rem}}(C_5)$? (or odd cycles more generally)
 - For which graphs H does $\delta_{\text{poly-rem}}(H) = \delta_{\chi}(H)$ and/or $\delta_{\text{poly-rem}}(H) = \delta_{\text{hom}}(H)$?
- Are there applications of the removal lemma with high minimum degree? (I only know one application.)
- Are there hypergraph analogues of these results?

Thank you!