Minimum degree and the graph removal lemma Yuval Wigderson (Stanford) Joint with Jacob Fox June 30, 2021 #### Outline Minimum degree conditions The graph removal lemma Minimum degree conditions and the graph removal lemma Conclusion #### Outline Minimum degree conditions The graph removal lemma Minimum degree conditions and the graph removal lemma Conclusion Let G be a triangle-free graph with n vertices and min degree $\delta(G)$. Let G be a triangle-free graph with n vertices and min degree $\delta(G)$. Theorem (Mantel) If $\delta(G) > \frac{1}{2}n$, then G cannot exist. Let G be a triangle-free graph with n vertices and min degree $\delta(G)$. #### Theorem (Mantel) If $\delta(G) > \frac{1}{2}n$, then G cannot exist. Let G be a triangle-free graph with n vertices and min degree $\delta(G)$. #### Theorem (Mantel) If $\delta(G) > \frac{1}{2}n$, then G cannot exist. Theorem (Andrásfai-Erdős-Sós) If $\delta(G) > \frac{2}{5}n$, then G is bipartite. Let G be a triangle-free graph with n vertices and min degree $\delta(G)$. #### Theorem (Mantel) If $\delta(G) > \frac{1}{2}n$, then G cannot exist. #### Theorem (Andrásfai-Erdős-Sós) If $\delta(G) > \frac{2}{5}n$, then G is bipartite. Let G be a triangle-free graph with n vertices and min degree $\delta(G)$. #### Theorem (Mantel) If $\delta(G) > \frac{1}{2}n$, then G cannot exist. #### Theorem (Andrásfai-Erdős-Sós) If $\delta(G) > \frac{2}{5}n$, then G is a subgraph of \bigcirc . Let G be a triangle-free graph with n vertices and min degree $\delta(G)$. #### Theorem (Mantel) If $\delta(G) > \frac{1}{2}n$, then G cannot exist. Theorem (Andrásfai-Erdős-Sós) If $\delta(G) > \frac{2}{5}n$, then G is a subgraph of \bigcirc . Theorem (Häggkvist) If $\delta(G) > \frac{3}{8}n$, then G is a subgraph of \bigcirc or \diamondsuit . Let G be a triangle-free graph with n vertices and min degree $\delta(G)$. #### Theorem (Mantel) If $\delta(G) > \frac{1}{2}n$, then G cannot exist. ### Theorem (Andrásfai-Erdős-Sós) If $\delta(G) > \frac{2}{5}n$, then G is a subgraph of \bigcirc . #### Theorem (Häggkvist) If $\delta(G) > \frac{3}{8}n$, then G is a subgraph of \bigcirc or $^{\circ}$. Let G be a triangle-free graph with n vertices and min degree $\delta(G)$. #### Theorem (Mantel) If $\delta(G) > \frac{1}{2}n$, then G cannot exist. #### Theorem (Andrásfai-Erdős-Sós) If $\delta(G) > \frac{2}{5}n$, then G is a subgraph of \bigcirc . #### Theorem (Häggkvist) If $\delta(G) > \frac{3}{8}n$, then G is a subgraph of \bigcirc or $^{\circ}$. Jin found seven more thresholds for seven more structures. Theorem (Erdős-Hajnal-Simonovits) For every $\alpha > 0$ and C > 0, there exists a triangle-free graph G with $\delta(G) > (\frac{1}{3} - \alpha)n$ and $\chi(G) > C$. #### Theorem (Erdős-Hajnal-Simonovits) For every $\alpha > 0$ and C > 0, there exists a triangle-free graph G with $\delta(G) > (\frac{1}{3} - \alpha)n$ and $\chi(G) > C$. #### Theorem (Thomassen) For every $\alpha > 0$, there exists C > 0 such that any triangle-free graph G with $\delta(G) > (\frac{1}{3} + \alpha)n$ has $\chi(G) < C$. #### Theorem (Erdős-Hajnal-Simonovits) For every $\alpha > 0$ and C > 0, there exists a triangle-free graph G with $\delta(G) > (\frac{1}{3} - \alpha)n$ and $\chi(G) > C$. #### Theorem (Thomassen) For every $\alpha > 0$, there exists C > 0 such that any triangle-free graph G with $\delta(G) > (\frac{1}{3} + \alpha)n$ has $\chi(G) < C$. #### Theorem (Łuczak) For every $\alpha > 0$, there exists a finite set \mathcal{F} of triangle-free graphs such that any triangle-free graph G with $\delta(G) > (\frac{1}{3} + \alpha)n$ is a subgraph of a blowup of some $F \in \mathcal{F}$. #### Theorem (Erdős-Hajnal-Simonovits) For every $\alpha > 0$ and C > 0, there exists a triangle-free graph G with $\delta(G) > (\frac{1}{3} - \alpha)n$ and $\chi(G) > C$. #### Theorem (Thomassen) For every $\alpha > 0$, there exists C > 0 such that any triangle-free graph G with $\delta(G) > (\frac{1}{3} + \alpha)n$ has $\chi(G) < C$. The chromatic threshold $\delta_{\chi}(K_3)$ equals $\frac{1}{3}$. #### Theorem (Łuczak) For every $\alpha > 0$, there exists a finite set \mathcal{F} of triangle-free graphs such that any triangle-free graph G with $\delta(G) > (\frac{1}{3} + \alpha)n$ is a subgraph of a blowup of some $F \in \mathcal{F}$. #### Theorem (Erdős-Hajnal-Simonovits) For every $\alpha > 0$ and C > 0, there exists a triangle-free graph G with $\delta(G) > (\frac{1}{3} - \alpha)n$ and $\chi(G) > C$. #### Theorem (Thomassen) For every $\alpha > 0$, there exists C > 0 such that any triangle-free graph G with $\delta(G) > (\frac{1}{3} + \alpha)n$ has $\chi(G) < C$. The chromatic threshold $\delta_{\chi}(K_3)$ equals $\frac{1}{3}$. #### Theorem (Łuczak) For every $\alpha > 0$, there exists a finite set \mathcal{F} of triangle-free graphs such that any triangle-free graph G with $\delta(G) > (\frac{1}{3} + \alpha)n$ is a subgraph of a blowup of some $F \in \mathcal{F}$. The homomorphism threshold $\delta_{hom}(K_3)$ equals $\frac{1}{3}$. #### Outline Minimum degree conditions The graph removal lemma Minimum degree conditions and the graph removal lemma Conclusion Can we say anything if we only assume that *G* has few triangles? Can we say anything if we only assume that *G* has few triangles? Triangle removal lemma (Ruzsa-Szemerédi) For every $\varepsilon > 0$ there exists $\rho > 0$ such that if G has $< \rho n^3$ triangles, then it can be made triangle-free by removing $< \varepsilon n^2$ edges. Can we say anything if we only assume that G has few triangles? Triangle removal lemma (Ruzsa-Szemerédi) For every $\varepsilon > 0$ there exists $\rho > 0$ such that if G has $< \rho n^3$ triangles, then it can be made triangle-free by removing $< \varepsilon n^2$ edges. "The only way to make a graph with few triangles is to add few edges to a triangle-free graph." Can we say anything if we only assume that *G* has few triangles? #### Triangle removal lemma (Ruzsa-Szemerédi) For every $\varepsilon > 0$ there exists $\rho > 0$ such that if G has $< \rho n^3$ triangles, then it can be made triangle-free by removing $< \varepsilon n^2$ edges. "The only way to make a graph with few triangles is to add few edges to a triangle-free graph." Applications to number theory, computer science, graph theory,... # Graphs with few triangles Can we say anything if we only assume that G has few triangles? # Triangle removal lemma (Ruzsa-Szemerédi) For every $\varepsilon > 0$ there exists $\rho > 0$ such that if G has $< \rho n^3$ triangles, then it can be made triangle-free by removing $< \varepsilon n^2$ edges. "The only way to make a graph with few triangles is to add few edges to a triangle-free graph." Applications to number theory, computer science, graph theory,... Despite the simple statement, all known proofs are hard! # Graphs with few triangles Can we say anything if we only assume that *G* has few triangles? # Triangle removal lemma (Ruzsa-Szemerédi) For every $\varepsilon > 0$ there exists $\rho > 0$ such that if G has $< \rho n^3$ triangles, then it can be made triangle-free by removing $< \varepsilon n^2$ edges. "The only way to make a graph with few triangles is to add few edges to a triangle-free graph." Applications to number theory, computer science, graph theory,... Despite the simple statement, all known proofs are hard! ## Theorem (Alon-Duke-Lefmann-Rödl-Yuster, Füredi) For every H and $\varepsilon > 0$, there exists $\rho > 0$ such that if G has $<\rho n^{|V(H)|}$ copies of H, then it can be made H-free by removing $<\varepsilon n^2$ edges. ## Graph removal lemma For every H and $\varepsilon > 0$, there exists $\rho > 0$ such that if G has $<\rho n^{|V(H)|}$ copies of H, then it can be made H-free by removing $<\varepsilon n^2$ edges. ## Graph removal lemma For every H and $\varepsilon > 0$, there exists $\rho > 0$ such that if G has $<\rho n^{|V(H)|}$ copies of H, then it can be made H-free by removing $<\varepsilon n^2$ edges. Let $\rho(\varepsilon, H)$ be the largest possible value of ρ . ## Graph removal lemma For every H and $\varepsilon > 0$, there exists $\rho > 0$ such that if G has $<\rho n^{|V(H)|}$ copies of H, then it can be made H-free by removing $<\varepsilon n^2$ edges. Let $\rho(\varepsilon, H)$ be the largest possible value of ρ . # Original proofs $$\rho(\varepsilon,H)^{-1} \leq 2^{2} \cdot \varepsilon^{2}$$ ## Graph removal lemma For every H and $\varepsilon > 0$, there exists $\rho > 0$ such that if G has $<\rho n^{|V(H)|}$ copies of H, then it can be made H-free by removing $<\varepsilon n^2$ edges. Let $\rho(\varepsilon, H)$ be the largest possible value of ρ . ## Theorem (Fox) $$\rho(\varepsilon,H)^{-1} \leq 2^{2^{\cdot^{\cdot^{2}}}} \right\}^{C_{H} \log \frac{1}{\varepsilon}}$$ # Graph removal lemma For every H and $\varepsilon > 0$, there exists $\rho > 0$ such that if G has $<\rho n^{|V(H)|}$ copies of H, then it can be made H-free by removing $<\varepsilon n^2$ edges. Let $\rho(\varepsilon, H)$ be the largest possible value of ρ . # Theorem (Fox) $$\rho(\varepsilon,H)^{-1} \leq 2^{2^{\cdot \cdot \cdot^{2}}} \right\}^{C_{H} \log \frac{1}{\varepsilon}}$$ Theorem (Ruzsa-Szemerédi, Alon) $$\rho(\varepsilon, H)^{-1} \geq \varepsilon^{-c_H \log \frac{1}{\varepsilon}}$$ for non-bipartite H. # Graph removal lemma For every H and $\varepsilon > 0$, there exists $\rho > 0$ such that if G has $<\rho n^{|V(H)|}$ copies of H, then it can be made H-free by removing $<\varepsilon n^2$ edges. Let $\rho(\varepsilon, H)$ be the largest possible value of ρ . # Theorem (Fox) $$\rho(\varepsilon,H)^{-1} \leq 2^{2^{\cdot \cdot \cdot^{2}}} \right\}^{C_{H} \log \frac{1}{\varepsilon}}$$ ## Theorem (Ruzsa-Szemerédi, Alon) $$\rho(\varepsilon, H)^{-1} \geq \varepsilon^{-c_H \log \frac{1}{\varepsilon}}$$ for non-bipartite H. **Upshot:** $\rho(\varepsilon, H)$ is super-polynomial in ε for non-bipartite H. #### Outline Minimum degree conditions The graph removal lemma Minimum degree conditions and the graph removal lemma Conclusion ## Theorem (Fox-W.) If $\delta(G) > (\frac{1}{3} + \alpha)n$ and G has $< \rho n^3$ triangles, then G can be made triangle-free by deleting $< \frac{3}{\alpha} \rho n^2$ edges. ### Theorem (Fox-W.) If $\delta(G) > (\frac{1}{3} + \alpha)n$ and G has $< \rho n^3$ triangles, then G can be made triangle-free by deleting $< \frac{3}{\alpha} \rho n^2$ edges. In a sufficiently dense graph, the removal lemma has linear bounds! ### Theorem (Fox-W.) If $\delta(G) > (\frac{1}{3} + \alpha)n$ and G has $< \rho n^3$ triangles, then G can be made triangle-free by deleting $< \frac{3}{\alpha} \rho n^2$ edges. In a sufficiently dense graph, the removal lemma has linear bounds! #### Proof. Consider any triangle $\{v_1, v_2, v_3\}$ in G. We have $|N(v_i)| > (\frac{1}{3} + \alpha)n$. ## Theorem (Fox-W.) If $\delta(G) > (\frac{1}{3} + \alpha)n$ and G has $< \rho n^3$ triangles, then G can be made triangle-free by deleting $< \frac{3}{\alpha} \rho n^2$ edges. In a sufficiently dense graph, the removal lemma has linear bounds! #### Proof. Consider any triangle $\{v_1, v_2, v_3\}$ in G. We have $|N(v_i)| > (\frac{1}{3} + \alpha)n$. By pigeonhole, $|N(v_i) \cap N(v_j)| > \alpha n$ for some i, j. ### Theorem (Fox-W.) If $\delta(G) > (\frac{1}{3} + \alpha)n$ and G has $< \rho n^3$ triangles, then G can be made triangle-free by deleting $< \frac{3}{\alpha} \rho n^2$ edges. In a sufficiently dense graph, the removal lemma has linear bounds! #### Proof. Consider any triangle $\{v_1, v_2, v_3\}$ in G. We have $|N(v_i)| > (\frac{1}{3} + \alpha)n$. By pigeonhole, $|N(v_i) \cap N(v_j)| > \alpha n$ for some i, j. So $v_i v_j$ lies in $> \alpha n$ triangles. #### Theorem (Fox-W.) If $\delta(G) > (\frac{1}{3} + \alpha)n$ and G has $< \rho n^3$ triangles, then G can be made triangle-free by deleting $< \frac{3}{\alpha} \rho n^2$ edges. In a sufficiently dense graph, the removal lemma has linear bounds! #### Proof. Consider any triangle $\{v_1, v_2, v_3\}$ in G. We have $|N(v_i)| > (\frac{1}{3} + \alpha)n$. By pigeonhole, $|N(v_i) \cap N(v_j)| > \alpha n$ for some i, j. So $v_i v_j$ lies in $> \alpha n$ triangles. So every triangle contains a popular edge, one lying in $> \alpha n$ triangles. Deleting all popular edges destroys all triangles. ### Theorem (Fox-W.) If $\delta(G) > (\frac{1}{3} + \alpha)n$ and G has $< \rho n^3$ triangles, then G can be made triangle-free by deleting $< \frac{3}{\alpha} \rho n^2$ edges. In a sufficiently dense graph, the removal lemma has linear bounds! #### Proof. Consider any triangle $\{v_1, v_2, v_3\}$ in G. We have $|N(v_i)| > (\frac{1}{3} + \alpha)n$. By pigeonhole, $|N(v_i) \cap N(v_i)| > \alpha n$ for some i, j. So $v_i v_j$ lies in $> \alpha n$ triangles. So every triangle contains a popular edge, one lying in $> \alpha n$ triangles. Deleting all popular edges destroys all triangles. t popular edges yield $> \alpha nt/3$ triangles. ### Theorem (Fox-W.) If $\delta(G) > (\frac{1}{3} + \alpha)n$ and G has $< \rho n^3$ triangles, then G can be made triangle-free by deleting $< \frac{3}{\alpha} \rho n^2$ edges. In a sufficiently dense graph, the removal lemma has linear bounds! #### Proof. Consider any triangle $\{v_1, v_2, v_3\}$ in G. We have $|N(v_i)| > (\frac{1}{3} + \alpha)n$. By pigeonhole, $|N(v_i) \cap N(v_j)| > \alpha n$ for some i, j. So $v_i v_j$ lies in $> \alpha n$ triangles. So every triangle contains a popular edge, one lying in $> \alpha n$ triangles. Deleting all popular edges destroys all triangles. t popular edges yield $> \alpha nt/3$ triangles. So $\alpha nt/3 < \rho n^3$ ### Theorem (Fox-W.) If $\delta(G) > (\frac{1}{3} + \alpha)n$ and G has $< \rho n^3$ triangles, then G can be made triangle-free by deleting $< \frac{3}{\alpha} \rho n^2$ edges. In a sufficiently dense graph, the removal lemma has linear bounds! #### Proof. Consider any triangle $\{v_1, v_2, v_3\}$ in G. We have $|N(v_i)| > (\frac{1}{3} + \alpha)n$. By pigeonhole, $|N(v_i) \cap N(v_j)| > \alpha n$ for some i, j. So $v_i v_i$ lies in $> \alpha n$ triangles. So every triangle contains a popular edge, one lying in $> \alpha n$ triangles. Deleting all popular edges destroys all triangles. t popular edges yield $> \alpha nt/3$ triangles. So $\alpha nt/3 < \rho n^3$, and therefore $t < \frac{3}{\alpha}\rho n^2$. #### Theorem (Fox-W.) If $\delta(G) > (\frac{1}{3} + \alpha)n$ and G has $< \rho n^3$ triangles, then G can be made triangle-free by deleting $< \frac{3}{\alpha} \rho n^2$ edges. In a sufficiently dense graph, the removal lemma has linear bounds! #### Proof. Consider any triangle $\{v_1, v_2, v_3\}$ in G. We have $|N(v_i)| > (\frac{1}{3} + \alpha)n$. By pigeonhole, $|N(v_i) \cap N(v_j)| > \alpha n$ for some i, j. So $v_i v_i$ lies in $> \alpha n$ triangles. So every triangle contains a popular edge, one lying in $> \alpha n$ triangles. Deleting all popular edges destroys all triangles. t popular edges yield $> \alpha nt/3$ triangles. So $\alpha nt/3 < \rho n^3$, and therefore $t < \frac{3}{\alpha}\rho n^2$. The proof only uses simple averaging arguments! Can we still get linear bounds with a weaker condition on $\delta(G)$? Can we still get linear bounds with a weaker condition on $\delta(G)$? No. Theorem (Fox-W.) For any $\alpha > 0$, there exists G with $\delta(G) > (\frac{1}{3} - \alpha)n$ such that deleting all triangles in G is roughly as hard as it is for arbitrary graphs. Can we still get linear bounds with a weaker condition on $\delta(G)$? No. ## Theorem (Fox-W.) For any $\alpha > 0$, there exists G with $\delta(G) > (\frac{1}{3} - \alpha)n$ such that deleting all triangles in G is roughly as hard as it is for arbitrary graphs. #### Proof. Let G_0 be a "hard" graph for the triangle removal lemma. Can we still get linear bounds with a weaker condition on $\delta(G)$? No. ## Theorem (Fox-W.) For any $\alpha > 0$, there exists G with $\delta(G) > (\frac{1}{3} - \alpha)n$ such that deleting all triangles in G is roughly as hard as it is for arbitrary graphs. #### Proof. Let G_0 be a "hard" graph for the triangle removal lemma. We may assume G_0 is tripartite. Can we still get linear bounds with a weaker condition on $\delta(G)$? No. ## Theorem (Fox-W.) For any $\alpha > 0$, there exists G with $\delta(G) > (\frac{1}{3} - \alpha)n$ such that deleting all triangles in G is roughly as hard as it is for arbitrary graphs. #### Proof. Let G_0 be a "hard" graph for the triangle removal lemma. We may assume G_0 is tripartite. Add to G_0 a huge blowup of the path P_2 . Can we still get linear bounds with a weaker condition on $\delta(G)$? No. # Theorem (Fox-W.) For any $\alpha > 0$, there exists G with $\delta(G) > (\frac{1}{3} - \alpha)n$ such that deleting all triangles in G is roughly as hard as it is for arbitrary graphs. #### Proof. Let G_0 be a "hard" graph for the triangle removal lemma. We may assume G_0 is tripartite. Add to G_0 a huge blowup of the path P_2 . Can we still get linear bounds with a weaker condition on $\delta(G)$? No. ## Theorem (Fox-W.) For any $\alpha > 0$, there exists G with $\delta(G) > (\frac{1}{3} - \alpha)n$ such that deleting all triangles in G is roughly as hard as it is for arbitrary graphs. #### Proof. Let G_0 be a "hard" graph for the triangle removal lemma. We may assume G_0 is tripartite. Add to G_0 a huge blowup of the path P_2 . G has minimum degree close to n/3, and it is hard to make it triangle-free. Can we still get linear bounds with a weaker condition on $\delta(G)$? No. # Theorem (Fox-W.) For any $\alpha > 0$, there exists G with $\delta(G) > (\frac{1}{3} - \alpha)n$ such that deleting all triangles in G is roughly as hard as it is for arbitrary graphs. #### Proof. Let G_0 be a "hard" graph for the triangle removal lemma. We may assume G_0 is tripartite. Add to G_0 a huge blowup of the path P_2 . G has minimum degree close to n/3, and it is hard to make it triangle-free. There are linear bounds in the triangle removal lemma if $\delta(G) > (\frac{1}{3} + \alpha)n$, but super-polynomial is necessary if we only assume $\delta(G) > (\frac{1}{3} - \alpha)n$. Can we still get linear bounds with a weaker condition on $\delta(G)$? No. # Theorem (Fox-W.) For any $\alpha > 0$, there exists G with $\delta(G) > (\frac{1}{3} - \alpha)n$ such that deleting all triangles in G is roughly as hard as it is for arbitrary graphs. #### Proof. Let G_0 be a "hard" graph for the triangle removal lemma. We may assume G_0 is tripartite. Add to G_0 a huge blowup of the path P_2 . G has minimum degree close to n/3, and it is hard to make it triangle-free. There are linear bounds in the triangle removal lemma if $\delta(G) > (\frac{1}{3} + \alpha)n$, but super-polynomial is necessary if we only assume $\delta(G) > (\frac{1}{3} - \alpha)n$. $\frac{1}{3}$ is a threshold for bounds in the triangle removal lemma. #### Definition The polynomial removal threshold $\delta_{\text{poly-rem}}(H)$ is the infimum of δ such that the H removal lemma has polynomial bounds if $\delta(G) > \delta n$. #### Definition The polynomial removal threshold $\delta_{poly-rem}(H)$ is the infimum of δ such that the H removal lemma has polynomial bounds if $\delta(G) > \delta n$. Earlier we saw the chromatic threshold $\delta_{\chi}(H)$ and the homomorphism threshold $\delta_{\text{hom}}(H)$. #### Definition The polynomial removal threshold $\delta_{poly-rem}(H)$ is the infimum of δ such that the H removal lemma has polynomial bounds if $\delta(G) > \delta n$. Earlier we saw the chromatic threshold $\delta_{\chi}(H)$ and the homomorphism threshold $\delta_{\text{hom}}(H)$. | H | $\delta_{\chi}(H)$ | $\delta_{hom}(H)$ | $\delta_{ ext{poly-rem}}(H)$ | |-----------------------|--------------------|-------------------|------------------------------| | <i>K</i> ₃ | <u>1</u> | <u>1</u> | <u>1</u> | | | 3 | 3 | 3 | #### Definition The polynomial removal threshold $\delta_{\text{poly-rem}}(H)$ is the infimum of δ such that the H removal lemma has polynomial bounds if $\delta(G) > \delta n$. Earlier we saw the chromatic threshold $\delta_{\chi}(H)$ and the homomorphism threshold $\delta_{\text{hom}}(H)$. | Н | $\delta_{\chi}(H)$ | $\delta_{hom}(H)$ | $\delta_{poly-rem}(H)$ | |----------------|---------------------|---------------------|------------------------| | K ₃ | <u>1</u>
3 | <u>1</u> | 1/3 | | K_r | $\frac{2r-5}{2r-3}$ | $\frac{2r-5}{2r-3}$ | $\frac{2r-5}{2r-3}$ | #### Definition The polynomial removal threshold $\delta_{poly-rem}(H)$ is the infimum of δ such that the H removal lemma has polynomial bounds if $\delta(G) > \delta n$. Earlier we saw the chromatic threshold $\delta_{\chi}(H)$ and the homomorphism threshold $\delta_{\text{hom}}(H)$. | Н | $\delta_{\chi}(H)$ | $\delta_{hom}(H)$ | $\delta_{ ext{poly-rem}}(H)$ | |-----------------------|---------------------|---------------------|------------------------------| | <i>K</i> ₃ | 1/3 | 1 /3 | 1 3 | | K _r | $\frac{2r-5}{2r-3}$ | $\frac{2r-5}{2r-3}$ | $\frac{2r-5}{2r-3}$ | | K _{2,2,2} | $\frac{1}{2}$ | 1/2 | <u>1</u> 3 | #### Definition The polynomial removal threshold $\delta_{poly-rem}(H)$ is the infimum of δ such that the H removal lemma has polynomial bounds if $\delta(G) > \delta n$. Earlier we saw the chromatic threshold $\delta_{\chi}(H)$ and the homomorphism threshold $\delta_{\text{hom}}(H)$. | Н | $\delta_{\chi}(H)$ | $\delta_{hom}(H)$ | $\delta_{ ext{poly-rem}}(H)$ | |------------------------|---------------------|---------------------------|--| | K ₃ | <u>1</u>
3 | 1 3 | 1/3 | | K _r | $\frac{2r-5}{2r-3}$ | $\frac{2r-5}{2r-3}$ | $\frac{2r-5}{2r-3}$ | | K _{2,2,2} | 1/2 | $\frac{1}{2}$ | <u>1</u>
3 | | C_k , $k \geq 5$ odd | 0 | $[0, \frac{1}{k}]$ | $\left[\frac{1}{k},\frac{1}{2}\right]$ | #### Three thresholds #### Definition The polynomial removal threshold $\delta_{poly-rem}(H)$ is the infimum of δ such that the H removal lemma has polynomial bounds if $\delta(G) > \delta n$. Earlier we saw the chromatic threshold $\delta_{\chi}(H)$ and the homomorphism threshold $\delta_{\text{hom}}(H)$. These are the infimum of δ such that an H-free graph with $\delta(G) > \delta n$ has bounded chromatic number or bounded "structure". | Н | $\delta_{\chi}(H)$ | $\delta_{hom}(H)$ | $\delta_{ m poly-rem}(H)$ | |---------------------------|--|--|---| | K ₃ | <u>1</u>
3 | 1/3 | <u>1</u>
3 | | K _r | $\frac{2r-5}{2r-3}$ | $\frac{2r-5}{2r-3}$ | $\frac{2r-5}{2r-3}$ | | K _{2,2,2} | 1/2 | 1/2 | <u>1</u>
3 | | C_k , $k \ge 5$ odd | 0 | $[0, \frac{1}{k}]$ | $\left[\frac{1}{k}, \frac{1}{2}\right]$ | | $\chi(H) = \omega(H) = r$ | $\left\{ \frac{r-3}{r-2}, \frac{2r-5}{2r-3}, \frac{r-2}{r-1} \right\}$ | $\left[\delta_{\chi}(H), \frac{r-2}{r-1}\right]$ | $\frac{2r-5}{2r-3}$ | #### Theorem (Fox-W.) If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges. #### Theorem (Fox-W.) If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges. As in the case r = 3, it suffices to prove that every copy of K_r contains a popular edge, i.e. an edge in $> c_{\alpha,r}n^{r-2}$ copies of K_r . #### Theorem (Fox-W.) If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges. #### Theorem (Fox-W.) If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges. #### Theorem (Fox-W.) If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges. #### Theorem (Fox-W.) If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges. #### Theorem (Fox-W.) If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges. #### Theorem (Fox-W.) If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges. As in the case r=3, it suffices to prove that every copy of K_r contains a popular edge, i.e. an edge in $> c_{\alpha,r}n^{r-2}$ copies of K_r . For simplicity, let r=4 and $\delta(G)>(\frac{3}{5}+\alpha)n$. Fix a K_4 in $G, v_1,...,v_4$. number of edges > $4 \cdot (\frac{3}{5} + \alpha)n > \frac{12}{5}n = (2 + \frac{2}{5})n$ many vertices on the right have ≥ 3 neighbors on the left #### Theorem (Fox-W.) If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges. As in the case r=3, it suffices to prove that every copy of K_r contains a popular edge, i.e. an edge in $> c_{\alpha,r}n^{r-2}$ copies of K_r . For simplicity, let r=4 and $\delta(G)>(\frac{3}{5}+\alpha)n$. Fix a K_4 in $G, v_1,...,v_4$. number of edges $> 4 \cdot (\frac{3}{5} + \alpha)n > \frac{12}{5}n = (2 + \frac{2}{5})n$ many vertices on the right have ≥ 3 neighbors on the left #### Theorem (Fox-W.) If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges. As in the case r=3, it suffices to prove that every copy of K_r contains a popular edge, i.e. an edge in $> c_{\alpha,r}n^{r-2}$ copies of K_r . For simplicity, let r=4 and $\delta(G)>(\frac{3}{5}+\alpha)n$. Fix a K_4 in $G, V_1, ..., V_4$. number of edges > $4 \cdot (\frac{3}{5} + \alpha)n > \frac{12}{5}n = (2 + \frac{2}{5})n$ many vertices on the right have ≥ 3 neighbors on the left #### Theorem (Fox-W.) If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges. #### Theorem (Fox-W.) If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges. #### Theorem (Fox-W.) If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges. #### Theorem (Fox-W.) If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges. #### Theorem (Fox-W.) If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges. #### Theorem (Fox-W.) If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges. As in the case r=3, it suffices to prove that every copy of K_r contains a popular edge, i.e. an edge in $> c_{\alpha,r}n^{r-2}$ copies of K_r . For simplicity, let r=4 and $\delta(G)>(\frac{3}{5}+\alpha)n$. Fix a K_4 in $G, v_1,...,v_4$. number of edges > $3 \cdot (\frac{1}{5} + \alpha)n > (1 + \alpha)|S_u|$ many vertices on the right have ≥ 2 neighbors on the left #### Theorem (Fox-W.) If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges. As in the case r=3, it suffices to prove that every copy of K_r contains a popular edge, i.e. an edge in $> c_{\alpha,r} n^{r-2}$ copies of K_r . For simplicity, let r=4 and $\delta(G)>(\frac{3}{5}+\alpha)n$. Fix a K_4 in $G, v_1, ..., v_4$. number of edges > $3 \cdot (\frac{1}{5} + \alpha)n > (1 + \alpha)|S_u|$ many vertices on the right have ≥ 2 neighbors on the left #### Theorem (Fox-W.) If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges. As in the case r=3, it suffices to prove that every copy of K_r contains a popular edge, i.e. an edge in $> c_{\alpha,r}n^{r-2}$ copies of K_r . For simplicity, let r=4 and $\delta(G)>(\frac{3}{5}+\alpha)n$. Fix a K_4 in $G, V_1, ..., V_4$. number of edges > $3 \cdot (\frac{1}{5} + \alpha)n > (1 + \alpha)|S_u|$ many vertices on the right have ≥ 2 neighbors on the left #### Theorem (Fox-W.) If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges. #### Theorem (Fox-W.) If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges. #### Theorem (Fox-W.) If $\delta(G) > (\frac{2r-5}{2r-3} + \alpha)n$ and G has $< \rho n^r$ copies of K_r , then G can be made K_r -free by deleting $< c_{\alpha,r} \rho n^2$ edges. As in the case r=3, it suffices to prove that every copy of K_r contains a popular edge, i.e. an edge in $> c_{\alpha,r} n^{r-2}$ copies of K_r . For simplicity, let r=4 and $\delta(G)>(\frac{3}{5}+\alpha)n$. Fix a K_4 in $G, V_1, ..., V_4$. There are $c_{\alpha}n^2$ edges among the common neighbors of v_2 and v_3 . #### Outline Minimum degree conditions The graph removal lemma Minimum degree conditions and the graph removal lemma Conclusion • There is a structural threshold at minimum degree $\frac{1}{3}$ for triangle-free graphs: bounded "complexity" above $\frac{1}{3}$, but unbounded below. - There is a structural threshold at minimum degree $\frac{1}{3}$ for triangle-free graphs: bounded "complexity" above $\frac{1}{3}$, but unbounded below. - Similarly, the triangle removal lemma has a threshold at $\frac{1}{3}$: linear bounds above $\frac{1}{3}$, but super-polynomial below. - There is a structural threshold at minimum degree $\frac{1}{3}$ for triangle-free graphs: bounded "complexity" above $\frac{1}{3}$, but unbounded below. - Similarly, the triangle removal lemma has a threshold at $\frac{1}{3}$: linear bounds above $\frac{1}{3}$, but super-polynomial below. - Above the threshold, simple averaging arguments suffice; below the threshold, it appears that much more powerful techniques are needed. - There is a structural threshold at minimum degree $\frac{1}{3}$ for triangle-free graphs: bounded "complexity" above $\frac{1}{3}$, but unbounded below. - Similarly, the triangle removal lemma has a threshold at $\frac{1}{3}$: linear bounds above $\frac{1}{3}$, but super-polynomial below. - Above the threshold, simple averaging arguments suffice; below the threshold, it appears that much more powerful techniques are needed. - We determine this polynomial removal threshold $\delta_{poly-rem}(H)$ for many graphs H, but there remain many questions. - There is a structural threshold at minimum degree $\frac{1}{3}$ for triangle-free graphs: bounded "complexity" above $\frac{1}{3}$, but unbounded below. - Similarly, the triangle removal lemma has a threshold at $\frac{1}{3}$: linear bounds above $\frac{1}{3}$, but super-polynomial below. - Above the threshold, simple averaging arguments suffice; below the threshold, it appears that much more powerful techniques are needed. - We determine this polynomial removal threshold $\delta_{poly-rem}(H)$ for many graphs H, but there remain many questions. - If $\chi(H) = \omega(H) = r$, then $\delta_{\text{poly-rem}}(H) = \frac{2r-5}{2r-3}$. - There is a structural threshold at minimum degree $\frac{1}{3}$ for triangle-free graphs: bounded "complexity" above $\frac{1}{3}$, but unbounded below. - Similarly, the triangle removal lemma has a threshold at $\frac{1}{3}$: linear bounds above $\frac{1}{3}$, but super-polynomial below. - Above the threshold, simple averaging arguments suffice; below the threshold, it appears that much more powerful techniques are needed. - We determine this polynomial removal threshold $\delta_{poly-rem}(H)$ for many graphs H, but there remain many questions. - If $\chi(H) = \omega(H) = r$, then $\delta_{\text{poly-rem}}(H) = \frac{2r-5}{2r-3}$. - What is $\delta_{poly-rem}(C_5)$? (or odd cycles more generally) - There is a structural threshold at minimum degree $\frac{1}{3}$ for triangle-free graphs: bounded "complexity" above $\frac{1}{3}$, but unbounded below. - Similarly, the triangle removal lemma has a threshold at $\frac{1}{3}$: linear bounds above $\frac{1}{3}$, but super-polynomial below. - Above the threshold, simple averaging arguments suffice; below the threshold, it appears that much more powerful techniques are needed. - We determine this polynomial removal threshold $\delta_{poly-rem}(H)$ for many graphs H, but there remain many questions. - If $\chi(H) = \omega(H) = r$, then $\delta_{\text{poly-rem}}(H) = \frac{2r-5}{2r-3}$. - What is $\delta_{\text{poly-rem}}(C_5)$? (or odd cycles more generally) - For which graphs H does $\delta_{\text{poly-rem}}(H) = \delta_{\chi}(H)$ and/or $\delta_{\text{poly-rem}}(H) = \delta_{\text{hom}}(H)$? - There is a structural threshold at minimum degree $\frac{1}{3}$ for triangle-free graphs: bounded "complexity" above $\frac{1}{3}$, but unbounded below. - Similarly, the triangle removal lemma has a threshold at $\frac{1}{3}$: linear bounds above $\frac{1}{3}$, but super-polynomial below. - Above the threshold, simple averaging arguments suffice; below the threshold, it appears that much more powerful techniques are needed. - We determine this polynomial removal threshold $\delta_{poly-rem}(H)$ for many graphs H, but there remain many questions. - If $\chi(H) = \omega(H) = r$, then $\delta_{\text{poly-rem}}(H) = \frac{2r-5}{2r-3}$. - What is $\delta_{poly-rem}(C_5)$? (or odd cycles more generally) - For which graphs H does $\delta_{\text{poly-rem}}(H) = \delta_{\chi}(H)$ and/or $\delta_{\text{poly-rem}}(H) = \delta_{\text{hom}}(H)$? - Are there applications of the removal lemma with high minimum degree? (I only know one application.) - There is a structural threshold at minimum degree $\frac{1}{3}$ for triangle-free graphs: bounded "complexity" above $\frac{1}{3}$, but unbounded below. - Similarly, the triangle removal lemma has a threshold at $\frac{1}{3}$: linear bounds above $\frac{1}{3}$, but super-polynomial below. - Above the threshold, simple averaging arguments suffice; below the threshold, it appears that much more powerful techniques are needed. - We determine this polynomial removal threshold $\delta_{poly-rem}(H)$ for many graphs H, but there remain many questions. - If $\chi(H) = \omega(H) = r$, then $\delta_{\text{poly-rem}}(H) = \frac{2r-5}{2r-3}$. - What is $\delta_{\text{poly-rem}}(C_5)$? (or odd cycles more generally) - For which graphs H does $\delta_{\text{poly-rem}}(H) = \delta_{\chi}(H)$ and/or $\delta_{\text{poly-rem}}(H) = \delta_{\text{hom}}(H)$? - Are there applications of the removal lemma with high minimum degree? (I only know one application.) - Are there hypergraph analogues of these results? # Thank you!